
Digital IC Design
Prof. Janakiraman Viraraghavan

Department of Electrical Engineering 
Indian Institute of Technology, Madras

Lecture – 58
Carry Select Adder

(Refer Slide Time: 00:15)

So, yesterday we started discussing about various architectures of adders which is the only

way in which you can be speed up be performance of an adder right beyond a point. You can

do circuit techniques to speed up little bit, but beyond the point the ripple delay right is t sum

plus N minus 1 t carry right and if this is the case then it is delay is determined primarily by

N.

So, it does not matter how much you can you know decrease the t sum and t carry at a circuit

level. So, it is you are limited by N and therefore, you have to start thinking of various



architectures of ripple adders and in that pursuit we discuss the first adder called a the carry

skip adder right. And, the idea of a carry skip adder was to simply bypass the carry bypass all

the full adders in a single stage if all the propagates are 1. 

So, we basically said that we will put a select line here called P 0, P 1, P 2, P 3 right this

select line is basically product 4 to 7 P K right like that you just put a multiplexer and the

worst case delay which is the case when everything when all the adders are in propagate

mode, you by pass through the multiplexer right. So, with this what we are able to do is the

critical path right. 

Actually this blue line is slightly wrong, it has to go through the carry propagation it has to be

like this right. So, you do a generation of G and P terms for the all the adders in time t GP

right and then you propagate through the first stage. However, in the first stage you do not

have to wait for sum to be ready. So, you just have to allow the carry is to propagate through

that. So, which means that the first adder has to be in generate, the remaining have to be in

propagate mode right.

Similarly, but after that everything has to be in propagate mode right and therefore, we got the

expression for the rip carry skip adder, as what? T GP plus M times t carry. Now, you have to

bypass N by M minus 1 multiplexers right. So, if this delay here the multiplexer delay is

shown here as t by pass right then you have to do N by M minus 1 t bypass. Why M by N

minus 1 because if this stage also as going to bypass then the carry will be ready.

However, that does not mean the sum is ready. Ultimately we want all the sum bits and the

carry out bit to, but ready only then our?

Student: (Refer Time: 04:08).

Computation is done right. So, therefore, the last stage cannot be in bypass mode right. So,

this is going to be in bypass right, this will be in bypass, but this is not going to be in the

bypass mode I mean that is not the delay. It can be in bypass mode, but we have to now

consider the delay going into the sum here or in fact, I need to draw this on that side



propagate and bring it out here right. So, therefore, we said with the last stage is going to be

what M minus 1 t carry plus t sum ok.

So, now how do this compare this delay term how does it compare with the ripple adder term

right. Clearly what we have done is wherever there was N we have brought that down to N by

M. So, clearly there is sum saving right, but definitely and quite obviously, it cannot give you

savings if you have very few bits because now, I have actually added a multiplexer in the

critical path. 

The ripple adder did not have the multiplexer, now I have put a multiplexer. So, it is bound to

give you larger delay if there are fewer bits, but as you go higher it looks like beyond about 4

bits also the carry skip adder starts giving you good advantage ok.

(Refer Slide Time: 06:00)



This is what shown here. Ripple adder is basically the line in red right. It starts off with lower

delay up to about 4 bits somewhere around 4 bits. Then the and up to 4 bits the carry skip

adder has slightly higher delay. Beyond that the carry skip adder starts having better delay

than the ripple adder ok. So, in summary we are still limited by we rippling though we

brought in down to N by M ok. So, let see how we can improve on this further ok.

(Refer Slide Time: 06:58)

So, now you have let me get the name right I forgetting this name carry selector adder code.

So, we would do a carry select adder. So, in the last stage of this carry skip adder right here

we had to wait for the carry to actually ripple through and then produce the sum outputs. Can

we do better than that? Right, can we avoid that rippling is the question ok. 

So, if that were the case how we do it? So, the point is very simple the carry in that is going to

come to this final stage here this C in right is going to be either 0 or 1 right it is a bit.



Therefore, you double the hardware and evaluate the sum and carry for both C in equal to 0

and C in equal to 1 and keep it ready. The aim here is to improve performance, my power can

go up, my area can go up. There is no problem. 

If area is goes up power will go up because width goes up and therefore, capacitance goes up

dynamic power C V DD square will go up right, but it is ultimately I want performance. So,

the idea is instead of just bypassing you make a full adder ripple adder in that each block like

and this is a full adder, carry in will be grounded in one stage. This will go like this, then I

have another full adder right maybe I should put it like this.

Here you connect it to V DD and then as usual I am going to put a mux. What is my select

line? C in of this stage. This is 0, this is 1 we will get the C out right. Now, I also have to

multiplex here and get my sum S 0, S 1, S 2 and S 3. So, now I have significantly increased

the hardware I will double the number of full adders have also added more multiplexers right,

but the advantage is that stage can actually evaluate that bit and be ready up front ok.



(Refer Slide Time: 10:54)

So, now we are going to use this and construct the thing there. So, in interest of time let me

just sort of ok.



(Refer Slide Time: 11:15)

So, as usual we have a computing the G and P block first right. So, this is going to give you

let me use blue there, the delay here is as usual t GP. Then it goes to the full adder rippling

block that does evaluation of carry in equal to 0. In parallel there is another block which does

the evaluation when carry in is equal to one then I am going to send it through a multiplexer

and the carry out will go. 

The sum of course, will have its own multiplexer and all that right. So, now, what is the first

what mode of operation should each of these full adders be in? 

Student: (Refer Time: 12:33).

Sorry.



Student: (Refer Time: 12:40).

 It can be?

Student: (Refer Time: 12:45).

It can technically it can be anything because we are evaluating this for both cases right. So,

what is the critical path delay now right t?

Student: (Refer Time: 13:02).

Select obviously, it has to take a time t GP, of course this is in parallel right. So, this is t GP

plus what about the first stage?

Student: (Refer Time: 12:33).

Do you have to wait for it ripple through that or not?

Student: (Refer Time: 13:35).

See till now up to this point we only generated the GP signals you have created a GP signals

and only one small amount of time is elapsed, in that time do you think this ripple adder

could have ripple through already no right. So, technically you have to have that rippling

thing to go through correct. So, I expect we will check let us just write it these things and then

we will go back and see if the expression matches if not we see why. M times t carry right.

Now, how many multiplexers do I have to bypass?

Student: (Refer Time: 14:23).



At least M by N minus 1 like the last case right. Only thing is what about that last

multiplexer? 

Student: (Refer Time: 14:49).

Correct. So, this is actually N by M minus 1 t bypass of carry, but this sum now you need to

multiplex right you have to put the multiplexer there and get the sum output also multiplexed

right which means if this blocks if you see there is actually similarly 2 is to 1 bypass mux

blocks here that is going to select between the sums. 

So, this will be S 12 right and this is going to come from the 0 block S 12 of 0, S 12 of 1. So,

it going to. So, therefore, this bypass is plus t bypass or t mux of sum just to differentiate

between bypass and sum multiplexer I will write it like this. Of course, if all this is the same

then I have expect it to be t GP plus M t carry plus N by M into t bypass this was the

expression right?

So, we can go and check if you know if I made a mistake N by M t mux plus there is a t sum

ok this is interesting. So, now it depends on what this full adder block is ok. If my aim is to

only propagate the carry right in this particular block if my aim is to propagate the carry then

what I will do I will not put the full adder here I will only put the carry out circuit of the full

adder there, correct? Because this path among this path we are only trying to propagate the

carry the sum can be evaluated in parallel correct.



(Refer Slide Time: 17:43)

So, here I will call it FA C which means it has only the carry out part. What I will do is

instead of this whole multiplexer thing, you are going to get the carry out here right and then I

will create the sum block right. You remember when you made the full adder circuit in at a

transistor level we use the carry out to create the sum.

You can now split that block you do not have to put that entire because you remember now

you are doubling hardware. So, you double only the necessary hardware. So, here this sum

block I am removing and I have only if one per full adder set right. So, I have reduced the

hardware here, but of course, the sorry right the sum will then get created her S 0, S 1 and so

on.



So, that is why after you bypass right what has happened this t by N the last bypass is actually

through this multiplexer. Then I have to create the sum right I have that thing to create and

therefore, I will add one more term to this called plus t sum ok.


