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We will get started. We are going to start look at AC signal in a lossless transmission line ok 

that is why we have seen only the DC cases ok opening and closing switches and we know 

many things now, but let us go ahead and look at what happens with AC signals and try to see 

with the higher frequencies what happens, what is the impedance characteristics and 

impedance matching characteristics ok. 

 

So, let us take the configuration of the transmission line, where I have an alternating source 

ok in the mark this as 𝑉𝑆. It has a series impedance 𝑍𝑠 right and connected to a transmission 

line ok. The transmission line has a characteristic impedance of 𝑍0 similar to the characteristic 

resistance we will see more details about it as we go further ok. And the length is L ok and I 

am going to replace the load resistor, load impedance right ok. So, we want to study this 

configuration and figure out what the voltages and the currents in this transmission line would 

look like ok.  
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So, we start with the wave equation ok for the voltage ok. So, I have 

𝜕2𝑉(𝑧, 𝑡)

𝜕𝑧2
=

1

𝑢2

𝜕2𝑉(𝑧, 𝑡)

𝜕𝑡2
 

and the wave equation for the current will have a similar form all right. 

𝜕2𝐼(𝑧, 𝑡)

𝜕𝑧2
=

1

𝑢2

𝜕2𝐼(𝑧, 𝑡)

𝜕𝑡2
 

 

 

The previous time, we had written some general solutions, it's very simple and 

straightforward to understand. It was of the form 

𝑉(𝑧, 𝑡) = 𝑓+ (𝑡 −
𝑧

𝑢
) + 𝑓−(𝑡 +

𝑧

𝑢
) 

Here we are just going to assume that our source is going to be sinusoidal in nature. So, the 

general forms will have slightly different format than what we saw before, but they will still 

be function  

𝑉(𝑧, 𝑡) = 𝑓+ (𝑡 −
𝑧

𝑢
) + 𝑓−(𝑡 +

𝑧

𝑢
) 

So, I will start with the general solution for the voltage right first; we assume that the source 

is going to be sinusoidal all right. So, we can say that it could be a cosine right and the cosine 

could simply be written as 

𝑉(𝑧, 𝑡) = 𝑅𝑒𝑎𝑙{𝑉(𝑧)𝑒𝑗𝜔𝑡} 



So, we want to write down 𝑉𝐶𝑜𝑠𝜔𝑡 all right, but in order to simplify the math we are actually 

writing this term as  

𝑉(𝑧, 𝑡) = 𝑅𝑒𝑎𝑙{𝑉(𝑧)𝑒𝑗𝜔𝑡} 

Reason is because I have to take two partial derivatives with respect to time all right on the 

right hand side. 

So, I know that the derivative of the complex exponential is simpler, I just have to take 𝑗𝜔𝑒𝑗𝜔𝑡  

and each time I have to take a derivative, I have to multiply the term with 𝑗𝜔 that is it. So, it’s 

easier for me to do this and in the final results one can always take the real part or the 

imaginary part depending upon the kind of the source ok. 

 

So, it’s just a mathematical simplification ok and the I(z,t) can also be written as 

𝐼(𝑧, 𝑡) = 𝑅𝑒𝑎𝑙{𝐼(𝑧)𝑒𝑗𝜔𝑡} 

 

So, the time dependence is clearly periodic ok. 
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Once we do this all right we can write this down or substitute this in our wave equation right. 

So, we can write 

𝜕2𝑉

𝜕𝑧2
=

1

𝑢2
(𝑗𝜔)2𝑉(𝑧)𝑒𝑗𝜔𝑡 



and then I will say ok. 

Now, since the dependence with respect to time is simply periodic right we can try to analyse 

what happens with respect to space ok. So, we know that it is periodic in time, the signal is 

periodic in time, we want to know what it is with respect to space ok. We know that the space 

coordinate and the time coordinate are coupled because there is a term velocity coming into 

a picture for the transmission line all right. So, we can assume some arbitrary value of time 

alright that will simplify the amount of maths for us to write down the general solution all 

right. 

So, we could always say that let us pick one time instant, where the phase 𝑒𝑗𝜔𝑡 that is the 

𝜔𝑡 part goes to say 0. So, you could always substitute sum t equal to 0 right and then get rid 

of this term and when you want the time dependency, you can always bring back this term 

ok. So, this means that you could write this down as 1/𝑢2 ok and whenever I want to talk 

about time dependence, I will multiply everything with the 𝑒𝑗𝜔𝑡 ok. And let us also define a 

new term for the quantities present over here right. 

 

Let us say that let 

𝛽 = 𝜔√𝑙𝑐 

 This will mean that the wave equation will be  
𝜕2𝑉

𝜕𝑧2 all right because I have j square. So, I can 

bring the quantity to the left hand side. So, I will have  

𝜕2𝑉

𝜕𝑧2
+ 𝛽2𝑉(𝑧) = 0 

We have just rewritten the wave equation for the case, when the signal is time harmonic ok 

and representing it in the form of exponentials right and we are taking the real part over here 

to simplify the math ok. 

 

So, the wave equation looks like this and let us quickly do a dimensional analysis while we are 

add it all right 𝜔√𝑙𝑐 ok. So, this has the unit of radians per meter and it is also known as a 

phase constant ok. So, a when the solution which is going to be a wave is travelling in space, 

while it travels the amount of phase it accumulates can be calculated by taking the value of 𝛽 

and multiplying it with the distance it has travelled ok. 

So, the amount of phase is going to be given by the phase constant. This can also be written 

in a slightly different wave with respect to 𝜆 all right. So, 𝛽 can be written as 
2𝜋

𝜆
, the reason 

why is it why it is a constant is because the phase has to be accumulated by a number of 

2𝜋 radians when the wave travels a distance of 𝜆, that is the definition of wavelength ok. 

 



So, depending on the value of 𝜆, the value of 𝛽 can change ok. But for a given wavelength 

right if it if the wave progresses in one direction with the distance equal to that of the 

wavelength, it will accumulate a phase of 2𝜋 ok. 
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Now, once we have written our wave equation in a slightly simpler form, removing the time 

harmonic part and writing only the spatial part, we can always write down the general 

solution to be 

𝑉(𝑧) = 𝑉+𝑒−𝑗𝛽𝑧 + 𝑉−𝑒+𝑗𝛽𝑧 

It is very similar to the case of forward and backward waves that we saw in the case of 

previous lectures. All right I will make sure that now it is becoming periodic in time and as a 

consequence it also seems to become periodic in space. 

 

If you look at the forward voltage wave over here, we see that it has 𝑒−𝑗𝛽𝑧, that means, that 

as you travel in the special direction, you will encounter some periodicity in the voltage 

waveform ok. 

 

So, anything that is periodic in time, it’s also going to become periodic in space all right and 

here we are having the phase constant telling you how fast right the phase will be 

accumulated by a travelling wave the space right. And just like the transmission line case with 

the DC excitation, we do have a forward and a backward wave ok ok. One could also write 

down the currents, how they look ok. 



So, if the characteristic impedance of the transmission line is going to be 𝑍0 right then we can 

just use Ohm's law, and the knowledge that we already have from the previous lectures. 

Remember that for the backward wave, you will have a minus sign coming into the picture 

for the current, simply because we have discussed that the reflection coefficient for the 

current will be negative of the reflection coefficient of the voltage. So, some care has to be 

taken. 

 

So, it will mean that that the forward voltage divided by the forward current will give you 

characteristic impedance 𝑍0 and the backward voltage divided by the backward current will 

give you minus z naught, but one should not worry about -𝑍0 as negative resistance or 

negative impedance extra. It just tells you the direction of energy flow is from sink to the 

source all right not from the source to the sink. So, you should not confuse this with negative 

resistance, negative impedance and all that ok. 
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Once we have this, we have to still establish some relationship with the solutions that we 

have seen in the past all right. 

So, we can say that the voltage is a function of space and time all right that is how we started 

with and the way we broke this down was it say  

𝑉(𝑧, 𝑡) = 𝑅𝑒𝑎𝑙{|𝑉+|𝑒−𝑗𝛽𝑡𝑒𝑗𝜔𝑡} 

= |𝑉+|𝐶𝑜𝑠(𝜔𝑡 − 𝛽𝑧) 



= |𝑉+|𝐶𝑜𝑠(𝜔 (𝑡 −
𝛽

𝜔
𝑧)) 

 

 

 

 

Now we have to establish a clear correlation with the kind of solutions that we had seen 

before. So, we will just do a little bit of manipulation ok. 

The way we have defined 𝛽 all right it is 𝜔√𝑙𝑐 ok. So, we can always go back and try to write 

down what this 
𝛽

𝜔
 will be right. So, this will look like 

= |𝑉+|𝐶𝑜𝑠(𝜔 (𝑡 −
𝑧

𝑢
𝑧)) 

 

Now, once again it is clear that it is a function of t - z/u for the forward wave. So, I think that 

you will be able to understand that, there is clearly a correlation between the kind of solution 

that we saw in the past and the solution for steady state AC excitation that we are seeing 

now. Both are the power cases of function of t - z/u, the function here just happens to be 

cosine of you know t - z/u multiplied with an omega and for the backward wave one could 

establish the same it looks like  

= |𝑉+|𝐶𝑜𝑠(𝜔 (𝑡 −
𝑧

𝑢
𝑧)) 

 

Now, since this is established we have encountered some new terms alright. 𝛽 alright is 

known as the phase constant and u has been defined as omega divided by 𝛽 ok. So, you will 

be having 2𝜋 a radians per second alright for the numerator and radians per meter for the 

denominator. So, you will end up having meters per second. 

 

This term is known as phase velocity, it just tells you that for a given wave of a specific 

frequency or a specific wavelength ok how fast it’s a phase travelling alright and when 

somebody defines phase velocity, automatically means that they are talking about AC 

excitation of a transmission line otherwise in DC you will not talk specifically about phase 

velocity, we will be talking just about the velocity alright. 

 

So, this omega divided by 𝛽 if it is referred to as phase velocity, they are talking about AC 

excitation of a transmission line ok.  
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Since we are aware of the general solution to the loss less transmission line for AC excitation 

right we can always go ahead and try to see what will be the equivalence of what we saw for 

the DC excitation that is terminations open circuit short circuit conditions, reflection 

coefficient these are the conditions that we need to see ok. 

 

So, we can start with a setup all right. So, as usual we will forget the source part ok. So, we 

will start with some terminations, I will have a transmission line ok and let say its characteristic 

impedance is 𝑍0 right phase constant is 𝛽, I have a load resistor  𝑍𝐿 , there are too many 𝑍𝑆, 

but the z that I am writing below is the special coordinate ok. 

 

So, if you look at the spatial coordinate convention it's slightly weird ok. z equal to 0 

corresponds to the load end and z = -l corresponds to the source end you can use any other 

convenient system for spatial representation. I am doing this simply because I am interested 

in finding out the reflection coefficient at the load end. So, 𝛤𝐿 what we had seen before is 

what I am. I want to find out if the position is 0, I can get rid of many terms in my mathematics. 

 

So, I am just doing a simplification over here. So, it is not uncommon to find a slightly different 

coordinate definition system, usually people will start with z equal to 0 on the left hand side 

z equal to l on the right hand side. Anything is ok as long as you are consistent with that there 

are no hard rules regarding this all right. If we do this all right, we can say that the voltage at 

z equals 0 ok. The voltage at z equal to 0 will correspond to the load voltage all right is equal 

to the current that is flowing in this branch with the impedance 𝑍𝐿 multiplied by the 𝑍𝐿 itself. 



 

So, you are applying Ohm's law at the load end V=I*z ok. So, it’s going to be I at z equal to 0 

multiplied with 𝑍𝐿 ok and a at the position z equal to 0, you will be having a forward and a 

backward wave. If we have a look at the solutions that we have written, we have 𝑉+𝑒−𝑗𝛽𝑧 =

0 makes this term equal to 1. So, that makes my math simpler and hence the choice of the 

coordinate system. 𝑉−𝑒𝑗𝛽𝑧 = 0. So, the math becomes simpler over here. So, at z equal to 0 

I can write down the voltage to be 

𝑉𝑜
+ + 𝑉𝑜

− =
1

𝑧0

[𝑉𝑜
+ − 𝑉𝑜

−]𝑧𝐿 

 

 

This is the expression for a I mean this is the expression that we are getting from Ohms law 

on the load end of the transmission line and we are interested in finding out the ratio of 

𝑉𝑜
−/𝑉𝑜

+ ok. 

It’s a simple rearrangement right and you will end up getting 

𝑉𝑜
−

𝑉𝑜
+ =

𝑧𝐿 − 𝑧0

𝑧𝐿 + 𝑧0
 

This is very very similar to the reflection coefficient that you got for the dc excitation, there it 

was 
𝑅𝐿−𝑅𝑐

𝑅𝐿+𝑅𝑐
 in our lectures here it is simply 

𝑧𝐿−𝑧0

𝑧𝐿+𝑧0
 all right and we will call this as 𝛤, and to say 

that it is 𝛤 at the position of the load, we just replace it with the suffix of L we just say that it’s 

a load.  

𝑉𝑜
−

𝑉𝑜
+ =

𝑧𝐿 − 𝑧0

𝑧𝐿 + 𝑧0
= 𝛤𝐿 

 

Sometimes this convention can become confusing especially when you have the length 

marked as minus minus l and all that. So, it is ok to be very specific you can always say 𝛤 at its 

ok right ok. Now compared to the previous case where 𝛤 was a you know 
𝑅𝐿−𝑅𝑐

𝑅𝐿+𝑅𝑐
, here we are 

having 
𝑧𝐿−𝑧0

𝑧𝐿+𝑧0
 the most generic case, it means that each of the quantities 𝑍𝐿 , 𝑍0 extra can 

actually be having some component of resistance, some component of inductance, some 

component of capacitance extra all right. 

 

However, we are considering some lossless transmission line in this case. So, we are still not 

attached to our series resistance to the inductor parallel conductance to the capacitor yet ok. 

So, the solutions are slightly easier ok. And the other thing that we need to start looking at is, 

what will happen in the transmission line when the termination is extreme. 



 

Say for example, it’s a short circuit or an open circuit, these are the two cases that we have 

seen for the DC excitation, you see the same case and on top of that there is something funny 

happening with respect to the impedance in the transmission line, we will have to look into 

that ok. 

 

So, we will start with the case where the transmission line load end is open circuited ok ok. 
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When 𝑍𝐿 is equal to infinity,  

𝑉(𝑧) = 𝑉+(𝑒−𝑗𝛽𝑧 +
𝑉−

𝑉+
𝑒+𝑗𝛽𝑧) 

 

So, I have written in this form so, that I can substitute for  
𝑉−

𝑉+ as 𝛤𝐿  ok. 

 

So, when it is open circuited, this is going to be the reflection coefficient, it’s going to be equal 

to 1 ok. So, I can just substitute one for the reflection coefficient and I end up getting 

 

So, we will be having this is going to be 



𝑉(𝑧) = 2𝑉0
+𝐶𝑜𝑠(𝛽𝑧) 

Now, this is a very important thing to look at right. It means that the voltage at any position z 

in the transmission line ok will vary as 2𝑉0
+𝐶𝑜𝑠(𝛽𝑧), where z is taken from the load towards 

the source end. But what it also means is that there are values of z, where the voltage in the 

transmission line is going to be 2 times your forward voltage reaching the load end ok. 

 

So, the maximum rated voltage for a transmission line should always be considered based on 

the superposition of your forward and backward travelling wave. So, the peak voltage at 

specific positions at the transmission line can be double ok. Similarly, if I wanted to calculate 

the current in the transmission line at a position z, I can use the expression for the current 

from the general solution. So, I have 

𝑉(𝑧) =
𝑉+

𝑧0
(𝑒−𝑗𝛽𝑧 −

𝑉−

𝑉+
𝑒+𝑗𝛽𝑧) 

So, I am having V naught plus divided by 𝑍0 multiplied by some exponentials, but I do have 

the minus sign here to indicate that it's current reflection coefficient is negative compared to 

the voltage reflection coefficient. 
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So, here once again we can substitute 𝛤𝐿  and you get a difference between two complex 

exponentials right and you can write this as some sign right sinusoidal right. So, in this case it 

will be looking like 



𝐼(𝑧) = −
𝑗2𝑉0

+

𝑧0
𝑆𝑖𝑛(𝛽𝑧) 

So, when your load is open circuited depending upon the position all right you will have a 

voltage going with the form 2𝑉0
+𝐶𝑜𝑠(𝛽𝑧) and the current is going to be −

𝑗2𝑉0
+

𝑧0
𝑆𝑖𝑛(𝛽𝑧) 

alright. In this case there are a few things that should be very very clear ok. 

First of all, as you go along the distance of the transmission line, there are going to be specific 

places in your transmission line. For example, z equal to 0 all right and then 𝛽 * z is going to 

be some multiples of 2𝜋 or 𝜋. You will have repetitions of the voltages occurring in your 

transmission line so, it will be repeating again and again and again alright.  

 

The peak value of the voltage that can happen in your transmission line is 2𝑉0
+, the current is 

= −
𝑗2𝑉0

+

𝑧0
𝑆𝑖𝑛(𝛽𝑧). So, it is also periodic. The only thing that we notice is there is a phase 

difference between the current and the voltage ok. 

 

This j should signify something ok it should signify something. So, if you take the ratio of 

voltage to current, we know that we will get an impedance to tell something about the 

impedance, then the current and the voltage are out of phase extra ok. 

So, if we want to have a closer look related to the impedance, we need to write down the 

expression for V of z divided by I of z and then we need to see how the impedance in this line 

will change. We already have a very good guess alright cos(𝛽z) divided by sin(𝛽z) alright. 

So, there is a good possibility that at position z equal to 0 the denominator will become 0 for 

the expression for your impedance and it is going to look like it is infinity. But there is going 

to be another place where the numerator is 0 all right. So, you will be having z equal to I mean 

the impedance is equal to 0 extra. 

So, we need to be clear about what is the distribution of impedance in the transmission line 

and we need to derive some meaning from it ok. So, in order to make this problem a little bit 

clearer ok we will draw the entire system with the source ok. 
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So, I will be having  𝑉𝑠, I have a series impedance 𝑍𝑠 I have a transmission line, I have a load 

impedance 𝑍𝐿 ok. The length of the line is L and I am maintaining the same coordinate system 

which means that I am going to mark the load end to be position z is equal to 0, position z is 

equal to minus L ok. 

The characteristic impedance of the transmission line is 𝑍0 and the phase constant is 𝛽. I want 

to understand looking into this transmission line, what is the impedance that I will be seeing 

right. So, if I look into the transmission line towards this direction to mark the arrow, I want 

to understand what is the impedance that I would be seeing ok. So, let us take the scenarios. 
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So, I can start with the expression for what will happen at the input. So, it is V at z equal to 

minus L in our expression alright. So, I am just going to write this term. 

𝑉(𝑧 = −𝐿) = 𝑉0
+(𝑒𝑗𝛽𝐿 +

𝑉−

𝑉+
𝑒−𝑗𝛽𝐿) 

= 𝑉0
+(𝑒−𝑗𝛽𝑧 + 𝛤𝐿𝑒+𝑗𝛽𝑧) 

 

Where , 𝛤𝐿 is the load reflection coefficient, the current at the input end of the transmission 

line it’s going to look like 

𝐼(𝑧 = −𝐿) =
𝑉0

+

𝑧0
(𝑒𝑗𝛽𝐿 − 𝛤𝐿𝑒−𝑗𝛽𝐿) 

 

then all I have done is substitute z is equal to L in the general solution for the voltage and the 

current is not done any more than that. I just want to take their ratios and I want to 

understand what the impedance will look like all right. 
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So, I can take the ratio of V at minus L to I at minus L right. So, I am going to be ending up with  

𝑍𝑖𝑛 = 𝑍𝑜[
𝑍𝐿 + 𝑗𝑍0 𝑡𝑎𝑛 𝑡𝑎𝑛 (𝛽𝐿) 

𝑍0 + 𝑗𝑍𝐿 𝑡𝑎𝑛 𝑡𝑎𝑛 (𝛽𝐿) 
] 

This is actually a very very complicated expression ok. It’s very complicated expression and 

one cannot get a feeling of what the z n is actually going to look like when the transmission 

line is a is of length L. But one thing is clear if the transmission line is of length L alright even 

within that transmission line, we are going to have some repetitions that are happening. 

 

So, because these are trigonometric functions they do have a period alright all that matters 

is 𝛽L within your brackets with the trigonometric function it does not matter what your L is. 

So, it is going to be repeated every once in a while. So, it clearly justifies that if I take a small 

section of the transmission line and if I understand its properties from say 𝛽𝐿  is equal to 0 to 

𝛽L is equal to 2 𝜋 I would have understood what all the transmission line can do. 

So, for this reason the term 𝛽 L is usually known as electrical length ok. The term 𝛽 L is known 

as electrical length simply because it just tells you the phase between 0 and 2𝜋 ok and we 

started our original derivations for the case when the load impedance is going to be infinity 

or open circuit. So, here we can do the same thing 𝑍𝐿 is equal to infinity, you can as the case 

we started with open circuit load alright if this is the case right you can express z in. 

 

So, common mistake that people do is a substitute infinity plus something divided by 𝑍0 plus 

infinity whenever you have infinity coming in, that means that you have to take it to the 



denominator somehow. So, the you can divide the numerator with 𝑍𝐿, denominator also with 

𝑍𝐿 that way you will have 𝑍0 by 𝑍𝐿 and 𝑍𝐿 by 𝑍𝐿 in the denominator will become 1 alright. 

So, if you did do that ok you will have 

𝑍𝑖𝑛 = 𝑍𝑜(−𝑗𝑐𝑜𝑡(𝛽𝐿)) 𝛺 

Also one can say that it is −𝑗𝑐𝑜𝑡(𝛽𝐿) which is once again a very very complicated expression. 

This means that as you change the electrical length of your transmission line the input 

impedance for the transmission line with the same characteristic impedance is going to be 

dramatically different ok. And one could just simply draw a plot for what the cotangent would 

look like ok as you change the electrical length. 
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So, you can always draw an axis ok x axis can be your say 𝛽L, your y axis can be minus 𝑍0 

cotangent of 𝛽L alright. So, you will have at 𝛽L equal to 0, tangent will be equal to 0, cotangent 

will become infinity because we have a minus sign in front of it alright we will be having minus 

infinity alright let us now, forget about this j alright let us just a understand that the  𝑧𝑖𝑛 is 

purely reactive ok does not have any resistive part, that is what this j is telling us alright.  

 

And −𝑗𝑐𝑜𝑡(𝛽𝐿)if this entire quantity inside that is say this square bracket becomes positive, 

then z will 𝑧𝑖𝑛 will look like minus j something it is similar to seeing a capacitance alright. 

If the term inside the bracket is positive, then you will see capacitance the term inside the 

bracket is negative 𝑧𝑖𝑛 will look like an inductance alright. It’s also possible because it’s a 

cotangent 𝛽L passes through zeros it is quite a possibility that your 𝑧𝑖𝑛 will look like a 0 or a 

short circuit. So, it can go from minus infinity to plus infinity passing through 0. So, a section 

of the transmission line can have a variety of impedance depending on how the electrical 

length of the transmission line is right. 



So, in this case you will go from minus infinity to say steadily some 𝜆/4 alright. So, this will be 

or 𝜋/2 and then you will have this rising up ok and then there will be a discontinuity ok this 

will correspond to 𝜆/2 or 𝜋 alright and then once again 3 𝜆/4 all right. 

 

And then there will be a discontinuity corresponding to 𝜆, 𝜆 is the wavelength ok 𝜋 by 2𝜋, 

3𝜋/2, 2𝜋. I have just marked the x axis to be electrical length going from 0 to 2𝜋, it means 

that the z in that I will be seeing all right in the transmission line this is going to be your 0 on 

the y axis all right it will be negative. So, this means that in this region where your z in is going 

to be negative, the equivalent circuit of your transmission line as seen from the input side is 

going to look like a capacitor that is all alright. 

 

So, if you try to make inferences about your transmission line from the input end, you will be 

measuring some negative imaginary part all right. So, you can just write this down to the 

equivalent circuit to be a capacitor ok in this place it is a capacitor. If you were to a look at the 

part where the −𝑗𝑐𝑜𝑡(𝛽𝐿) is a you know a negative or a net input impedance is positive, the 

equivalent circuit will be like an inductor alright. 

 

So, if you were to make derivations on the transmission line only based on looking at the input 

impedance you are not talking about R, L, G, C extra you are just looking at a transmission line 

of some length L with an electrical length of 𝛽L right its equivalent circuit characteristic is a 

single lumped element. 

If you have to place and try to do your analysis for the circuit, it will look either like a capacitor 

if you measure a you know the value to be a negative imaginary part, it will look like an 

inductor if it is a positive imaginary part and there are some observed things that are 

happening. 

 

So, 0 crossing has to be very clear all right. There are some zero crossings in the zero crossing 

which means that the impedance is 0 or it’s a short circuit that is your current is going to peak 

ok. In those cases, the equivalent circuit where the current is going to peak is going to be a 

series combination of l and c. 

 

If you have a series combination of l and c and if you have inductive reactance that matches 

the capacitive reactance alright, then you will end up having a short circuit and your peak 

voltage is going to be just source voltage divided by source resistance ok that is going to be 

your peak. 

 



So, the equivalent circuit at the place of 0 crossings is going to be L in series with c. Then we 

also have to talk about the equivalent circuit at the place of discontinuities that is you are 

having plus infinity to minus infinity going in your a you know y axis for the input impedance 

in those cases it will be a parallel combination of l and c ok. 

So, it is a very important to know this that a section of a transmission line which is lossless 

depending upon how long it is could act like an inductor or could act like a capacitor, could 

acts specifically like a series combination of inductor and capacitor or a parallel combination 

of inductor and capacitor. 

 

So, that means, the technology for making any of the passive circuits in high frequencies is 

the same. You need to know how to make the transmission line that is it. The remaining job 

is where to cut the transmission line, so that you can make any of these passive components. 

 

When we began this course we began by saying that the equivalent circuit of the transmission 

line is going to be some chopped up versions of l and c, l and c arranged together all right. But 

it’s also true that if you were to replace a transmission line with the lumped element, this is 

how one could do it alright. 

So, it means that the technology for making inductor is not different from the technology for 

making capacitor, you will be making the same transmission line in your manufacturing 

company, but depending on the requirement for that particular case you will be you know 

precisely dicing or cutting here transmission line to where you want alright. So, it means that 

I can have l, c and parallel combination of l and c. So, you could build a lot of circuits with this 

alright and all you will need is a transmission line and a cut with different sections. 
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Just to be complete I will also write down the short circuit condition, that means, 𝑍𝐿 is equal 

to 0. So, far we have seen the case with the open circuit, see the short circuit case alright the 

short circuit case is going to be 

𝑧𝑖𝑛 = 𝑗𝑡𝑎𝑛(𝛽𝐿) 

This means that in the expression for z in which was 𝑍0*( 𝑍𝐿 + j 𝑍0 tan 𝛽𝐿) is the expression 

you will substitute 𝑍𝐿 is equal to 0, and you end up with j 𝑍0 tan 𝛽 L. Once again you can draw 

the variation of 𝑧𝑖𝑛 with respect to the electrical length 𝛽 L it will also have some places where 

it goes to plus infinity and minus infinity to discontinuity and some 0 crossings alright. 

And you will notice that the impedance of the transmission line is repeating every 𝜆 / 2 ok 

every 𝜆 / 2 it will keep repeating and the special case is a where you have 𝑍𝐿 = 𝑍0, 𝑍𝑖𝑛 is going 

to be equal to 𝑍0. 

 

This is a special case because if your load impedance is the same as your characteristic 

impedance, no matter how long or how I mean how short your transmission line is going to 

be cut no matter what at the input you will see only characteristic impedance 𝑍0 ok. It will 

look like it is purely resistive ok 𝑍𝐿 will be equal to 𝑍0 alright and the unit of 𝑍0 is simply ohms 

and its square root of L divided by c norms. 

 

So, it if you have a lossless transmission line alright and excited by a ac source and if 𝑍𝐿 is 

equal to 𝑍0 no matter what electrical length you take for your transmission line, at the input 

side you will measure only 𝑍0. So, this means that I know how to create different impedance 

profiles by making use of this alright.  

Suppose I wanted to manufacture a high frequency circuit I could make use of these 

properties to replace some inductors, some capacitors, some combination of inductors and 

capacitors and I could also you know target some specific values of z in equal to 𝑍0 to fill up 

some purely resistive branches of your circuit ok. But this is not very convincing because 

although we have made l and c very easy, resistance is not something that is coming into the 

picture all right. 

 

So, the only way to go forward is to actually introduce a different phenomenological model. 

So far we have been using a lossless transmission line with l and c, we have to be a little bit 

more practical, include a series resistance in the inductor branch, include a parallel conductor 

and redo whatever we have done and then we have to see what the consequences would be. 

 

So, thus far the procedure for analysing the circuit is very much the same as in DC you can 

calculate the load reflection coefficient as (𝑍𝐿 - 𝑍0) / (𝑍𝐿 + 𝑍0) and depending upon the 



termination, you will be able to find out what the reflection coefficient is going to be, but the 

only difference with respect to DC over here is that depending upon the position you will have 

places where your transmission line is always having zero voltage or always having zero 

current extra. 

 

The impedance in the transmission line will be varying from one place to another place 

depending upon the electrical length ok. These are some of the subtle differences the 

program that we have written you can always substitute a cosine or a sine and try to see what 

happens. Here mind you we have considered only the spatial distribution, we have still said 

that with respect to time it is going to be time harmonic or periodic. 

So, it means that even though you will have some places in your transmission line having non 

zero voltage with respect to time it will go to a maximum and then go to 0 with respect to 

time it will go to maximum and go to 0, but the nodes where it is 0 its going to be fixed all the 

time. So, some small things will appear only if you take that simulation that we had already 

done and plug in a cosine or a sin just to understand what, that means, ok. 

So, in these cases even though you have an AC input excitation we do have fixed places on 

the transmission line where the voltage is going to be 0 or the current is going to be 0 alright 

and you are going to be having fixed positions where the voltages or currents are going to 

become maximum. 

 

So, we call these kinds of waves as standing waves ok and soon we have to analyse the 

meaning of the standing wave, does it tell you anything about the termination can any more 

information be arrived at what is the consequence of standing waves on the power to be 

delivered all these things has to be seen. So, we will go forward in that direction and let us 

stop here. 


