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So, we will begin with this lecture. So, in this lecture we are going to start at a tangent to what 

we had seen before, right. 
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So, I am going to introduce to you how to use computers to solve partial differential equations 

and I am going to approach this with simple finite difference technique, ok. In the previous 

class, we had stopped with the wave equation and the solution to the wave equation in an 

analytical form, all right. And towards the end of the class I mentioned that we will try to solve 

these equations using a computer, ok. And we are going to do this throughout the course 

hand in hand. We will be solving the set of equations using the computer and we will also be 

trying to solve it analytically, all right to just go hand in hand, all right.  

So, I will start with absolute basics. Let us say that I have an axis, right an xy axis and I am 

having uniformly sampled points in the x direction or the x axis, ok. The spacing between the 

two consecutive points in x axis is 𝛥𝑥, ok and in the y axis I have a function of x, ok. And at 

each of these x I am plotting the value of f(x), ok and let us say that I have this f(x) defined in 

the following manner let us say that it starts at 0 comma 0 here, ok. So, these are the points 



that define f(x) for different x. We do not know what the function is. These are the points that 

are given to us, ok. 

You could imagine this to be in a spreadsheet. There are two columns one is uniformly 

distributed x, I mean not uniformly distributed, but uniformly sampled x. So, x is going from 

1, 2, 3, 4 so on and so forth, and f(x) is given to be some values, all right. And the question 

that is asked to us is at a given point, ok, all right let us mark this point, all right. And we call 

this point as A. Can you find the slope of f(x)? Right. Can you find f’(x) in other terms? Right. 

So, I will mark the x coordinate corresponding to this point A as 𝑥0, ok and the y coordinate I 

will mark this to be as 𝑓(𝑥0), ok. And the question that is asked is find the slope of this curve 

f(x) at point A, all right. So, it is 𝑥0, 𝑓(𝑥0). Now, since the x axis is distributed uniformly I can 

write down the x coordinate of the sample next to A, all right. So, to the right hand side of A 

I will be having the x coordinate to be 𝑥0 + 𝛥𝑥 and at the point prior to A, on the left hand 

side the x coordinate will be 𝑥0 − 𝛥𝑥. I am going to mark these points as B and C, all right. 

So, when we ask question what is the slope at point A, there are many answers possible, but 

over the period of time I have found that the students invariably identified one particular 

method of finding the solution at point A. They always say that it is the slope of the line joining 

B and C, ok. So, they take the neighbouring point prior, neighbouring point after joining those 

two points, then they try to find the slope, but when asked for an interpretation on why they 

did that there was no analytical approach present, ok. 

So, today we will just try to see what is the best way to find slope at point A and how this is 

useful in solving partial differential equations that we were seeing in the previous class, ok. 

So, let us begin now by the 3 scenarios which are possible, all right.  

You could find the slope of line AB or you could find the slope of line AC or you could find the 

slope of line BC. These are the 3 options which are possible. Since, there are 3 options possible 

we have to be very clear in identifying the best possible method and the best possible method 

is the one that will give you the least error, all right in estimating the slope at point A. So, one 

of the ways to estimate the error and obtain the method that gives you the least error is by 

expanding the function as an infinite series and then trying to see where you truncate the 

series and the point of truncation gives you the order of the error, all right. And I will illustrate 

this in a systematic manner by using a Taylor series approximation, right.  
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So, I will start with 𝑓(𝑥0 + 𝛥𝑥) which means the value of the function at point C, ok. So, that 

x coordinate is 𝑥0 + 𝛥𝑥 and the y coordinate will be  𝑓(𝑥0 + 𝛥𝑥). This can be written down 

as a Taylor series expansion. So, you will have 

𝑓(𝑥 + 𝑥0) = 𝑓(𝑥0) +
𝛥𝑥

1!
𝑓′(𝑥0) +

𝛥𝑥2

2!
𝑓′′(𝑥0) +

𝛥𝑥3

3!
𝑓′′′(𝑥0)+.. 

One of the things that we need to pay attention to is here we are trying to estimate the value 

of the function at 𝑥0 plus 𝛥𝑥 coordinate provided you know the value of the function at 𝑥0 

and you know its first derivative at 𝑥0, second derivative, third derivative, nth derivative. So, 

the series here says that if you know the value of the function and if you know all the 

derivatives present at that particular point you should be able to estimate what will be the 

value of the function at the next point that is what the Taylor series is telling us.  

Now, this function can be a converging series or a diverging series. For a converging series 𝛥𝑥 

has to be less than 1, so we will first put down these points, all right. So, we are saying that 

𝛥𝑥 has to be small then it is a converging series and I would be able to estimate the value of 

𝑓(𝑥0 + 𝛥𝑥) very accurately, all right. It also means that if if 𝛥𝑥 is very small as the number of 

terms grows on the right hand side, the value of the coefficient will keep on shrinking. So, the 

way you truncate the series, all right you can make a learnt way of doing this truncation. You 

can say where you have to truncate and what order of error you can expect. So, it is a really 

analytical way of truncating the series  

But the problem that was asked to me was what is the value of 𝑓′(𝑥0) That is the unknown 

that we are trying to find out, so, we will bring the unknown on the left hand side and all the 

other quantities to the right hand side, right. So, 



𝛥𝑥𝑓′(𝑥0)

1!
= 𝑓(𝑥 + 𝑥0) − 𝑓(𝑥0) −

𝛥𝑥2

2!
𝑓′′(𝑥0) −

𝛥𝑥3

3!
𝑓′′′(𝑥0)+.. 

Now, this equation says here that in order for me to find out the left hand side which is which 

is the 𝑓′(𝑥0) which is what we are interested in finding. We need to know the value of the 

function at the neighboring point f 𝑓(𝑥0 + 𝛥𝑥), we need to know the value of the function at 

𝑥0 and we need to know more details. We need to know the second derivative, third 

derivative, fourth derivative extra.  

And it is a real problem because we do not even know the first derivative yet, but we are 

expected to have all the other derivatives to estimate the first derivative which means we 

already know where we have to truncate this series, right. We do not know what the second 

derivative or third derivative is as yet, so the best way to proceed would be to truncate the 

series at the place where we do not know the second order derivative and say that that is 

going to be many orders of error, all right. 

So, we can say that 

𝑓′(𝑥0) =
𝑓(𝑥0 + 𝛥𝑥) − 𝑓(𝑥0)

𝛥𝑥
 

And the order of the error is going to be the value of the coefficient of the first term that you 

are truncating that is 

𝑂𝐸 ≈
𝛥𝑥2

2! 𝛥𝑥
 

≈
𝛥𝑥

2
 

So, if you were to estimate the slope at point 𝑥0,  

𝑓′(𝑥0) =
𝑓(𝑥0 + 𝛥𝑥) − 𝑓(𝑥0)

𝛥𝑥
 

And we already know that this corresponds to the slope of the line AC, in the diagram that we 

have drawn. So, we are first estimating the slope at point A to be the slope of the line AC, ok. 

Now, we know from conventional mathematics that as 𝛥𝑥 tends to 0. This is the definition of 

the derivative, ok. So, as 𝛥𝑥 tends to 0 this is the definition of derivative, so you will obtain 

the derivative of the function at point 𝑥0, ok.  

Now, this method of trying to find out the slope at point A given the value of the function at 

the next point or ahead of it is known as forward differencing. So, you are replacing the 

derivative with the difference, all right and to find the difference you are using the value of 

the function ahead of it, all right. So, this is known as forward differencing, ok. And it has an 

error of 𝛥𝑥/2. Let us have a look at the other option.  



(Refer Slide Time: 12:11) 

 

 

Let us write down the Taylor series for 𝑓(𝑥0 − 𝛥𝑥). This is going to be 

𝑓(𝑥 − 𝑥0) = 𝑓(𝑥0) −
𝛥𝑥

1!
𝑓′(𝑥0) +

𝛥𝑥2

2!
𝑓′′(𝑥0) −

𝛥𝑥3

3!
𝑓′′′(𝑥0)+.. 

 

Again the assumption is 𝛥𝑥 is very small, it is a converging series. And we are supposed to be 

estimating f’(𝑥0) which is the unknown quantity. So, the unknown quantity is moved to the 

left hand side. So, 

𝛥𝑥𝑓′(𝑥0)

1!
= 𝑓(𝑥 + 𝑥0) − 𝑓(𝑥0) −

𝛥𝑥2

2!
𝑓′′(𝑥0) −

𝛥𝑥3

3!
𝑓′′′(𝑥0)+.. 

 

Again, it says that in order for me to estimate the first order derivative I need to know the 

value of the function at the current point, I need to know the current value of the function at 

the point prior to it and then I need to know all the derivatives other than the first derivative 

to estimate the first derivative. We clearly have nowhere to truncate our series now. We do 

not know the second derivative third derivative extra. So, we have to truncate the series at 

this place with 𝛥𝑥 square by 2 factorial.  

So, we will write down instead of an equal to symbol we will put approximately equal to 

because we are truncating this series we can say that 

𝑓′(𝑥0) =
𝑓(𝑥0) − 𝑓(𝑥0 − 𝛥𝑥)

𝛥𝑥
 

 



And the order of the error is going to be the coefficient of the f’’ divided by 𝛥𝑥 from the left 

hand side, all right. So, we will be having approximately 

𝑂𝐸 ≈
𝛥𝑥2

2! 𝛥𝑥
 

 

  

This technique where you estimate the slope at point 𝑥0 by using the value of the function at 

the current point and the point prior to it is known as backward differencing, ok. If we closely 

look at the results for the order of error for forward and backward difference, we find that 

there is no real difference over here the order of the error is 

𝑂𝐸 ≈
𝛥𝑥

2
 

 

 for both the cases. So, both of them are equally good choices for you to find the slope at 

point A, ok.  

Now, I will mark the first Taylor series expansion as equation number 1 and I will mark the 

second Taylor series expansion over here as equation number 2, all right. So, both 1 and 2 are 

trying to find the slopes of lines a with point A and the neighbouring point either forward or 

backward, ok. So, in this 

𝑓′(𝑥0) =
𝑓(𝑥0) − 𝑓(𝑥0 − 𝛥𝑥)

𝛥𝑥
 

 

we found the slope of the line A B, all right, in our diagram and we are saying that is the value 

of the slope at point A.  
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Now, we can go ahead and say that we will take question 1, and we will subtract equation 

two from it, ok and try to see what happens, all right. So, on the left hand side I will have  

𝑓(𝑥0 + 𝛥𝑥) − 𝑓(𝑥0 − 𝛥𝑥) = 2
𝛥𝑥

1!
𝑓′(𝑥0) +

2𝛥𝑥3

3!
𝑓′′′(𝑥0) 

.  

Now, once again the unknown term that we are interested in looking for is the first order 

derivative or the slope of the line, so that can be brought to the left hand side. So, 

2
𝛥𝑥

1!
𝑓′(𝑥0) = 𝑓(𝑥0 + 𝛥𝑥) − 𝑓(𝑥0 − 𝛥𝑥) 

one can say that this is 

𝑓′(𝑥0) ≈
𝑓(𝑥0 + 𝛥𝑥) − 𝑓(𝑥0 − 𝛥𝑥)

2𝛥𝑥
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And we write down the order of the error is going to be the coefficient of the first term that 

you are truncating that is going to be 

𝑂𝐸 ≈
2𝛥𝑥2

3! (2𝛥𝑥)
 

≈
𝛥𝑥2

6
 

So, in this particular case the way you are finding the slope at point 𝑥0 if you are taking the 

point prior to it you are taking the point after it and you are joining that and then you are 

trying to find the slope of that line, all right. So, in this case, obviously, the error turns out to 

be lesser than what you would get in a forward or a backward difference most of the times 

the students get it perfectly correct, but they do not have a systematic way of explaining it 

that is it, all right. Majority of the time I found that the students give the exact solution that 

is needed to find the slope, but it is just that I wanted to put this approach forward because I 

can build on it for different things related to this particular course.  

Now, the method that we have used now using the point ahead of it and using the point prior 

to it is known as central differencing, and it is also clear that given an option where you have 

to choose between forward backward and central differencing it is wiser to choose central 

differencing because the error is going to be lesser for you to estimate the first order slope, 

ok. That is the take away message for the first order derivative. 
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Now, let us go one step further. Let us take equation 1, and add it with equation 2, ok. So, on 

the left hand side you will have 

𝑓(𝑥0 + 𝛥𝑥) + 𝑓(𝑥0 − 𝛥𝑥) = 3𝑓(𝑥0) + 2
𝛥𝑥2

2!
𝑓′′(𝑥0) +

2𝛥𝑥4

4!
𝑓′′′′(𝑥0)+.. 

The first order derivative terms will cancel due to alternating signs and then you will end up 

having the second order derivative coming into the picture.  

So, I have just taken the Taylor series expansions 1 and 2, and I have added them together.  

Now, this is a very special equation according to me. The right side does not have the first 

derivative, the right side does not have the third derivative. But the least order derivative that 

is present on the right side is second order. So, anyway I do not know the second order 

derivative of the given function. So, I would like to find that out. So, that is the unknown 

quantity. I would like to move that quantity to the left hand side, all the other quantities to 

the right hand side, all right. 

So, I can say that 

2
𝛥𝑥2

2!
𝑓′′(𝑥0) = 𝑓(𝑥0 + 𝛥𝑥) − 𝑓(𝑥0 − 𝛥𝑥) − 2𝑓(𝑥0) −

2𝛥𝑥4

4!
𝑓′′′′(𝑥0) ± 

 

Now, obviously, I am trying to estimate the second order derivative, all right and I do not 

know what the 4th order derivative is. So, it is clear where I have to truncate this particular 

series, I have to truncate it at the 4th order derivative. So, I am going to rewrite in such a way 

that I have 𝑓′′(𝑥0) on the left hand side and a truncated series on the right hand side, right. 

So, I will just write this down 

 



𝑓′′(𝑥0) ≈
𝑓(𝑥0 + 𝛥𝑥) − 𝑓(𝑥0 − 𝛥𝑥) − 2𝑓(𝑥0)

𝛥𝑥2
 

 

 (Refer Slide Time: 22:53) 

 

 

And the order of the error that I am going to be having is approximately 

𝑂𝐸 ≈
2𝛥𝑥4

4! (𝛥𝑥2)
 

≈
𝛥𝑥2

12
 

 

It is a very peculiar result, ok and I will highlight to you why according to this equation you 

can estimate the second order derivative of a function at a point without finding the first 

order derivative.  

The right hand side is telling you that you need to know the value of the f 𝑓(𝑥0 + 𝛥𝑥), you 

need to know the value of the function at 𝑥0 - 𝛥𝑥, you need to know the value of the function 

at 𝑥0. If you know these 3 and if you know the spacing between the consecutive points in the 

x axis you can estimate the second order derivative directly.  

It is not the way in which we do conventional mathematics for finding derivatives. Usually for 

finding the second order derivative we will find the first order derivative and then do a 

differentiation again to find the second order derivative, but this equation here is telling you 

that second order derivative can be found out directly from the value of the function, but it 

does not stop there. It also tells you that the error involved in finding a second order 



derivative is actually much lower than trying to find the first order derivative which is also 

something that you would not normally expect, ok. So, it is a very important result that tells 

you that second order derivatives can be obtained easily if you know the values of the 

functions at different points, ok.  

So, having known this how do we connect this to the equations that we have got in the prior 

class? We must remember that at the end of the last class we had wave equations for voltage 

and wave equations for current. The wave equation was a partial differential equation. It had 

spatial derivatives on one side, time derivatives on the other side, they were partial 

differential equations of the second order, all right.  

Now, we know how to write down second order differential equations in terms of differences 

and that is where we are going, but directly starting with the wave equation will be a little 

tedious. So, we will start with a very simple case and slowly build up towards the wave 

equation, ok.  

Now, in the previous class when we had the wave equation, right we must have had some 

special derivatives on the left hand side and time derivatives on the right hand side let us start 

with a very simple case where the times derivative is assumed to be 0 that is the voltage is 

constant with respect to time, ok. If you do that, ok you do not have a dependence on time 

anymore, all right. And you will end up with 

𝑑𝑉2

𝑑𝑥2
= 0 
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So, I will go back to the wave equation that we had before, right. 
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 So, I had 

𝜕2𝑉

𝜕𝑧2
=

1

𝑢2

𝜕2𝑉

𝜕𝑡2
 

 

I am assuming that the voltage is not changing with respect to time. So, you can replace this 

quantity with 0, since a voltage is not varying with respect to time it is not an independent 

variable anymore. So, I can replace the partial derivative with an ordinary derivative. So, I am 

writing d square V by d z square is equal to 0, since I have used x for a independent variable 

in this class I am just writing that down as 

𝑑𝑉2

𝑑𝑥2
= 0 

Now, this equation is known as the Laplace equation, all right. And it can be derived from 

Gauss's law, but in this class we do not want to go into general solutions extra. We want to 

see how purely using a computer without any knowledge about general solutions we would 

be able to solve a given differential equation, right 

Now, looking at this 
𝑑𝑉2

𝑑𝑥2
= 0, I know how to write the second order derivative of voltage with 

respect to x because I have a Taylor series expansion that tells me precisely how to do it. So, 

I refer to the form that I have over here, all right.  

 

𝑓′′(𝑥0) ≈
𝑓(𝑥0 + 𝛥𝑥) − 𝑓(𝑥0 − 𝛥𝑥) − 2𝑓(𝑥0)

𝛥𝑥2
 



 

So, I should be able to write down the voltage a I mean this equation in a difference form, all 

right. So, I am going to say that this equation actually means that 

𝑉(𝑥0 + 𝛥𝑥) − 𝑉(𝑥0 − 𝛥𝑥) − 2𝑉(𝑥0) = 0 

When an equation like this is placed in front of a student, the difficulty that they have is 

identifying an unknown and identifying the known quantity which is the same problem that 

students usually have. Even if a differential equation is given to them the first step is actually 

identifying what is unknown then only you can solve for it all right. 

Now, I have an equation over here that tells me  

𝑉(𝑥0 + 𝛥𝑥) − 𝑉(𝑥0 − 𝛥𝑥) − 2𝑉(𝑥0) = 0 

The natural question is what is unknown, all right. Now, let us formulate this problem in such 

a way that the unknown is very clear, all right. So, for this purposes we will say that 𝑥0 is the 

point where I am currently, all right and I would like to determine the voltage at that particular 

point 𝑥0 + 𝛥𝑥 is the point ahead of me where the voltage is known and 𝑥0 - 𝛥𝑥 is the point 

prior and the voltage is already known and the unknown is the value of the voltage at point 

𝑥0, ok.  

So, if this is the case 

𝑉(𝑥0) ≈
𝑉(𝑥0 + 𝛥𝑥) + 𝑉(𝑥0 − 𝛥𝑥)

2
 

So, in other words it says it says something that normally a person would do. Suppose, you 

have to find the value of an unknown voltage at a point and their given value of the voltages 

at the neighboring point the first tendency that we will be having is to find out the average of 

the point before and point after and saying that should be the voltage and that is exactly what 

Laplace equation is telling you. If you have an unknown voltage at a point all you need to do 

is find out the average of the neighbouring point voltage that should be the voltage at the 

point that you are trying to find the unknown, all right. 

Now, let us increase the complexity a little bit. Now, we are solving this in one special 

dimension. Let us go for two special dimensions, ok. So, 𝛻2𝑉 = 0 

𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
= 0 

but now voltage is the function of both x and y, ok. So, I have point number 4.  



(Refer Slide Time: 30:20) 

 

So, if x and y are independent variables and voltage is a function of x and y, ok. Then Laplace 

equation will tell you that 

𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
= 0 

Thus for in our Taylor series we have not seen how to find out partial derivatives, we have 

assumed only one independent variable 𝑥0 I mean a x and we have tried to find out what the 

value of the derivative will be. We have not tried to find out what the derivative will be partial. 

So, we have to rewrite. Fortunately it is not that difficult at all, ok. 

So, we will go back to our original equation, all right. 

𝑓′′(𝑥0) is given by the expression on the right hand side. So, I am going to just borrow this 

expression and tell you how to do the partial differential a I mean partial derivatives, right. 

So, 
𝜕2𝑉

𝜕𝑥2
, right can be approximately written as 

𝜕2𝑉

𝜕𝑥2
≈ 𝑓(𝑥0 + 𝛥𝑥, 𝑦0) 

So, here what happens is you will keep the y coordinate fixed when you are trying to find out 

the derivative with respect to the other coordinate that is it. So, I will be having plus, a plus 

or minus whatever, it is, it is plus, right.  
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𝜕2𝑉

𝜕𝑥2
=

𝑓(𝑥0 + 𝛥𝑥, 𝑦0) − 𝑓(𝑥0 − 𝛥𝑥, 𝑦0) − 2𝑓(𝑥0, 𝑦0)

𝛥𝑥2
 

 

This is the way to find the partial derivative and it is very simple. All you need to do is keep 

the coordinate all the other coordinates fixed and try to find out only the derivative with 

respect to one independent variable at a time.  

Similarly, you can write down 

𝜕2𝑉

𝜕𝑦2
=

𝑓(𝑥0, 𝑦0 + 𝛥𝑦) − 𝑓(𝑥0, 𝑦0 − 𝛥𝑦) − 2𝑓(𝑥0, 𝑦0)

𝛥𝑦2
 

 

Now, we can make a few assumptions to make our calculations a little bit easier. Laplace 

equation says that  

𝜕2𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
= 0 

 

Now, I look at 
𝜕2𝑉

𝜕𝑥2 +
𝜕2𝑉

𝜕𝑦2, and I have denominators. I would like to make these denominators 

equal so that I can push it to the right hand side and get rid of the denominator completely, 

all right. 



So, it means that if I am going to have a uniformly sampled points in x I am going to use the 

same value of 𝛥𝑥 to give my 𝛥𝑦 also. So, it means that I am dividing a region into small squares 

with side of 𝛥𝑥, ok. So, I can say that let 𝛥𝑥 = 𝛥𝑦, let us say it is equal to some h, ok. Then I 

can take these two equations, so I will mark this as a, mark this as b.  
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a plus b equal to 0 is Laplace equation, so I can write this down as, ok 

𝑓(𝑥0 + 𝛥𝑥, 𝑦0) + 𝑓(𝑥0 − 𝛥𝑥, 𝑦0) − 2𝑓(𝑥0, 𝑦0) + 𝑓(𝑥0, 𝑦0 + 𝛥𝑦) + 𝑓(𝑥0, 𝑦0 − 𝛥𝑦)

− 2𝑓(𝑥0, 𝑦0) = 0 

Again, now we have an equation. The first thing you have to determine from the equation is 

what is the unknown. Bring the unknown to one side and all the other quantities to the other 

side, that is when you get clarity. In these problems most of the times the point that you are 

currently looking at, so its 𝑥0 comma 𝑦0 is the unknown quantity given that you are given 

some finite values of voltages at the other points, all right. So, we were solving for voltage. 

So, I will just replace f with V in the next step so that I am consistent with what I had done 

before, all right. 

So,  

4𝑉(𝑥0, 𝑦0) = 𝑉(𝑥0 + 𝛥𝑥, 𝑦0) + 𝑉(𝑥0 − 𝛥𝑥, 𝑦0) + 𝑉(𝑥0, 𝑦0 + 𝛥𝑦) + 𝑉(𝑥0, 𝑦0 − 𝛥𝑦) 

𝑉(𝑥0, 𝑦0) =
𝑉(𝑥0 + 𝛥𝑥, 𝑦0) + 𝑉(𝑥0 − 𝛥𝑥, 𝑦0) + 𝑉(𝑥0, 𝑦0 + 𝛥𝑦) + 𝑉(𝑥0, 𝑦0 − 𝛥𝑦)

4
 

 



So, the Laplace equation actually tells you that at a given point 𝑥0 𝑦0, you have to take the 

average of some neighbouring points. Graphically, we can draw this to understand a little bit 

better.  

(Refer Slide Time: 36:38) 

 

 

 

If I have 𝑥0,𝑦0 to be present at some location and the value of the voltage is some V, ok 𝑥0 + 

𝛥𝑥,𝑦0 point is on the right side of it, ok. 𝑥0 - 𝛥𝑥 , 𝑦0 is the point immediately to the left of it 

𝑥0 , 𝑦0 + 𝛥𝑦 is above it and 𝑥0 , 𝑦0 - 𝛥𝑦 is below it.  

So, I have to find the values of voltage at all these places and add them together divided by 

4, which again says that the Laplace equation is telling you that you have to find the average 

value of the nearest neighbouring points that is it. So, the mathematical form of the Laplace 

equation becomes very clear once you start writing it down in the different form, ok.  

So, given that this is the scenario with Laplace equation, all right we will start with some basic 

algorithm development to solve Laplace equation and then we will try to determine the first 

a, mean we will try to determine the voltage inside of a capacitor first we have to understand 

how the algorithm is going to work, we have to figure out what is the meaning of a boundary 

condition in these kinds of systems and then we will go towards wave equation we will try to 

understand the effects of time that is how we are going to be proceeding, all right  

Now, what could be algorithm b? All right. So, let us start with the problem statement and 

then develop an algorithm to find out what is going on.  
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Let us say that I want to estimate the value of voltages inside of a capacitor, ok. I want to 

estimate the values of the voltage inside of a capacitor, the dimensions of the capacitor are 

given to you and some voltages applied to the plates are given to you, ok.  

So, let us say that I have a plate on the top which is at say 10 volts, ok a plate at the bottom 

that is grounded, I can mark this as 0 volts. I want to be able to estimate the value of the 

voltage in between that and that is given by the Laplace equation, all right. I want to use a 

computer to solve it . Give me a diagram for a voltage distribution between these two plates, 

ok. 

Consequently, I can also use this value of the voltage distribution to give me the value of the 

fields and how the electric fields are going to go from one plate to another plate, ok. So, this 

is what is given to us, all right. So, the first step would be to identify the sizes. So, the question 

should also give you let us say that this is 30 centimeters wide you know like this, ok.  

Let us say this is 30 centimeters the material filling that is air, all right not that it really matters 

here, but its air, all right. I have a 30 centimeter long line. So, this is a cross section of a parallel 

plate capacitor that you are seeing, 30 centimeter long line, 30 centimeter long line. So, the 

first step that I have to do is discretize this, all right  

So, discretizing this means that I have to draw some axis and I have to divide this region into 

small squares, correct. I need to figure out what my 𝛥𝑥 is going to be 𝛥𝑦 is going to be and we 

know that we want have 𝛥𝑥 equal to 𝛥𝑦 and I want to have a convergent Taylor series which 

means that 𝛥𝑥 should be less than equal to 1, ok. 

I can start with the simplest case where 𝛥𝑥 is equal to 𝛥𝑦 is equal to 1 and I can work my way 

through. So, this means that I will be drawing some axis like this and I will be dividing this 

region in x and in y, ok. And what I want to do is at the intersection of these gridlines at each 

of these points, all right,  



I want to be able to find out the value of the voltage, ok. I want a bottom plate that is 0, ok, 

let us say the top plate is all 30. I mean 10 volts, ok top plate is 10 volts bottom plate is 0 volts 

I want to be able to find out in between them, ok. Now, how do I go about this problem?  

Now, when you are writing a computer algorithm you would have figured out the quantity 

that you are trying to calculate is the voltage, it is going to be a function of x comma y and in 

terms of representation of this data on a computer you will simply use a 2D matrix. Voltage 

will be a 2D matrix, it will consist of saying we have to give this distance let us say this is also 

30 centimeters.  

So, you will have 30 points on the x axis 30 points on the y axis, so you will have a voltage in 

the form of a matrix which is 30 comma 30, all right. At each of the x comma y you will be 

determining what is the value of the voltage, all right, but we do not know the voltages inside 

all we know is the top plate is 10 volts and the bottom is 0 volts.  

So, the tendency is when you create a matrix the first thing you do is initialize the matrix to 

some values and the most common way of initializing for an engineer is putting everything to 

0, all right. So, we create a matrix V of 30 comma 30 is equal to 0s, all the values in that matrix 

are 0s. Once we have given that everything is 0 we can go ahead and start with the top line, 

the top line is going to be having 10 volts. So, we have to figure out some y coordinate for it. 

So, I am going to say that y at all x comma 30 is going to be equal to 10, right.  

This is how I would say that the top line is going to be having a voltage of 10 volts, ok. And the 

remaining points I do not know. The bottom most line is going to remain at 0 volts. So, I would 

like to determine what is going on. So, I start with this point over here the value of the voltage 

is unknown. I want to use the Laplace equation. So, I say that the unknown voltage at the 

crossed place is going to be the average of the nearest points. So, I take the point above that 

is going to be 10 volts, the point on the right hand side I have initialized it to 0 volts, so it is 

going to be 10 plus 0, the point at the bottom is also 0 volts unfortunately I do not have a 

point on the left hand side, ok.  

I have only 3 points, so that means I have to figure out what I am going to do with this point 

on the left hand side, all right. So, here we need to pay close attention to what we are going 

to do. We will start with the elementary way of doing. If we do not know something we will 

make it 0. That is the easiest way to proceed, if we do not know something we will make it 0.  

Obviously, I do not have a point to the left, so I am going to make it 0. But what does that 

mean? That means, that I am creating some points on the left hand side which are having 0 

volts, all right, that means, the bottom plate of the capacitor was at 0 volts and the side wall 

also becomes 0 volts. 

So, the capacitor actually looks very weird now we started with a parallel plate capacitor, but 

the diagram for the capacitor now actually looks like this: this is at 10 volts, this is at 0 volts, 

the same thing would happen to the right side, ok. But before that let us start with the point 

again the crossed point is going to be 10 plus 0 plus 0 plus 0 divided by 4.  

So, we will mark it as 2 and half volts, ok. So, I will mark it as 2 and half volts. I go to the next 

point and I am going to cross it. This is the point I am looking at. I have 10 plus 0 plus 0 plus 



2.5 divided by 4, so 12 and half divided by 4 is going to be the value I am storing here. I go to 

the next point. I do the same thing 10 plus 12 and half divided by 4 plus 0 plus 0 divided by 4. 

So, I find out. I go to the right side once I go to the right extreme. I do not have a point on the 

right hand side for me to use the Laplace equation. So, I will use 0, ok. 

It has its consequences. You originally wanted to estimate the fields of a or the voltage 

distribution of a parallel plate capacitor, but we are changing the capacitor configuration 

itself. What does that mean, and how do we go about it, and what is the meaning of boundary 

conditions is what we are going to be expanding, ok. 

So, I will stop here, all right. In the next class we will go over the algorithm for doing this and 

the correct algorithm for finding out the voltage distribution in the parallel plate capacitor. 

We will quickly write a program to do this to gain some familiarity on how to take partial 

differential equations and quickly write a program using Taylor series approximation, identify 

an unknown quantity, use the known quantities to find out the values of the solution, ok.  

This will give us confidence for identifying the unknown for fixing the correct boundary 

conditions and then we will go back to the wave equation. We will introduce the concept of 

time, see how it works and then we will start gaining visual a you know representation of 

what is going on with the telegrapher’s equation.  

So, I will stop here. We will meet in the next class.  


