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Ok, we will get started quick overview of what we have seen with respect to parallel-plate and 

rectangular waveguide so far, right. So we tried to derive the transmission and reflection 

coefficients for dielectric-dielectric interfaces and dielectric-conductor interfaces. Once we were 

able to get the transmission and reflection coefficients for dielectric-conductor interfaces, alright 

there was no transmission coefficient, it was 0, alright. Only the reflection coefficient had to be 

found.  

Then we placed the second conductor in such a way that it would not disturb the fields which are 

produced by this interface with the dielectric-  conductor, alright.  
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And then we went on to derive a few parameters, alright  ah.   
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First of all, we found that a  the number of angles at which you can launch was discrete right, it 

was not continuous. The field patterns  that will emerge because of this placement of 2 

conductors with the dielectric in between or a parallel-plate conductor is also discrete alright. So, 

for different values of  m in your propagation constant, alright, call the mode numbers you will 



end up with having different kinds of electric field patterns within the 2 parallel plates. This is 

what we had seen before. 
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And we also  saw that in order for the a waveguide actually to support a travelling wave, you 

needed to have what is known as signal frequency higher than cut-off frequency and the cut-off 

frequency is  

𝑓 =
𝑚𝑣1

2𝑑
 

in the case of a parallel-plate waveguide. Where v1 is the velocity in the medium, right. Ok so, 

we had all these  derivations for the parallel-plate and we extended this a idea to the rectangular 

waveguides alright. 
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So, we had now a parallel-plate configuration on the horizontal axis and a parallel-plate 

configuration on the vertical axis.  
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And then what we did was, we used a procedure where we will start with the wave equation 

alright, we will assume some polarization configuration. In this case, we have used a specific 

polarization configuration where Ez is not equal to 0 and Hz is equal to 0, alright. Hz equal to 0 

means that you may have only Hx and Hy. Ez not equal to 0 does not place any other restriction 

on the electric field it could have Ex, Ey, it could be anything right.  

So, a we had picked up such a configuration and this polarization is known as TM polarization 

because there is no magnetic field component in the longitudinal direction of the waveguide, ok. 

So we picked a polarization like this and we wanted to see what the field patterns would look 

like. You could also pick up and alternate field configuration where Hz is not equal to 0 alright, 

and Ez is equal to 0, ok. 

And that would be known as a TE polarization alright. Consequently, we would rewrite the wave 

equation for Hz in that case alright and try to see what the field patterns would look like using 

the appropriate boundary conditions and also using proper general solutions that will satisfy 

these boundary conditions, alright.  
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So, one of the things that we already know and we are using from prior knowledge is that we 

have to choose some boundary conditions which will you know follow the boundary  which we 

have to  choose the form of the solutions which will satisfy the boundary conditions. That is what 

we have to see. 

So, in this case we already know from the parallel-plate configuration that there has to be a 

standing wave pattern in this direction, standing wave pattern in this direction. And along the 

length of the wave guide, there has to be a travelling wave. Since we already know these things, 

so we are able to pick up some specific general solutions alright, corresponding to standing waves 

and we are also able to pick up solutions that satisfy boundary conditions reasonably well. 

For example, electric field some component may have to become 0 on an interface extra right. 

These details are very important, right. So, you can pick up in the case of TM, a general solution 

that looks like 𝐶1𝐶𝑜𝑠𝐴𝑥 + 𝐶2𝑆𝑖𝑛𝐴𝑥 that corresponds to a standing wave in the X direction.  

And similarly, for the Y direction its a standing wave you can assume the same form, ok. And in 

the Z direction we just use a travelling wave forward and backward, so we already are aware of 

this solution  that is we have a forward travelling wave with  𝑒−𝑗𝛽𝑧 and a backward travelling 

wave with  𝑒𝑗𝛽𝑧.  
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If we take these into consideration, then we may be able to find out the a constants which we 

are interested in alright, by applying some boundary conditions. There were some constants that 

become 0 alright, which reduce the number of terms in the expression for the electric field. And 

there were some constants which we did not solve for, alright. 

(Refer Slide Time: 04:57) 

 



(Refer Slide Time: 05:00) 

 

 

So, we clubbed them together made it into 1 giant constant, alright. So, we said that 

𝐸𝑧(𝑥, 𝑦, 𝑧) = (𝐶2𝑆𝑖𝑛𝐴𝑥)(𝐶4𝑆𝑖𝑛𝐵𝑦)(𝐶5𝑒−𝑗𝛽𝑧)    

alright. And this satisfies the boundary conditions on all the 4 walls, alright. So, x equal to 0 alright 

your field becomes 0, x equal to a again your field becomes 0. alright. Similarly, y equal to 0 the 

field becomes 0 y equal to b the field again becomes 0. So, it satisfies the boundary conditions 

well and it also has a travelling component in the form of 𝑒−𝑗𝛽𝑧, ok.  

So, we have seen all these things and then we also saw what possible values of m and n are a 

going to be with this particular polarization configuration and what they mean with respect to 

the standing wave patterns. That is where we were a  heading towards. So, m equal to 0, n equal 

to 0 if you merely substitute in the electric field expression, you will end up getting Ez = 0 alright. 

So, this is not going to be  if there is not there is no electric field z component that is going to be 

in your wave guide at all, alright. And m equal to 0, n equal to 1, once again, your field is identically 

0  m equal to one n equal to 0 is not possible again and so, the fundamental mode or the least 

value of m or n that is possible for you to give a non-zero value of Ez. 

The way that you had started Ez not equal to 0  was the way you had started alright, you cannot 

end with Ez equal to 0 because that is in contradiction of the assumption you made in order to 

get to this point, right. So, the solution which will correspond to Ez not equal to 0 requires you to 

play some minimum criterion on m and n right. So, this m and n are 1 and 1 and the corresponding 

case will have some spots in your waveguide, alright. 



Now, in this class what we are going to do is, we are first going to go ahead write a simple program 

ok. To visualize this electric field, to get an idea about what these spots are and how they are 

going to look like. And then we are going to proceed with a few other things for example, how 

do I find out remaining field components of the waveguide. For example, we did not place any 

restriction on Ex and Ey, we have not found out anything about Hx and Hy. 

Now, if you have found out this form of expression for Ez, can you use this  to find out all the 

other field components directly? Ok. So, we are going to see that and then we are going to  make 

some inferences and get prepared for you know a different polarizations and also a different 

concepts in waveguides for the future classes. 
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So, I will first fire octave. alright . Ok , hm I am creating a new program the idea is to just take the 

form of the general expression, we are not going to solve the wave equation and try to find out. 

All we are trying to do is we had  

𝐸𝑧(𝑥, 𝑦, 𝑧) = 𝐶 [𝑆𝑖𝑛 (
𝑚𝜋

𝑎
) 𝑥] [𝑆𝑖𝑛 (

𝑛𝜋

𝑏
) 𝑦] [𝑒−𝑗𝛽𝑧]    

Because its a very complicated expression, we have to see what it looks like. That is the whole 

objective right. So, the program is very simple right. So, I am going to need some three-

dimensional space, ok. 2 dimensions will represent the cross-section of the waveguide or the 

transversal section of the waveguide. 1 dimension is going to represent the longitudinal section 

or the third length of the waveguide right. 



So, I am just going to take some x dimensions, I am going to say that is going from 0, that is what 

we had as boundary condition x equal to 0 to x equal to a, alright. I am going to pick unknown 

quantities to be equal to 1, to make my calculations very easy. So, x equal to 0 was already fixed 

from my derivation and the other extreme was x equal to a. And I do not know what is a so, i am 

going to make it 1, alright.  

So, the length is 1 unit, ok. So, I am going to say that x is equal to 0 in steps of 0.1 going all the 

way to 1, that means, I am taking discrete points in this direction separated by 0.01 units going 

all the way to 1, right. And at each of those points I want to be able to calculate the value of Ez, 

ok. Now, I am going to also, so, what I will do is I will just begin with smaller number and then 

increase it slowly. So, I will go with 0 to zero point I mean 2 1 in steps of 0.1, I will do the same 

thing with the y, alright. 

This represents the cross-sectional space right, ok. So, y is going from 0 to b. Once again, I do not 

know what is b. So, I am just choosing it as 1. 

So, in this case it is  you  you need not call it as a rectangular waveguides, its a special case. Its a 

square cross-section waveguide, that is all right. So, I have z ok. To signify that, this is the 

longitudinal direction, what we had done in our derivation was we had considered the z direction 

to be very large, alright. Now very large means very large compared to something, alright. So, 

very large compared to the maybe the cross-sectional lengths, alright. 

So here, what I am going to do is to just signify that z direction is much larger than your cross-

sections. I am just going to take 10 times alright, the same unit. So,  if I took 1 by 1 millimeter to 

be the cross-section, I am just choosing 10 millimeters to be the length. So, just signify that the 

longitudinal direction is large right, ok. And m and n were also present in your expression for 

electric field z component. Now I am going to start with something minimal m equal to 1, n equal 

to 1. 

So, all unknown quantities I am just taking it to be 1, right. Again, my formula had some value for 

a and b, so I am going to you know a is equal to 1, according to the way I have taken x, b is also 

equal to 1 right. This is also present in my formula I had 𝑛𝜋/𝑎  alright. I am just going to take the 

formula and plug it in over here and I am going to make all the other quantities equal to 1 that is 

all, ok. 

And so, I had [𝑆𝑖𝑛 (
𝑚𝜋

𝑎
) 𝑥] [𝑆𝑖𝑛 (

𝑛𝜋

𝑏
) 𝑦], And then I had a travelling part it was 𝑒−𝑗𝛽𝑧. So again, I 

have to tell what is 𝛽, right. I do not know 𝛽  so, I am just going to make  𝛽  equal to 1, alright. 
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Or just to give it a twist, we can make it 𝛽 equal to 2 to just signify then that is the travelling 

direction component of some kinds, alright. So, its a constant relating to some travelling. So, 

making its slightly different from the other things. You can make it whatever you want, it does 

not matter, ok. 
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Now, I need to calculate the electric field z component, but I will just make it like you know, I will 

begin with zeros, alright ah. So, all I need to do is I need to create a matrix alright, the matrix will 

have three-dimensions x, y and z alright. So, I need to figure out Ez at given x, y and z. What is 

the Ez looking like? That is all I want to find out, right. 

So here, I am just going to use these  things as my indicator for the dimensions of the matrix. So, 

I am having x going from 0 to 1 in steps of 0.1, that means, I will be having an array whose length 

is 11, alright whose size is 11, right. 0 to 1 in steps of 0.1. So, that will be 10 plus 1. So, 11 will be 

the size of that array. Similarly, in y direction I will be having 11 and in z direction I will be having 

101, right. 

So, I will be  making, alright. Now I will go, I am not going to write a very efficient code or anything 

like that, I am going to write as simple code as possible to do this, alright. So, I am just going to 

use since a and b are already used for some constants alright, i and j the thing is j comes in 𝑒−𝑗𝛽𝑧, 

alright. So, I do not want to use those constants in far, so I am just using d, e, f extra ok, because 

I am just running out of constants. So, I am just using d e and f. So, I am just going to make it d 

equal to 1  to.  

So, this is going to be 11, this is for x right  for maybe e equal to  1 colon 11 is this for the y, for f 

equal to 1 colon 101. So, I have 3 loops, one in the X dimension, one in the Y dimension, one in 

the Z dimension. And all I need to do is plug in the formula for the electric field that whatever we 

have derived or whatever we have got after evaluating all the constants, right.  

So, we had a an expression  so, e of d comma e comma f. So, E at a position x,y,z right. And we 

had a constant c multiplied with these things. I do not know the constants, I am going to take it 

as 1 because, if I took it as 0, the field becomes 0. So, I understand that that constant is going to 

tell me something about the amplitude of that field. So, I am going to take it as 1, alright. So, I 

am going to remove that constants, I am just going to write the remaining terms. 

I had 𝑆𝑖𝑛 (
𝑚𝜋

𝑎
) 𝑥   alright. So  alright, see my x goes from 0 to 1, ok. I have to now it is a vector, I 

have to use a particular point d will tell me which point in x I am going to be evaluating this, 

alright. 

So, I am having x of d  and then this was multiplied with 𝑆𝑖𝑛 (
𝑛𝜋

𝑏
) 𝑦 multiplied with 𝑒−𝑗𝛽𝑧. So, that 

is exponential. So, the way to write −𝑗𝛽𝑧 , so I will just do it as −𝑗𝛽𝑧 of f, right . I just changed 

the order instead of −𝑗𝛽𝑧, I put −𝑗𝛽𝑧  because that is easier to do in octave, otherwise it will 

throw some error that j is not found and all that right. 

So, j by default it will define it as square root of minus 1 over here, if I do not specify anything, 

right. Ok, just put a and there is nothing more, I can calculate the field using the formula, ok. Now 

all I want to do is, I want to visualize. The unfortunate thing is now, its a three-dimensional matrix 

alright, and I can display only two-dimensional images, alright. 



So, I have to pick up some slice alright. So, we will pick up a slice like this, alright. What we will 

do is  right. 
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 This is the schematic of the waveguide that we are considering. Its approximately a square in the 

transversal section and a long you know waveguide in the longitudinal section a. What I will do 

is, I will take a slice right at the middle over here, and plot. That means, I am looking at the top 

of the waveguide, I am looking at it from here, alright.  

Left side will correspond to say, input side and the right side, when I am looking from the top we 

will look at the other edge  longitudinal edge of the waveguide, I am going to be looking from the 

top, but I am looking at it at the center plane first, alright. Then I will go ahead and change a few 

things for you to understand more. But, first I will begin with right in the middle of the waveguide, 

I will take a slice along the length and I will see from the top, ok. 

So, I am going to go ahead  and do this. So, what I want to do is, I want to create a field to plot. 

So, I am creating a new variable e of d  comma e comma f will have a the value of fields at all 

positions. But for the sake of plot, I am just picking up a slice, ok. So, I am just going to say that 

there is a command which allows me to do this in octave right, right  ok. 

So, what it means is at all x at all z for y equal to 5. So, y equal to 5 in this case means, y is going 

from you know, 0 to 11 or 1 to 11 alright, its going from 1 to 11. So, I am picking up the fifth 

column alright. So that means along the center of the waveguide I am drawing a slice, ok. 

Remember that this is not the exact value of the position coordinate,it is the value of the index 

having that coordinate. 



So, we have a 11 elements, center is approximately 5 alright, ok. So, I am just taking the fifth y-

index and all x and all z. So, this will allow me to create a two-dimensional slice ok, squeeze 

command. a now a there are also a few other things that I want to make note of over here. If you 

see the expression for electric field alright, of course,  I have 𝑆𝑖𝑛 (
𝑚𝜋

𝑎
) 𝑥  alright, this is a real 

number. 𝑆𝑖𝑛 (
𝑛𝜋

𝑏
) 𝑦  that is again a real number, alright. 

And multiplied with exponential  -j𝛽z well, that is not going to be a real number there, right. So 

that is going to give you the phase, right. So that means that your electric field that you are 

calculating will have a real and an imaginary part, ok. So, when I want to plot the image, I have 

to tell whether I want to plot the real part, imaginary part or I want to plot the magnitude, i want 

to plot the phase, extra, right. 

Now, I will begin  by plotting the real part ok, then later on  I will show you different things that 

can be plotted. Mind you, we are not writing this program to calculate the electric field, we just 

want to see the visualize the calculated electric field or the fields form that we have already 

assumed, alright. This is to just give you another confidence that sometimes if you have an 

analytical expression, you should be able to go back, write a simple program quickly see what it 

looks like, alright. 
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So, I will just use the commands that we have been using before.  
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We may just see ok, that is it. So, I am going to run the program and then we will see what 

happens, ok. There are a few things that we have to look at, first of all those colours, I am not 

even able to see the colour from here. So, I will just change the color bar and the color map. 
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The second thing that I am noticing is image is c. By default, we will put the image coordinates 0 

comes from the top to bottom and from here to here, I do not like it so, I will just a  its difficult 

for me to interpret that. So, I will just make it conventional axis, axis x y  right. So that, alright. So, 

now, this is your z-direction alright, this is your z-direction alright, and we are plotting  for slice.  

So, this is your x-direction x-direction going here, right. We have picked up m equal to 1, ok it is 

saying that if you pick up m equal to 1, and n equal to 1 is what we have picked up and we have 

taken a slice right in the middle of the waveguide, m equal to 1 is telling you that you are going 

to be having a spot in the middle of the waveguide alright. And along the z-direction, it is a 

travelling wave. So, it keeps switching between plus 1 and minus 1 depending upon the 𝛽  value 

alright, that you have given. 

So if you count the number of spots, you will be able to figure out with the length what is the 

value of 𝛽, ok. So, you should be able to do all that.  
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So for example, if I go back  and if I make the 𝛽  as 4 instead of 2 right, ok.  
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The phase changes faster along the z-direction, alright. So I will I will be able to see which side is 

the travelling side, alright. So, it does not matter what 𝛽  is alright. In the transversal direction, I 

have one spot for m equal to 1, that is what we are seeing over here right so, you could play.  

One of the things that I notice here is there is a too much square you know, things which are 

looking like this because of the way we have set the points. If you were to choose a going from 0 

to 1, in steps of say 0.01, alright then you will be able to calculate using much better you know 

visualization, but this is good enough right.  
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Now, I had taken the real part right, we can always, when we are not aware of this we usually 

take absolute, that is magnitude right.  
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If we were to look at the magnitude of the electric field, and if you were to plot it, it would look 

like this, alright. One of the things that we notice here is with the magnitude alright, I am not able 

to figure out what is happening along this axis, alright. I cannot see that 𝛽  parameter influencing 

in the a longitudinal direction. 

So that is one of the reasons while I  why I started the real value. Just I just wanted to see going 

from plus 1 to minus 1 extra, so that I can figure out the  the effect of beta. But if I pick up absolute 

value, it just looks uniform everywhere, right. So you could do this, but the effect of 𝛽  is not 

clear. But in the transversal direction, so again clear that the center of the waveguide carries the 

maximum electric field. 

As you go away from the center, your value of the field decays and on the edge, 0 ok. This is how 

you will see something, right. Now, I will just go back to the real, ok.  
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What I will do is, I will take my m to be equal to 2 ok  which would be making this TM2, 1, right. 

Instead of TM1, 1, it is become T M2, 1. 
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And I am  plotting a slice only in the middle. That means, I do not know what is happening with 

the y-axis alright. I am going to draw this alright, ok. Now it means that in your waveguide, in the 



center of the waveguide, your electric field value has become 0 and there are 2 spots alright, and 

there are some distinctions that we can we can also see. 

For example, one spot is having a value of say plus 1 electric field. At the same a you know, the 

same waveguide the other spot is having minus 1, right. So, it just tells you that your electric field 

is having 2 spots along this direction, but 1 spot is having 180 degrees phase shift with respect to 

the other spot. 

So, we have to now remember that when we were talking about this half cycles of sinusoids 

coming into the picture, we noticed that one spot was going into the positive direction and the 

other one was going in the negative direction. So, its telling you that the relative phase shift 

between the 2 spots is a 180 degrees, ok. But they are travelling with the same  𝛽, ok. So 

wherever, you have a red on the top, you will have a blue in the bottom and so on alright. 

So, this is ok. So, you can also keep increasing the number of value for m.  
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So, this is now TM 3, 1 alright. And I am plotting the value of the electric field z component, alright 

.  
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I start getting 3 spots starts to look very square and a little bit ugly, that is because of the way 

you have discretized. If you wanted to fix that and we are looking in the x-direction.  
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So, all I can do is I can just make it 0.01 alright, just to get a little bit more resolution and change 

the sizes of the arrays. 
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For example, I need 101  101 here, that is fine. And now the consequences  it will take some time 

for it to calculate, right.  
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Now the spots are much clearer, alright. It looks like you know sinusoid half cycles very clearly. 

So, you could improve the resolutions and you could keep calculating in with better accuracies 

right. So now, this is corresponding to increasing values of m alright, and there is no end to it. 
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For example, if you want to make m equal to 6  this is TM6, 1, you will end up having, you know 6 

spots. Each of them is having 180 degrees phase shift with respect to the previous spot, travelling 

with the same value of 𝛽  along the length of the waveguide alright. 

So, there is no end to a visualizing anything over here right. So, one of the things that we want to 

now do is, we will go back to say you know m equal to 3, ok. I want to play with n, alright. Now n 

equal to 1 corresponded to a single spot in the vertical direction and you have taken only the 



slice in the middle, alright. Suppose, I make n equal to 2, I should be able to tell because its a 

square wave  it should have the similar effect. 

If I make n equal to 2, you should have 2 spots: one at the bottom, one at the top, right in the 

middle there should be no field for n equal to 2. So, I want to verify this.  
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So, I am just going to make n equal to 2 and I am going to run it, ok. Now what is happening 

alright, we will have to sort this out, alright. Now n equal to 2, right in the middle alright, its not 

right in the middle, but its slightly away from the center, its having some value right, its not 

supposed to have that. 
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So, I want to go back and m equal to 1 and I want to sort this out, alright.  
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I am first of all, I am noticing that the value of the peak is lesser compared to the previous case. 
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 For example, in the previous case when I had m equal to 1, n equal to 1, right, the value is higher 

ok, and the value is becoming lower, that means, I am not hitting the center maybe, alright. 
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So, I can try to plot instead of 5 maybe 6 and see what is happening, right. So now, I am having I 

am going for n equal to 2, right.  
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Alright, now I am able to see clearly that I was not plotting right at the center  because, I had 11 

elements, 5 is not exactly the center, alright. Now the little bit away from the center so it was 

getting some field  from the extension of one of the spots but now, 6 seems to be like you know, 

closer to the center in this particular case. Even though, its an odd number, does not matter. 

But if you see the y-axis , it clearly tell you that you have 0, the maximum is 5 times a e to the 

minus 16 which is again, you know, you can approximate it to 0, alright. And minus 5 e to the 

minus 16 over here. So, all the red to blue is focused around 0 alright. So even though it gives 

you colours, that means, that it is able to represent very tiny numbers accurately and it is giving 

you.  

But technically, if you pick  the a magnitude of this compare it to a n equal to 1 alright, here we 

have taken n equal 2, n equal to 1, n equal to 1 was having like 0.5 excess of 0.5, alright peak 

value. But here its only less than 1 times e to the minus 16 ok. So, you are having almost nothing 

in the middle alright. So, just to be  just to confirm this again. 
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 I am going to do n equal to 3  and see whether I get back the higher value of field closer to the 

center. 
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So, here I am able to see my field goes from minus 1 to all the way to plus 1, alright. So, you can 

run some experiments on this and you can always see what is happening and instead of taking a 

slice in this direction you could take a slice in the other, but I am not doing that because its a 

square cross-section. All its going to do is show the same effect in the 2 directions  and  its its not 

going to give me any significant difference, right. 

So, this is a simpler way to visualize when you do not have to solve from the wave equation, but 

actually you know the general solution and you just want to make a plot of what is happening. 

This is a simple thing you could do, ok. Now we go back to our analysis  alright, and look at a few 

points alright, few more points alright  ok . 
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So, the first thing one could ask is, I want to be able to find out other field components and I want 

to be able to plot them, alright. Since you have a program that is plotting electric field at x, y, z 

you could also plot for example, Hx, Hy alright Ex, Ey extra. If you did know the general form that 

satisfies all these criteria. 

Now, you have imposed particular boundary conditions, you have picked some general solutions 

which satisfy your boundary conditions, you have applied those boundary conditions and you 

have simplified the expression and you have got something for Ez, alright. But generally, you may 

want to find out what the other components look like, ok. 

Now, that is very simple because now you are aware of the curl equations  and in this stage in 

the course, all you need to do is go to the curl equations. Try to plug in this form of Ez into the 

curl equations alright, and you have to apply one more condition which is Hz is equal to 0, alright. 



So, Ez is equal to this form, Hz is equal to 0 in your 2 curl equations and then you will be able to 

find out all the other components ok.  

So, for example, I will just I will not derive it but I will just write down the forms and what it looks 

like and then you will be able to see that you will be able to get the a you know, form of Ey, Ex, 

Hx, Hy extra, right. So, there are 2 things over here, right . It would look like 

𝐸𝑥 = −
𝑗𝜔𝜇

𝜔2𝜇𝜖 − 𝛽2

𝜕𝐻𝑧

𝜕𝑦
−

𝑗𝛽

𝜔2𝜇𝜖 − 𝛽2

𝜕𝐸𝑧

𝜕𝑥
 

Can it be  is what Ex looks like, ok. And one of the things that I know is I know the form of Ez, 

alright. So, I could take a partial derivative with respect to x for Ez alright, and I can get rid of that 

term alright and Hz, the way we have done this is 0. So, first term goes off and there is only 

another term. So using this, I will be able to find out the form of Ex, alright.  

If I did do this, I will  just write down what I have got you can do the simplification when you have 

free time, alright . So because you take a derivative with respect to x, you get 𝑚𝜋/𝑎 because you 

had sin (
𝑚𝜋

𝑎
) 𝑥. So, 𝑚𝜋/𝑎 and then you will have some cosine coming into the picture. So, I am 

having constant (𝑚𝜋/𝑎)𝑥. 

With respect to y, there is no term that changes anything. So, you will have the same (𝑛𝜋/𝑏)𝑦 

and it will also be travelling in the y direction. So you could in theory, find out all the other 

components using the curl equations it is a bit of an effort alright, alright. 

𝐸𝑥 = −
𝑗𝛽

𝜔2𝜇𝜖−𝛽2 (
𝑚𝜋

𝑎
)𝐶 [𝐶𝑜𝑠 (

𝑚𝜋

𝑎
) 𝑥] [𝑆𝑖𝑛 (

𝑛𝜋

𝑏
) 𝑦] [𝑒−𝑗𝛽𝑧]    

 

But its not impossible you can go back to the wave equation and you can look at you know how 

you can use the existing components to find out the remaining components. It is an effort, but it 

is not impossible, but I do not want to spend time on deriving each and every one of these, you 

will be able to do this or there will be references for this in many many  I mean many sources. 

You could also have a look at them, but its its there is no magic or anything over here its just a 

laborious steps, right. 

Just for the sake of completeness, I will just write it for Ey also. So I have 

𝐸𝑦 = −
𝑗𝜔𝜇

𝜔2𝜇𝜖 − 𝛽2

𝜕𝐻𝑧

𝜕𝑦
−

𝑗𝛽

𝜔2𝜇𝜖 − 𝛽2

𝜕𝐸𝑧

𝜕𝑥
 

 

Once again Hz will be made 0, the way we have assumed, so you can get rid of this term and then 

you will have to substitute for Ez. I have to take a derivative with respect to y. So, I can pretty 

much write down  what Ey would look like.  



So, it will look like 

𝐸𝑥 = −
𝑗𝛽

𝜔2𝜇𝜖−𝛽2
(

𝑛𝜋

𝑏
)𝐶 [𝑆𝑖𝑛 (

𝑚𝜋

𝑎
) 𝑥] [𝐶𝑜𝑠 (

𝑛𝜋

𝑏
) 𝑦] [𝑒−𝑗𝛽𝑧]    

 

Similarly, you can also try to find out Hx, Hy, Hz, the way we have started all these things is by 

assuming that Hz is 0. So, there is no need to find.  

Now, one of the things I want to highlight over here is the is  in the in the configuration that we 

have seen so far ok, one of the questions that was arising in the previous class is what would 

happen if Ez is equal to 0, does it mean that everything else is 0? Or you could have a look at the 

expressions now. Hz is 0 alright, in the way we have formulated. Suppose, Ez becomes equal to 0 

that could happen if m equal to 0 and  n equal to 0, alright. 

If that is the case, if you see the expression for Ex, it becomes 0, Ey will become 0, Ez, Ex, Ey will 

become 0. Should mean that your magnetic fields will also start to become 0, Hz is not there 

alright, and then your Hx and Hy everything will become 0. And then there will be no 

electromagnetic field components at all inside of the waveguide. 

That is why m equal to 0, n equal to 0, is not possible scenario for the fields to exist inside of a 

waveguide ok. So, you will get all the field components to become identically 0, ok. So, when 

some things are identically 0, then you you say that there are no fields existing inside, ok. So,  so, 

something to think about, ok. 
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So, let us try to draw some more inferences. You can also do this for Hx, Hy, I think references 

are available, you can go back have a look at them, you can also plot them in the same program, 

alright. You can just add components and plot them there are no issues at all. 

Now, a few things that we are seeing commonalities  between this rectangular waveguide and 

parallel-plate waveguide is that the fields that we are talking about they form patterns. In the 

case of standing wave patterns were formed, in the case of parallel-plate waveguide, some 

standing wave patterns are formed in the case of rectangular waveguides also. So, the fields are 

existing in the form of patterns alright, and the patterns depend upon the value of m in the case 

of your parallel-plate waveguide, m comma n in the case of your rectangular waveguide, ok.  

So, we can write that it depend. Ok, now since they depend on m and m comma n alright and we 

have to satisfy boundary conditions and m and n are integers, ok. Its not continuous numbers, m 

and n are integers. So for m equal to 1 you get one pattern, m equal to 2 you get a completely 

different pattern, m equal to 3 you again get a different pattern extra. 

So, these patterns are actually some discrete patterns, ok. Here some discrete patterns alright, 

so, they go from being a single spot to suddenly 2 spots. They do not, you do not have one and 

half spots or something like that, alright. So, you have 1 spot or you have 2 spots or you have 3 

spots, but you do not have something in the middle so, these are these are discrete patterns. 

And the patterns consists of both in the case of rectangular and parallel-plate waveguide, they 

have sinusoidal  variations, sinusoidal variations in transversal directions ok, that is if you go from 

one edge of the waveguide to the other side, you will be able to see for example, half a sinusoid 

or a full sinusoid or one and half sinusoids and so on and so forth.  

So, you can see that the variation along the temporal or mean along the transversal direction is 

going to be sinusoid. Irrespective of how many dimensions you have, in the case of parallel plate 

you had only one direction going from one plate to another plate, in the case of rectangle you 

can go from one plate to another plate in the horizontal direction or you could go from one plate 

to another plate in the vertical direction. In both of these cases you had sinusoidal variations 

right. 

So, these are some commonalities alright, and there are a few more commonalities that we have 

to talk about right. First of all, on the walls you will not have any fields, electric fields right, and 

you will also notice that in these cases, if you try to go back and look at what the magnetic fields 

would be like and try to plot them you will find out that the magnetic fields will be maximum on 

the walls. 

That is because we have done the interface between a dielectric and a conductor alright, and we 

will we have already noticed that electric field will be a 0 on the interface alright, but at the same 

place the magnetic field will be high, right.  
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So, we also did some a calculations for a the you know, a program. We wrote a program a simple 

program in octave, I think it should be here for the perpendicular polarization with an interface, 

alright. 
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So, we also  saw that on the interface, electric field is 0. Hz we have assumed it to be 0 in our case 

so, it does not matter. So, its going to be 0, but we saw that Hx which is a component that can be 

present in our case, is actually maximum alright. So, you will also notice that the magnetic field 

alright, is maximum on the interface electric field becomes 0 on the interface right. 
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So, this is going to be common for both the parallel-plate waveguide and the rectangular 

waveguide, its one more commonality, alright. And more thing is that in the case of parallel-plate 

waveguide, we had seen that there exists a condition which is known as a your frequency of the 

signal has to be higher than the cut-off frequency for the fields to exist. Is there a commonality 

like that in this case also? 

Because technically, it is also made up of 2 sets of parallel plates, this could also have some cut-

off frequencies, ok. So, this is this also a high-pass filter right, and one of the ways to verify 

whether it is  a high pass filter or not or whether there is a  requirement on m, n extra, alright, is 

to take the solution to Ez what you have got. 

So, this is the solution that we have got from our analysis, from the assumed general solution to 

applying the boundary conditions for this case, this is the solution you have got, right. What one 

can do is. 

Student: 0.5. 



Take this solution and actually plug it into the wave equation that we began with a, right. So, we 

had 

𝜕2𝐸𝑧  

𝜕𝑥2
+

𝜕2𝐸𝑧

𝜕𝑦2
+

𝜕2𝐸𝑧

𝜕𝑧2
+ 𝜔2𝜇𝜖𝐸𝑧 = 0 

 

This is the original equation that we started this derivation with. 

So, you can go back and substitute right. One of the things that you could say is, I am verifying if 

Ez is a valid solution, whether it is satisfying the equality, whether the right hand side equal to 0 

means that left hand side should become equal to 0  correct. So, you could go ahead and 

substitute it will be a lengthy process, alright. But one of the things you will notice is left-hand 

side has got lot of terms the sum of all these terms should become equal to 0 right, that is how 

this we started this. 

So, for the solution to be valid and we know it is, it has to satisfy this equation and all the sum of 

all the terms on the left-hand side should become equal to 0. Now, you will end up with a 

condition for that also alright. You will notice that when you do the substitution, you had omega 

square mu epsilon to be the last term alright, and you will also end up getting some other terms 

alright, you will end up getting because of the way we have written Ez expression. 

Ez has 𝛽  alright, you go back to your original wave equation that you had started with, it had 

only 

 

𝜕2𝐸𝑧  

𝜕𝑥2 ,
𝜕2𝐸𝑧

𝜕𝑦2 ,
𝜕2𝐸𝑧

𝜕𝑧2 , it had 𝜔2𝜇𝜖𝐸𝑧 it did not have 𝛽, it did not have m, it did not have n, it did not 

have a, it did not have b extra. So, I know that by substituting for Ez, I am introducing m, n, a, b 

alright, and I am also introducing 𝛽, alright. So, I need to account for all that alright, then I have 

to see what is the condition that is needed. 
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So, while introducing this right, you will notice that only way this equality is going to be satisfied 

is this 

𝛽2 = 𝜔2𝜇𝜖 − (
𝑚𝜋

𝑎
)

2

− (
𝑛𝜋

𝑏
)

2

 

This is just a rearrangement of the same expression ok, and I can write that this implies, I can 

take square root on both sides. So 𝛽  will be 

𝛽 = √𝜔2𝜇𝜖 − (
𝑚𝜋

𝑎
)

2

− (
𝑛𝜋

𝑏
)

2

 

 Ok, just rearrangement and taking a square root and I can also make a say similar analysis as to 

what I did with my parallel-plate waveguide. 
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 So, if you go back and have a look at what we did with the parallel-plate waveguide so, I had a 

condition for 𝛽  of the waveguide is equal to something on the right-hand side. 

So, I said that I had a square root term coming in between 𝛽  corresponds to propagation constant 

for a travelling wave. So, you would have written this to be 𝑒−𝑗𝛽𝑧 which means, that 𝛽  has to be 

a real number. 𝛽  cannot be an imaginary number right 𝛽  has to be a real number, alright. That 

means, the term inside the square root has to be positive that was our condition, ok. 

So similarly, I am having a square root coming into the picture here also, and I am having the 

general solution for Ez to be having 𝑒−𝑗𝛽𝑧 which means 𝛽  again has to be real which means that 

this square root  should be for a positive number. I cannot have a negative number over there. 

So, this gives me some idea as to what can happen, right.  
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So this means that the worst condition that I can have the worst condition, alright is a the positive 

numbers being equal to the negative numbers. So I will become, I will be having 𝛽  equal to 0 

means, i do not have a travelling wave and anything above that. 

When 𝛽  is real, I am having a travelling wave, alright. So this means that I can write down 

𝜔2𝜇𝜖 = (
𝑚𝜋

𝑎
)

2

+ (
𝑛𝜋

𝑏
)

2

 

Now this gives me something related to a you know, 𝜔2 alright. So, what I can do is I can take 𝜇𝜖 

on the other side and I can take a square root. So, I will just get up for the worst case alright, so I 

will just mark this as c right.  

Its going to be 

𝜔𝑐 =
1

√𝜇𝜖
√(

𝑚𝜋

𝑎
)

2

+ (
𝑛𝜋

𝑏
)

2

 

 

This is the worst case where 𝛽  becomes equal to 0. 𝛽  becomes equal to 0, you do not have a 

travelling wave alright this forms the ultimate lower bound and this is the frequency at which 𝛽  

is equal to 0.  



That means, at frequencies higher than this alright, 𝛽  is going to be a real number. So, you have 

a travelling wave. So, you can say that any frequency of your signal higher than this frequency 

has a real value of propagation constant alright, beta. So, you will end up having a travelling wave. 

So you can say that your signal alright, whatever you are giving has to be higher than this cut-off. 
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Also, we can say that omega input  should be higher than omega c for you to have any travelling 

wave inside of this waveguide. So this condition is just saying that your input frequency has to be 

higher than a specific frequency which means that it is again a high-pass filter just like the parallel-

plate waveguide, alright and you can call this absolute minimum case to be a cut-off frequency, 

right. 

So, that does exist a restriction on omega input for it to function as a waveguide, ok. So, these 2 

cases are very similar, parallel-plate and rectangular just that the parallel-plate was very easy to 

analyse because it had only you know 2 interfaces, but now you have many interfaces coming 

into the picture.  

So we had used a different approach, we started with the general solution and then we tried to 

see a based on the standing wave patterns on the travel direction what kind of approximations 

you can make and come up with the solution that actually seems to be valid. Travelling wave in 

the z direction, standing wave pattern in the cross-section Because we had all this prior 

knowledge we had a different way of getting a valid solution, alright. 

So, but even though we did that for the case of parallel-plate waveguide we still did it with the 

original method that is where we will write the incident wave, reflected wave, extra and then we 

will write down the expressions for the incident and the reflected, take some of the 2 to form the 

total field, all that. 



So, these are 2 approaches to find out you know  the expressions for the electric fields and also 

to find out cut-off frequencies, ok. There are also other ways for example, a you could use the 

start with the wave equation basically, and try to use the computer to do a few of the solutions 

to the MODS, ok. 

So in other words, when you take the wave equation and you have a look at what the wave 

equation that we had started with, immediately, you will realize that while we were beginning, 

we did not know Ez we did not know what form it would have, what variation with respect to 

space it would have and all that, right. And we did not know much about omega square mu 

epsilon Ez as a result, because we did not know about Ez, alright. 

And omega square mu epsilon alright, the way we have a written further alright. So, in the last 

line of our derivation if you see omega square mu epsilon is m pi divided by a square plus n pi 

divided by b square. That means, if I choose some value of m and n, I get some omega square mu 

epsilon. If I choose different value of m  m and n, I get a different value of omega square mu 

epsilon extra. 

So, omega square mu epsilon also is a discrete number  that we were not aware of, right. Depends 

upon m and n. So, we were not aware of m, we were not aware of n and we are not aware of the 

pattern a given m and n would form in Ez, ok. So, we were we were having 2 unknowns. One is 

m comma n which we did not know and the second one was Ez, right. 

So, what computers can do is try to find out eigen values of this equation and eigen vectors this 

equation. Eigen values will tell you about the omega square mu epsilon, right because these are 

discrete values and eigen vectors will tell you about the distribution of the field itself, the standing 

wave pattern of the field Ez, right. So, there are ways to do it.  

So,  those are all treated in your higher level courses in computational electromagnetics, where 

they will be talking about mode solvers and things like that. But essentially, it just means finding 

eigen values to the wave equation. Eigen values will tell you about m comma n and 𝜔2𝜇𝜖 alright, 

and eigen vectors will give you the Ez, ok. And its not a very complicated a program or anything, 

but it is already covered in a higher level follow up course on computational electromagnetics or 

in waveguides. 

So, you should be in a position to grasp that when that material comes in your course, that is the 

only thing. So, there are lot of commonalities and there are some differences also, right. These 

differences there are there are a tiny number of differences we will go over them the next class, 

right. For example, the fundamental mode supported here is TM1 1, TEM mode alright, transverse 

electromagnetic mode. Is it supported in one case, not supported in the other case? 

There are some differences also, even though both of them are constructed with parallel-plates, 

there is  some differences. So, we will just highlight those differences briefly in the next class and 

go for a few more a concepts. That is  we will then talk about what is known as phase velocities 

and we will talk about group velocities we will also talk about dispersion, right. 



Its a very important thing because, if the waveguides have 2 plates and you have vacuum or air 

filling it, we already know from our prior classes that vacuum or air is a non-dispersive medium 

right. But if you make a waveguide out of it, suddenly it becomes dispersive. That is it will have 

different values of velocities for different you know, a different frequencies right. So, 
𝜔

𝛽𝑑
 all these 

things we will be seeing in the next class ok.  

So I will stop here, we will meet in the next class hm.. 


