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Ok, I think we will get started. Quick review of what we have done before, we have talked about 

dielectric-dielectric interfaces and we have talked about different polarization configurations. So, 

the case where the E-field is perpendicular to the plane of incidence is known as the 

perpendicular polarization and the case where the magnetic field is perpendicular to the plane 

of incidence is known as the parallel polarization. 
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And we have seen how to write the incident, transmitted, reflected wave expressions ok. We 

found that for both the polarizations the form of the expressions for the E-field and the H-field 

were identical, ok.  

(Refer Slide Time: 01:02) 

 

The details are definitely different, the reason why the details  relating to the transmission and 

reflection coefficients are different are simply because the boundary conditions are different for 

different polarizations. In one case where the electric field was out of the plane of incidence 

everything was tangential. So, 



𝐸𝑖 + 𝐸𝑟 = 𝐸𝑡 

But for the other case we had 

𝐸𝑖

𝜂1

𝐶𝑜𝑠𝜃𝑖 −
𝐸𝑟

𝜂1

𝐶𝑜𝑠𝜃𝑖 =
𝐸𝑡

𝜂2

𝐶𝑜𝑠𝜃𝑡 

So, the magnetic field boundary condition is also different for both polarizations. 
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 And because of this, we could get the values or we could get the expressions for the reflection 

and transmission coefficient for the 2 polarizations. There are subtle differences between the 2.  

For the perpendicular polarization when we talk about electric field reflection coefficient, 1 +

𝛤⊥ = 𝛵⊥ , but for the parallel polarization case 1 + 𝛤∥ = 𝛵∥. We will have to use some other 

expression,  ok. 
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We also saw that in order to make the reflection coefficient 0 in both the polarizations, there is 

a possibility of using different incident angles for a given material configuration alright. So, the 

general form is you know for the perpendicular polarization, for the yeah for the perpendicular 

polarization you will have 

𝜃𝐵⊥
= 𝐶𝑜𝑠−1(

𝜂1

𝜂2

𝐶𝑜𝑠𝜃𝑡) 

 

 and for the parallel polarization 

𝜃𝐵∥
= 𝐶𝑜𝑠−1(

𝜂2

𝜂1

𝐶𝑜𝑠𝜃𝑡) 

 

So, it’s just a reversal of the intrinsic impedances.  

You remember this much and if you are able to calculate cos 𝜃𝑡 from the given problem then you 

could calculate the Brewster's angle in no time, alright. But the Brewster's angle for different 

polarization is different, that means that in order for you to get a reflection coefficient 0, alright, 

you have to understand that it would be possible only for one polarization alright 

And for the other polarization that angle of incidence where you get zero reflection is going to 

be different. So, impedance matching or having no reflections in electromagnetic waves with 

arbitrary polarizations is not easy unlike transmission lines, ok and it requires tremendous effort. 
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And we also saw that in general cases alright, the Brewster's angle expression was that right, 

however, one could say that the majority of the materials are non-magnetic alright. If that is the 

case, you could substitute for  𝜇1, 𝜇2 as 𝜇0, and then you will observe that for the perpendicular 

polarization, the case for Brewster's angle is not easy to get alright. 

And in fact, in the case of non-magnetic material there does not exist a Brewster's angle for 

perpendicular polarization. However, for the  parallel polarization you do have a real angel that 

you are getting alright, that is a detail alright. 

But the most generic form is what we saw before alright 

𝜃𝐵⊥
= 𝐶𝑜𝑠−1(

𝜂1

𝜂2

𝐶𝑜𝑠𝜃𝑡) 

Now, we have to proceed and patch up a few things, ok. Respecting our understanding the first 

and foremost thing that we can do is look at the reflection and transmission coefficient 

expressions. 
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The simplest thing one can do with say perpendicular polarization right is take the expression for 

the 𝛤⊥ , substitute incident angle  𝜃𝑖  to be equal to 0,  ok. If you have incident angle to be equal 

to 0, then it becomes normal incidence on the second medium right. Which also means that the 

transmitted angle has to be equal to 0.  

So cos𝜃𝑖 and cos 𝜃𝑡  will both be equal to 1 and then you will end up getting  

𝛤⊥ =
𝐸𝑟0

𝐸𝑖0
=

𝜂2 − 𝜂1

𝜂2 + 𝜂1

 

Immediately, we have to notice that 𝛤⊥  and 𝛤∥ do not seem to be the same at normal incidence 

for the two polarizations, alright.  

So, casually if you substitute 𝜃 a and 𝜃𝑡 to be equal to 0 degrees, you will notice that 𝛤⊥  is negative 

of  𝛤∥ , alright. Now, this raises some confusion, alright. Why is it that in one case a reflection 

coefficient is negative in the other? 

The simple interpretation that we have to look is it’s not the problem with the reflection 

coefficient calculation, it is the way we have set up the problem itself, alright. So, if you go back 

to the diagrams that we have drawn, you have to understand that in the first case, we made a 

very clear assertion that the electric field  directions do not flip alright. 

So, the incident electric field was pointing out of plane, the reflected electric field is also pointing 

out of plane, the transmitted electric field is also pointing out of plane and all of them are 

oriented out of plane in the same direction.  

So, we made an assertion that the fields do not flip the sign as per as E-field is concerned. But the 

way we have drawn the right-hand side figure, we have said that the E-field will flip it’s direction 



ok. So, we have made the assertion that the E-field is going to flip it’s direction in response to the 

change in the k alright.  

So, the reason why that sign change is coming in is not because of some arbitrariness in the setup, 

it's because we have made the electric field flip it’s direction in the parallel polarization case 

alright. So, there is a difference, but this should not be looked into very very seriously alright. 

For normal incidence, the reflection coefficient is  

𝜂2 − 𝜂1

𝜂2 + 𝜂1
 

Now suppose, you have your setup in such a way that you have managed to flip the direction of 

the electric field while doing the analysis then you will end up with a minus sign ok. 

So, this is some tiny thing that you will have to keep in mind if you directly substitute, you may 

get a difference of you know a  1 minus 1 sign between the two reflection coefficients. So, you 

have to be a  little little careful in interpreting that ok. 

The other thing is, let us go a little bit further and build on these 2, right. Let us take  the Snell's 

law ok and so far in order to calculate 𝜃𝑡 we have used Snell's law ok, when 𝑆𝑖𝑛𝜃 = 𝑛2𝑆𝑖𝑛𝜃𝑡, ok. 
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So, we will start with Snell's law,  

𝑛1𝑆𝑖𝑛𝜃𝑖 = 𝑛2𝑆𝑖𝑛𝜃𝑡  

 



You could also write this down in a different way, I mean, a bit we already did this before alright. 

You could also use 𝛽 there is no issue 

𝛽1 =
2𝜋

𝜆/𝑛1
 &  𝛽2 =

2𝜋

𝜆/𝑛2
 

 

You could also write this down as  

𝛽1𝑆𝑖𝑛𝜃𝑖 = 𝛽2𝑆𝑖𝑛𝜃𝑡  

Both are Snell's law, ok . And a one of the things that we have done in all the prior derivations is 

that we have used wherever we had sin𝜃𝑡 or cos𝜃𝑡 in our reflection coefficient calculations, we 

had cos 𝜃𝑡 coming into the picture.  

Whenever we had some cos 𝜃𝑡 we tried to substitute it a in terms of 𝜃𝑖, to reduce the number of 

variables right. So, we could say that you know,  

𝑆𝑛𝜃𝑡 =
𝛽1

𝛽2
𝑆𝑖𝑛𝜃𝑖  

Now  is it possible for 𝜃𝑡 =
𝜋

2
 ? Or is it possible for sin 𝜃𝑡 to be greater than 1? Consequently cos 

𝜃𝑡 to become imaginary alright. So, we have to see that particular condition alright. Now if you 

tune your incident angle to be in such a way that sin 𝜃𝑡 is equal to 1. So, the left-hand side is 

equal to one that angle of incidence is known as the critical angle for a given material interface 

system ok. 

So, if  sin 𝜃𝑡 becomes equal to 1, with indices n1 and n2  alright, at a specific angle  of incidence , 

ok. That angle of incidence  it’s called a critical angle ok  ok.  
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So, this also implies that 𝜃𝑡  alright at 𝜃𝑖 equal to  𝜃𝑐   it’s  
𝜋

2
 or 90 degrees with respect to the 

normal ok . 

You could also have for example, 𝜃𝑖 to be greater than this angle alright, and you would still notice 

that your 𝜃𝑡 becomes very tough to define right, and you know you have to look at what happens 

to the transmission and reflection coefficients in these cases, ok.  

And one of the things that we could do is look at this specifically with respect to our expressions 

for the 𝛤 and 𝛵 that we have got in the previous case for the 2 polarization. We can  look at just 

the reflection coefficients and try to make some inferences as to what is happening right.  

 So, we had 𝛤∥ and 𝛤⊥ , ok. Now, we know that this angle is the critical angle alright, you could also 

have incident angle to be higher than that alright going all the way to the 
𝜋

2
 at the input itself ok 

which means that, at angles higher than this critical angle, ok sin 𝜃𝑡 is going to appear to be 

greater than 1 ok or in other terms 

𝛽1

𝛽2

𝑆𝑖𝑛𝜃𝑖 ≫ 1 
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These are the specific cases that we are seeing. First thing that we have to determine is whether 

this is going to be possible, ok. So,  

𝛽1 = 𝜔√𝜇1𝜖1 

So, then we can say that 

𝑆𝑖𝑛𝜃𝑖 ≥
√𝜇2𝜖2

√𝜇1𝜖1

 

. 
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Now, let us look at this right-hand side term a little bit more closely. Let us say that in order to 

make my analysis a little simpler ok, in order to make my analysis a little simpler, I can always say 

that the media I am considering are non magnetic media. So, I can substitute 𝜇1 equal to 𝜇2 equal 

to 0, ok. 

You can substitute 𝜇1 equal to 𝜇2 is equal to 0 a 𝜇0, alright. So, I just end up with the 𝜇0 getting 

cancelled on the numerator and denominator and I have 

𝑆𝑖𝑛𝜃𝑖 ≥
√𝜖2

√𝜖1

 

 

 So, I just need to be ok. 

So as far as the incident angle goes, we have control when you are doing the experiment you 

have control over the incident angle. Let us assume that you have control over the incident angle 

you can go from 0 degrees to 90 degrees. That is how you will rotate your incident beam with 

respect to the interface alright. 

There is no way for you to make your 𝜃𝑖 greater than 90 degrees, alright. So, this means that the 

left-hand side of this inequality does have a limit, and has to be less than 1 ok. So, if the left-hand 

side has to be less than 1 alright, then we have some conditions coming on the right-hand side 

ok. This means that your right-hand side also has to be less than one alright. 
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So, you can say that, ok. I am not going to make it equal to 1, equal to 1 means that you are just 

having the same material on 2 sides the interface no longer exists. So, the only case where you 

have 2 different media and the interface still exists is not having that equality over the.  

So,  

√𝜖2 < √𝜖1 

. So, if this condition is satisfied, right. If you have 2 media the first medium is having higher 

permittivity, the second medium is having lower permittivity then there is a chance that you are 

going to be ending up with 𝜃𝑡, ok. Not being clearly defined.  

That is sin 𝜃𝑡 will look like it is greater than 1 according to the Snell's law, we already know that 

if sin 𝜃𝑡 looks like it is going to be greater than 1 according to Snell's law, if you try to calculate 

cos 𝜃𝑡 using 1 minus square root I mean square root of 1 minus sin squared theta you are going 

to get a pure imaginary number, you are not going to be able to determine what is the angle of 

transmission in these cases ok.  

So, first we have established that it is possible to have a sin 𝜃𝑡 to be greater than 1 just using 

simple Snell's law, the way to achieve that is by using your second medium to be rarer than your 

first medium, and there does exist an angle where your sin 𝜃𝑡 will go greater than 1 and cos 𝜃𝑡 

will become purely imaginary. 

So, that possibility still exists ok. So, it is not an impractical case where we are saying that 𝜃𝑡 will 

become 
𝜋

2
 and you know sin 𝜃𝑡 will become greater than 1. So, according to these expressions it 

is possible. But what does that physically mean? Something that we have to see ok. 



So, if this is the case, we have to go back to our expressions for  𝛤  ok. So, I am going to just go 

back to our expressions for gamma. So, I had 𝛤∥ , ok  I will just go and copy and paste this 

expression  ok. 

So, I have 𝛤∥ is equal to 

𝛤∥ =
𝐸𝑟0

𝐸𝑖0
=

𝜂1𝐶𝑜𝑠𝜃𝑖 − 𝜂2𝐶𝑜𝑠𝜃𝑡

𝜂1𝐶𝑜𝑠𝜃𝑖 + 𝜂2𝐶𝑜𝑠𝜃𝑡
 

 

 This is the expression that I have from the previous class, ok. And I want to take the scenario 

where the sin 𝜃𝑡 is precisely equal to 1, I will start from there and then I will try to figure out what 

will happen if sin 𝜃𝑡 becomes greater than 1. 

So, at precisely when sin 𝜃𝑡 is equal to 1, we call the incident angle to be the critical angle, alright. 

So, if sin 𝜃𝑡 is equal to 1 and it becomes greater for higher angles of incidence, then, writing down 

cos 𝜃𝑡 becomes a difficulty over here right. 
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So, what one can do is  

sin 𝜃𝑐 just to remember is 
𝛽2

𝛽1
 or n2/n1 alright. And if this quantity becomes, if you have incident 

angles to be higher than this angle, then we are going to be having some 𝜃𝑡 which is not going to 

be possible for you to get real angles with cos right. So, if this is the case  what can we do with 

respect to writing the angles inside? 
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So,  

=

𝜂1𝐶𝑜𝑠𝜃𝑖 − 𝜂2√1 −
𝛽1

2

𝛽2
2 𝑆𝑖𝑛2𝜃𝑖

𝜂1𝐶𝑜𝑠𝜃𝑖 + 𝜂2√1 −
𝛽1

2

𝛽2
2 𝑆𝑖𝑛2𝜃𝑖

 

=

𝜂1𝐶𝑜𝑠𝜃𝑖 − 𝑗𝜂2√
𝛽1

2

𝛽2
2 𝑆𝑖𝑛2𝜃𝑖 − 1

𝜂1𝐶𝑜𝑠𝜃𝑖 + 𝑗𝜂2√
𝛽1

2

𝛽2
2 𝑆𝑖𝑛2𝜃𝑖 − 1

 

you could just write it down like this right. So that you have the term inside your square root is 

positive ok. 
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There is a reason for doing this alright, and the reason is because I want to make some inferences 

from the value that I would ascertain which is coming from here, alright.  

One of the things that I know now clearly looking at this is to make this expression a little simple, 

I could say that let 𝜂1cos𝜃𝑖  be given a variable name x, ok. Let 𝜂2√
𝛽1

2

𝛽2
2 𝑆𝑖𝑛2𝜃𝑖 − 1  be given the 

variable name y then, I can write this formula in a much simpler way, ok. 

So, the formula would now look like  

=
𝑥 − 𝑗𝑦

𝑥 + 𝑗𝑦
 

So the reason for bringing that minus 1 out and then writing it in terms of j is to write it in the 

form of a ratio of 2 complex numbers that are conjugates of each other  ok. 

And there is a reason to do this again, I know that the magnitude of the complex number is given 

by the square root of x square plus y square, the magnitude or the absolute value of the complex 

number of its conjugate is also the square root of x square plus y square. So, it is clear to me that 

this is a ratio of 2 complex numbers of the same magnitude, ok.  

So, I can say that this ratio as far as magnitude goes is equal to 1 ok. So, this is the purpose for 

rewriting it in the you know flip form and taking j outside. So, that I can make this assertion that 

magnitude of 𝛤∥ the way we have written is equal to 1, ok . 



(Refer Slide Time: 25:11) 

 

Once I have determined that magnitude of 𝛤∥ is equal to 1, I know that no electromagnetic wave 

is being transmitted all of it is being reflected, alright. So, now I can say that at the interface 

between the 2 media when I have a denser medium followed by a rarer medium, if I adjust my 

incident angle in such a way that a you know sin 𝜃𝑡 is equal to 1 or higher alright, what I would 

end up getting is, magnitude of the 𝛤 to be equal to 1, alright. 

Notice that I have written clearly magnitude of 𝛤∥ is equal to 1, I am not talking anything about 

it’s phase here. But, all I know is whatever I am sending in is going to be reflected from the 

interface, right. So, this is true for all angles where cos 𝜃𝑡 is imaginary. Which means that all 

angles where 𝜃𝑖 is greater than theta c. Here, the magnitude of your reflection coefficient is going 

to remain 1, ok. 

So, the angles at which this happens  correspond to a scenario which is known as total internal 

reflection. So  in short form, the people make it look like TIR, alright.  

Total internal reflection is the phenomenon where you launch an electromagnetic wave from a 

denser medium to a rarer medium and you have your incident angle to be greater than equal to 

critical angle, then you will notice that in your reflection and transmission coefficients for 

different polarization, you will notice that the reflection coefficient becomes equal to 1, please 

for the parallel polarization that is what we have seen. 

For the perpendicular polarization also it becomes the magnitude equal to 1 right. So let me just 

complete this by saying also, irrespective of the polarization that you are using, ok, the entire 

electric field is going to be reflected there is nothing you can do about it, ok. So, the interface 

between a dielectric and another dielectric could act as a perfect reflector ok.  



And the question can be, what is the angle of reflection? We already know that the angle of 

reflection is going to be equal to the angle of incidence right. So that is something to remember 

right. 

So now that you know what is this total internal reflection and it is possible? There are 2 extreme 

conditions we have seen. In the previous class, we saw the conditions where 𝛤 is equal to 0. 𝛤 

equal to 0 was known as the Brewster's angle.  

And in this class, we are seeing the extreme opposite where 𝛤 is equal to 1, alright. This is known 

as TIR alright, and generally the wave propagation where you have transmitted, reflected is in 

between these 2, ok. So, you have seen the 2 extremes and you can have anything in between 

the 2. So, you can have a reflection coefficient going between 0 and 1 alright that is it right. So, 

those are the boundaries of what you can see.  

But there is only 1 more detail that we will have to see, ok. Just like we have seen the 2 extremes 

with respect to the reflection coefficient, we also have to understand the way we have 

formulated the problem, we have also seen 2 extremes that is the electric field is either 

completely perpendicular to the plane or it’s completely lying in the plane of incidence. Those 

are also 2 extremes alright. 

In reality, you may have polarizations where the electric field has a component that is parallel, 

and has a component that is perpendicular to the interface. In all these conditions, you will have 

to break the electric field into 2 components. You have to project the electric field to the plane, 

take the component of the electric field along the plane and then you will have to project it 

perpendicular to the plane and take a component perpendicular to the plane. 

You may have to calculate 𝛤∥ , 𝛤⊥  for the single case and then we know that the electric fields 

overlap and it can be super post alright, it follows the theory of superposition it’s a linear term 

you can add electric fields in a quantity. 

So that means, that you will start taking 𝛤∥ , 𝛤⊥  et cetera, and then calculating the reflected 

electric field for both these polarizations and then you will be adding them up together to get the 

net electric field that is being reflected, ok. 

So, that is one one thing that we have to remember. Many of the problems, you may have some 

polarization which is neith𝐸𝑟∥
 nor perpendicular. In those cases, you will have to you know, 

project your electric field into the plane, take the infield component and then out-of-plane and 

take the out of plane component and then you will have to find out 𝛤∥ , 𝛤⊥ . 

So in a given problem, you may end up using both the polarizations to figure out what is the net 

effect. In doing that, we can immediately say that  if that is the case and if we look at the 

expressions that we have, we already know that  𝛤⊥  and 𝛤∥ are not equal, right. They are not 

equal, they are different which means, that you could have different 𝛤⊥ , 𝛤∥ , alright. So, you have 



to be very accurate in the calculations that you make, and also the inferences that you will make, 

ok. So, let us take some conditions and let us start to look at what is going to happen, ok. 
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The first thing that we will do is we will say that any electric field, ok. With respect to this plane 

of incidence, can be divided into 𝐸𝑖∥
   and it can be divided into some 𝐸𝑖⊥

. 

Now, in the case of E m waves when we had begun this, and we were talking about the 

differences between the E m waves and the transmission lines we were talking about polarization 

and then we talked about linear polarization, circular polarization and elliptical polarization, ok.  
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In those lectures  ok, one of the things that we were noticing was you could have Ex and Ey, ok. 

They could have different values or they could have different magnitudes and there could also 

be a phase difference between Ex and Ey. We also saw those using an animation later on, alright. 

So you will be having Ex going this way, Ey going the other way. But they need not be in phase 

alright, however, if they are in phase and if their values are different, then you will end up having 

a linear polarized light. 

So, let us take our current scenario where we have calculated all these reflection coefficients, let 

us say that the incident light is linearly polarized, ok. Immediately, the question comes I mean, 

we have written  

𝐸𝑖 = 𝐸𝑖,∥ + 𝐸𝑖,⊥ 

Should we also be more generic and say that  𝐸𝑖⊥
 and 𝐸𝑖∥

  Can there be a phase difference 

between them? Just like Ex and Ey could have phase differences between them in the simulations 

that we saw before, here also it is quite possible that you can have a phase difference between 

them generally, ok. 

But if you are talking about linearly polarized light, then we are talking about this phi becoming 

equal to 0, then it becomes a specific case where 

𝐸𝑖 = 𝐸𝑖,∥ + 𝐸𝑖,⊥ 

 

and you do not have any phase difference between 𝐸𝑖∥
  and  𝐸𝑖,⊥, ok. 



So if it is linearly polarized, just make phi equal to 0. Ok. You will be having Ei is equal to 𝐸𝑖∥
  plus 

𝐸𝑖⊥
, then you will take the 𝐸𝑖∥

  component, you will be doing the calculations for the reflection 

coefficient, you will be taking the 𝐸𝑖⊥
 component and you will be calculating the reflection 

coefficient. 

In both these cases, you will be able to calculate the reflected wave Er and then once you get 𝐸𝑟∥
 

𝐸𝑖⊥
, you will just add the 2 to get the net reflected electric field in medium number 1, ok. 

So, this is the procedure if you had a linearly polarized wave. Now, while doing this, there are 

other things that we have to consider, ok. If you look at the expressions of transmission and 

reflection coefficients that we are having, these are real numbers ok, 𝛤⊥ , 𝛤∥ are all real numbers. 

There is no need for them to be complex, ok. 

So, if this is the case for a linearly polarized wave to go and hit the interface and then bounce 

back alright, there would not be any arbitrary phase imparted to you’re an incident wave alright, 

it is because your reflection coefficients are real, alright.  

Which means that you would not have any changes in phase coming out of this, so, if your 

incident electric field was a linearly polarized and if you split that into parallel and perpendicular 

components, each of them is going to be having a reflection coefficient that is real, alright and 

then you add them together alright, you will end up with no manipulation of phase between 

them.  

So, you would not be giving only parallel polarization some phase, perpendicular polarization no 

phase and all that will not happen, they will still remain in phase ok. 
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 So, which means that 𝐸𝑖∥
  a, 𝐸𝑖⊥

 in the case of linearly polarized wave, will lead to 𝐸𝑟∥
  𝐸𝑟⊥

  with 

no phase. So, if you have to add them up together, you will immediately realise that Er is also 

going to be linearly polarized, but, 𝐸𝑟∥
 value is not the same as 𝐸𝑟⊥

 value. That is the reflection 

coefficients are not identical. 

So, the linearly polarized wave could undergo a change in angle at which it is polarized simply 

because the Y component or the perpendicular component is different from the parallel 

component, that is all. But it will remain linearly polarized.  

So, linearly polarized wave hitting the interface, the transmitted light will be linearly polarized, 

reflected wave will also be linearly polarized, however, the angle at which it is polarized, could 

change simply because the reflection coefficients and the transmission coefficients for the both 

polarizations are not identical. So, it will stretch one component more than the other ok. 

So, a linearly polarized wave will remain linearly polarized in this material system, right? So, 

reflected wave, linearly polarized, transmitted wave, it’s also linearly polarized right. So, then we 

can take another scenario if your incident wave is circularly polarized, ok. 

So, for a circularly polarized wave in the prior lectures we had seen that mod Ex was equal to 

mod Ey and the phase difference of plus 
𝜋

2
 or minus 

𝜋

2
 was present between these 2. If it was + 

𝜋

2
 

you would have one-handed circular polarization. Maybe, it is right or left, alright. 

And if it is the opposite - 
𝜋

2
 , you will be having the opposite evolution of polarization or we call it 

left or where it's the opposite one is right-handed another one is left-hand circular polarization. 

So, here we can say that equivalently here, a your 𝐸𝑖∥
 alright, is the same as a your  𝐸𝑖⊥

 magnitude, 

that is how you define circularly polarized with respect to an interface, and there is a phase 

difference between the 2 and it could be either + 
𝜋

2
 or - 

𝜋

2
 depending upon whether you are having 

a left or right circular polarized wave, ok. 

So, this would be the condition for having a circularly polarized wave hitting your media interface, 

ok. Now once again, we know that the reflection and the transmission coefficients are real ok, 

so, they do not change the phase they just change the values of your reflected and a transmitted 

waves peak, ok. 

They do not change any arbitrary phase between these 2 components. Which means that the 

reflected and the transmitted waves are going to exhibit the same phase difference between the 

2 components alright. 
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So, for the reflected case  your phi will you know  still remain at ±
𝜋

2
 for the transmitted case .  

𝜙 = ±
𝜋

2
 

Now, we also know on top of that just like in the linearly polarized case, 𝛤∥ is not equal to 𝛤⊥ .  

Reflection coefficient values are not equal, which means that whether if you had 𝐸𝑖∥
  and 𝐸𝑖⊥

 to 

be equal 𝐸𝑟∥
 and 𝐸𝑟⊥

 may not be equal. 

So what happens is, you will end up with 𝐸𝑟∥
 not being equal to  𝐸𝑟⊥

, but they still have a phase 

of  
𝜋

2
  between them and this corresponds to an elliptical polarization , ok. 

The same thing happens in the case of transmitted waves, the transmission coefficients are not 

equal ok. So, which means that your 𝐸𝑡∥
  𝐸𝑡∥

 need not be equal to  𝐸𝑡⊥
, once again, becomes 

elliptical , ok.  

Now there is also another tiny detail that you will still have to remember. We have said that 𝐸𝑟∥
 

is not equal to 𝐸𝑟⊥
. That generally means elliptical. it’s also possible that one of them is 0. 

Because you you have a case where you have Brewster's angle occurring in 1 polarization, alright, 

where you have 𝛤 equal to 0 for that polarization. But in a normal non-magnetic material 𝛤 for 

the other polarization is not 0.  

So, it is perfectly possible that you get only one polarized component, the other polarized 

component is not present in the reflected case. So it’s perfectly possible that your input was 

circularly polarized and the reflected is only linearly polarized, ok. 



So, there are cases where multiple things can happen, but one thing is for sure, you cannot have 

reflected and transmitted to be circular. The most generic case they look like an elliptical, but it 

is possible that this elliptical gets down to being linear in one of these components.  

So, the circularly polarized light there are many things you will have to look at the media 

interfaces, calculate the coefficients and calculate you know the values of the reflected fields and 

then you have to decide what the polarization is going to be. But in general, it has to be elliptical. 

It could you know, become linear under certain conditions depending upon your value of 𝛤∥ and 

𝛤⊥  ok.  

So, this is the thing. So, what have we seen now? We have seen that the magnitude of the electric 

field is changing upon reflection and transmission, we have also seen that the polarization of your 

EM wave is changing depending upon your medium configuration. The only thing that we are 

certain is there is no arbitrary phase change between components because your a 𝛤 and a 𝛵 are 

actually real numbers. 

So, these are the things that we have seen and we have also seen some extremes. Brewster's 

angle corresponds to 𝛤 is equal to 0, and we have also seen the opposite case which is total 

internal reflection where 𝛤 is equal to 1, ok. 

So, anything is possible using a dielectric-dielectric interface, and we also know that if you make 

the angle of incidence to be equal to 0, you will get a reflection coefficient to look like 

transmission line reflection coefficients.  

However, here you have 2 polarizations and in the way you have constructed the problem, you 

have flipped the electric field. So, one polarization will have a negative reflection coefficient of 

the other. 

So, you have to be careful in interpreting these things, alright. With this most of the topics related 

to dielectric-dielectric interfaces are over, ok. The only thing that we need now is to start looking 

at dielectric metal or dielectric conductor interfaces alright, and then we will have to see how to 

make use of these things in some settings to send guided light et cetera. 

But before that what I want to do is, I want to go back to the programming part. Because it has 

been a while since we did some programming, ok. I want to take a couple of these things and just 

show you what a plane wave is alright, by solving Maxwell's equations, we have seen only graphs; 

we have not actually seen waves that are bound in 2  spatial dimensions. We have seen only in 1 

spatial dimension.  

So, the next class I want you to bring your computer again with octave. We will take the simplest 

case where we have del cross e, del cross h, but, instead of having E in X direction, H in Y direction, 

all that, we will try to see whether we can make a two-dimensional analysis. That is, we will try 

to see what is a point source? What is a spherical wave-front? What is a plane wave-front? Et 

cetera and get a more visual feeling.  



This part of the simulations will be slow, ok. Because it has, the matrix sizes will become where 

it was 100 now it will be 100 by 100 ok. So, it will be slow, but we will do some portions in class, 

some portions I will ask you to do for your own information back home ok, because it is slow 

alright.  

So, that is the only thing. So, next class I request you to bring your computers with octave loaded. 

We will go over some visualization for these plane waves, possibly total internal reflection or 

Brewster's angle also ok. So, we will stop here. 


