
Digital IC Design
Prof. Janakiraman Viraraghavan

Department of Electrical Engineering
Indian Institute of Technology, Madras

Lecture – 46
Special Functions

(Refer Slide Time: 00:14)

Today, if I take a high skew inverter. We said the size is going to be two and half right. Now

some of you had a question what if half is not allowed right, what if half is not allowed in the

technology. The point is logical effort is independent of that gate size scaling. So, what I will

do is, now I will show you that if whether I take two and half right or whether I take 1 and 4

you will get the same answer ok. So, now, this is my high skew inverter.

Let us say I want to now calculate the pull up logical effort, and this is my pull down logical

effort. So, I am going to construct my reference inverters. So, what do I do? If I am looking at



pull up then I ensure that PMOS transistor size remains the same, right. So, this 4 will just

appear here. And if that is 4 and I want the inverter to be a symmetric static CMOS inverter

the NMOS should be 2. So, this will give rise to the 2 here right. And therefore, what is the

logical effort now? g pull up, it is 5 C divided by what? 6 C right. So, you get 5 by 6. Now

what about pull down? 

This is my reference inverter, what I am going to do this 1 will appear here. Now if this is 1

what should be the PMOS 2? And therefore, I get logical effort pull down equals how much?

5 by 3. This is what we got yesterday right 5 by 6 and 5 by 3. Clearly the pull down is greater

than 1; pull up has been made less than 1. So, it does not matter whether I take two half, 1 4,

2 8 all of that is the same ok, clear. Any questions on the high skew inverters or high skew

low skew inverters? Ok.

(Refer Slide Time: 03:40)



So, today we will look at some special functions ok. What I am going to do is; first let me just

quickly review the static CMOS implementation once ok. Let me take LAN 2 again: A B, A

and B Y. What is the function that is being implemented in the pull down network? Y equals

A B bar: A B bar because its being pulled down to the 0, therefore I have to invert it right;

this is pull down. What is the pull up? A bar plus B bar. Clearly Y PD equals Y pull up right.

This has to be consistent, ok

In general, if I have a pull down network and a pull up network then I can say that my Y pull

down is sum f bar of A B you know or let me take A 1 A 2 A N; f bar because it is going to

ground I have to invert that function. And, I am saying A 1 A 2 A N because these are active

high switches, the switch is turned on when the input goes high, the general notation is this.

Similarly, if I want to write the pull up network it is some other function g of what: A 1 bar A

2 bar and A N bar. What is the condition? These two have to be the same Y PD is equal to Y

PU, both stacks have to implement the same function that is quite obvious right. Now the

question is under what circumstances will both these stacks be a mirror image of each other. I

want my PMOS stack to be a mirror image of the NMOS stack. Which means that whatever

input A 1 is you know connected to an NMOS transistor it is connected to a similar PMOS

transistor on top right. So, if the PMOS was PMOS stack was a mirror image of my NMOS

stack, ok.



(Refer Slide Time: 07:16)

If PMOS stack right or the pull up network that we say in general was a mirror image. And

mirror image because I am taking the mirror image about that x axis going to ground I am

make it go to VDD, that is all that is why I am doing mirror image otherwise it is effectively

the same stack right; mirror image of the pull down network. 

Then, what is a pull up function that is being implemented? Y PU is if the pull down network

given Y PD right given is f bar of A 1 A 2 A N. And do all of it, but in terms of f and the A 1

A 1 bars what is it: f of? Exactly this is nothing but f of A 1 bar A 2 bar A N bar. Now we

know our other constraint, that the pull down function and pull up function have to be the

same. 

Therefore, f of A 1 bar A 2 bar A N bar so be equal to f bar of A 1 A 2 A N. What does this

mean? It means that, if I complement by inputs A 1 becomes A 1 bar A 2 becomes A 2 bar



and so on then the output also becomes the complement. What I am doing here, these inputs

are getting complemented. What this is doing, is output is getting complementing.

So, if by complementing the inputs the output also gets complemented then, I can make my

PMOS stack a mirror image of my NMOS stack. And that is what was given to you in the

assignment where we said implement Y equal to A B plus B C plus C A whole bar, right. So,

what are the advantage of this?

(Refer Slide Time: 10:11)

So, you take Y equal to A B plus B C plus C A whole bar and we do, and let us first do as

vanilla static CMOS implementation of this right. Then yeah I will simplify this further, I will

just say A B plus C into A plus B. So, this will be C, A B and I have another A and B here,

right.



Now what is the PMOS stack? If I, were to do it in the original way where the PMOS stack is

just a dual of the NMOS stack. So, A and B have to be in parallel there is a series there. So, I

am going to put A B. Then I have C in series with A and B; which means I am going to put C

in parallel now with A and B in series, right. So, C, A, B ok. So, can you size this transistor

now? So, what should this PMOS sizing be? What is the worse stack size? How many

transistors on the stack? 3. 

So therefore, I need 6 6 6 right. So therefore, this has to be 6 6 6 and 6 right, and therefore

this has to be 3, clear. Now let us check if this condition is satisfied, where I can use the

mirroring property ok. So, what is the mirroring property? It simply says that if I complement

the inputs output should also become a compliment, ok. So, you can work out this Boolean

logic yourself by you are putting A bar, B bar, C bar you worked it out you will get the same

function, ok. But I will show you the simpler way which is the truth table way: A, B, C output

Y: 0 1 0, 0 1 1. So, what is this? A B plus B C plus C A right. If any two are 1 then we get

output as 1: 0 0 1 0 1 1 1, clear.

So, this is what my output Y is mean term of this is A B plus B C plus C A, of course if you

want the compliment then its is just a reverse right. So, this is mean terms of you take zeros; 1

0 1 2 4, 0 1 2 4. What is Y bar? Mean term of summation; summation of 3 what 4 5 6 7, 7 ok.

This is Y and Y bar. Question now is if I invert the inputs will the output get inverted. So,

you look at 0 0 0; if you invert 0 0 0 what do you get? 7. So, you will see that this 0 becomes

7. What about 1? 0 0 1. What do you get if you invert the inputs? 0 0 1 becomes that is 6

exactly. So, this 2; 0 1 0 becomes 1 0 1 which is 5. 

And of course, 0 1 1 if you invert you will get 1 0 0 which is 4. So, clearly by inverting the

inputs the output is getting inverted. And therefore, I can apply the mirroring property here,

clear. So, if I apply the mirroring property the advantage is I can just replicate the NMOS

stack. Now the advantage is the NMOS stack has only two transistors on the stack, correct.

So, with mirror implementation it would simply this whole thing would become what; just a

mirror image of this C A B and this is A B again.



So, what are the, what is the gate size law for this? 4. Is this is 4? 4 and 4. Clearly, the logical

effort on each input has come down now, right. This is the advantage. Now, it is not

necessary that every time you replicate the NMOS stack is going to be better, in this one

example it happened to be like that. First of all there are very few functions where this will

hold ok. Another function where it where this holds is the 3 input XOR, if I take Y equals A

XOR B XOR C. Then on this again the mirroring property will hold, you can go verify for

yourself.

Again, write down the mean terms, see what happens when you inverted: B inputs and C will

be output gets inverted right. There are very few functions where this can be done and it can

be exploited very well. If that function is important, it turns out this function is very important

because this is nothing but that carry out of your full adder. And the three input XOR is the

sum of your pull out. And therefore, these two are very important functions in the a l u. And,

we are able to exploit this mirroring property beautiful in order to reduce the logical efforts on

these three books. Any questions here?

So, the key point; yeah I will come to that later yeah ok. So,. So, the key thing is if your

PMOS stack is large and your PMOS size therefore is going to be very large, your logical

effort is going to be very high you have no choice right. Basically, the PMOS stack: summary

is well I will write it here. Summary is PMOS can kill your logical effort. And lot of effort

will now be put in in order to optimize this PMOS stack. One such technique is this mirroring

property, ok.


