Transmission lines and electromagnetic waves
Prof. Ananth Krishnan
Department of Electrical Engineering
Indian Institute of Technology, Madras

Lecture - 23
Plane Waves at Oblique Incidence - i
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We will get started, just briefly go on what we had seen in the last class ok. So, we had divided
the number of configurations into 2 for oblique incidents. We defined what is known as the plane
of incidence. It's the 2 dimensional diagram that we draw on the paper all right, describing the
interface and the direction of travel right.

And we saw 2 configurations for polarization which was possible one where the electric field is
perpendicular to this plane of incidence and the other configuration was magnetic field
perpendicular to the plane of incidence. And in the previous class we had derived the
transmission and reflection coefficients for the electric field perpendicular to the plane of the
incidence ok.

So, this is you know, the left hand side one is known as the perpendicular polarization. We had
written the expressions for the incident wave, ok transmitted and reflected wave, and then we
had applied boundary conditions.
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Which means here we have a dielectric dielectric interface and we have applied tangential
components of the E field and tangential components of the H fields to be continuous all right.
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Once we had the 2 equations, we solved the 2 simultaneous equations for gamma and tau ok
that is where we stopped, this class we will go over the other polarization also and then we will
try to mark some inferences from these 2 derivations right, all right.

So, we will get started with parallel polarization here, the H field is perpendicular to the plane all
right, and as in the previous lecture the assumption here is that the H field remains oriented in



the same manner for the reflected and transmitted the electric field will change it’s direction
depending upon k ok.

So, likewise we had marked E incident to be in one direction corresponding to the right handed
triad, the direction of travel is towards this interface at the origin it gets some portion of it gets
reflected and the reflected wave travels back, because the k vector is in different direction.

And the magnetic field is assumed to be in the same direction as the incident wave and the
electric field has flipped ok. | think the way it has been drawn looks like a cross for the Hr so, i will
just correct that a little bit ok.

So, the magnetic field is out of plane and the electric field is oriented in such a way to form a right
handed triad, so the same thing happens for the transmitted ray all right. The only detail that we
need to add is 6; can be different than 6; and if it is two different media with €; and
€, permittivity 6, is different than 6; ok.

So, we will start with writing down the expressions for the incident wave, transmitted wave,
reflected wave and the boundary conditions.
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Once again the electric field is going to have similar form right so, it is going to look like
E; = Ejpe kT
in medium one right, and k incident is going to be
ki =kX+k,y+k,z

= Bt



Which is identical to the left hand side case and 71 will have components x y and z. Which can be
marked as nx, ny, nz all right, these are identical to the left hand side.
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So, since everything is merely identical all right or everything is identical so far all right the
components will look exactly the same [sin(6;), 0, cos(6;)]. Remember that we are resolving a
vector over here the k vector between two different polarizations has not changed all right it is
the same diagram it’s going in the same direction, so practically there is no difference in the
expression for the k all right.

So, here you can write that
ki = ,Bl(SmHlJ? + Oy + Cos@ii)

Once again the only difference between the two is the way in E and H are oriented ok the
expression will be E;e /%"

This is for a plane wave. r is going to be position vector

r=xX+yy+2z2

irrespective of the polarization.



And in the wave that we have drawn the k is oriented in the same direction in both the cases,
only the direction of the electric field is different right. So, which means that the expression for
the electric field is going to look identical ok ok ok. the only difference being the Ej, all right how
it is oriented extra because, | have drawn a vector symbol below E;, | think some care has to be
taken later on, but for now the expression is going to be exactly the same as the other
polarization.

Now since a this has been established that for the incident wave the form of the electric field
expression is identical to the other polarization, it is very easy to say the same thing about the
reflected and the transmitted fields also, because the k vector is going this way for the reflected
a wave and the k vector is going the other wave for the transmitted. So, the components of k for
the reflected and transmitted will be identical to those cases in the other polarization also.
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So, directly one could write down the expressions for the electric field to look like what we had
for the other polarization ok. And | am going ahead and writing down the expression for the
transmitted electric field also right

student: sir plus
plus ok.

The next thing that we did in the previous lecture was write down the expression for magnetic
field in very simple form all right, all we did was use Ohm's law to figure out the magnitude of
the magnetic field and then write down boundary conditions.

Now electric field expressions are the same magnetic field expressions are also going to be the
same because you are going to divide each of them by eta that is it all right.
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So, it goes without saying that the form of the incident reflected and transmitted waves in both
the polarizations are going to remain the same right.
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Then where is the difference coming from? All right the difference is in the boundary conditions
all right that is why the difference comes. So, we will write down the boundary condition and
then we will go ahead and see what the differences can be all right.



So, for both the polarizations the form of the electric field and the magnetic field expressions are
identical the only change is coming due to the application of boundary conditions. So, once again
the interface is at z equal to 0, and apply boundary conditions.

Previously, we had the electric field pointing out of this plane all right, which means that the
entire electric field was tangential to the interface. So, we had written

E; +E, = E,

Now we have to be a little careful because E is not pointing out of the plane so, that means, that
we have to take the component of Ei which is tangential to the interface, and then we have to
apply the boundary condition which is tangential E field is going to be continuous right.

So, this means that you will have to resolve this into two parts ok, one which is like this and the
other one like this and you have to take the tangential part which is the vertical component over
here, and you have to apply the boundary condition that is tangential components will be
continuous at the interface ok.

So, | will go back the boundary condition here is at z = 0 ok, | have E;,Cos6; ok, and the electric
field flipped it’s direction while it is going back so, you will notice that the vector direction for the
incident wave for the tangential component is opposite to that of the reflected components, so
you have to take the difference between the two all right. Which is the same thing what we did
for the magnetic field in the other polarization right ok.

And in the case of magnetic field in this configuration the magnetic field is pointing out of the
plane so, whatever magnetic field you have is going to be tangential, so, the boundary condition
corresponding to the magnetic field is simply going to be

H;y + Hyg = Hy

The plus sign is simply because the magnetic field does not flip it’s direction so the net magnetic
field vector is still pointing out of the plane on the left side and on the right ok all right.

So, now once again you have a 2 equations the magnetic field can be written as

m M
So, that means, you will have 2 equations simultaneous equations and you will have E;,, E,,, E;,
to be calculated, since there are only 2 equations and 3 unknowns if you substitute, as in the

previous case you can solve only for the ratio, so here we will denote the gamma by a suffix
representing parallel polarization right.
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So, this is n, right reflected is the same ok. So, now you will have 2 equations and the unknowns

that you can solve are only for the ratios, so the ratio is reflected to the incident right. In this case
comes out to be

E.y 1n,Co0s6; —n,Cos6,

Eyw 1n,Cos6;+n,CosH,
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Once again you can solve for the other ratio also which would be E;, divided by E;,, and that
turns out to be

E;o 2n,Cos0;

T = — =
I Eiy nyCos8; +n,Cos0;

You do not need to memorize these expressions all right once again for the quizzes either these
expressions will be given or you will be allowed to bring a formula sheet right, but the
interpretations are important that is all ok.

So, now that we have seen the reflection on the transmission coefficient for both the
polarizations, it's abundantly clear that there are some commonalities between the two there
are also some distinctions between the two right. The commonalities if you look at the reflection
coefficient for the perpendicular and the parallel polarizations, the first thing you notice is that
the numerator has a minus b form that is there is a negative sign between two terms. Irrespective
of whether you have perpendicular or parallel polarization all right.

Which means that it is possible that under some scenario the numerator vanishes the reflection
coefficient is 0 and the entire wave is actually transmitted all right, so the entire wave is actually
transmitted and the reflection coefficient is 0 all right ok.

So, let us take the numerator ok and just equate it to 0 all right and see what is the consequence
or what could the material configuration be right. So, for gamma perpendicular to be equal to 0
the only way is the numerator has to become equal to 0 so, we can say that ok it’s a ratio ok.
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For gamma perpendicular to be equal to 0 the only way is ok ok. Now we already know that 6, is
dependent upon 6; and the way 6, is dependent upon 6; is given by Snell's law



n,Sinf; = n,Sinb;

Which means that for a given material configurations with intrinsic impedance 7, and n, it may
be possible for us to adjust the angle 6; in such a way that theta 2 cos §; becomes equal ton, cos
0; and let us say that in an experiment we do not have control over everything the only thing we
have control over is say the incident angle 6; all right.

And so let us say that for a particular angle 8; if this were to happen what would that 8; be ok So,
since this is a special case we just say that a to denote that it is a special case let us say that a
new variable all right, is equal to 6; ok theta suffix equal to ;. So, this is the special angle at
which this numerator becomes equal to 0 ok.

Then a what we can do is we can rewrite this equation as

n,Cos0g —n1Cosb; = 0

So, directly we can say that a
Op, = Cos_l(Z—1 Cos0,)
2

So, this particular angle is known as Brewster's angle all right. So, this is known as Brewster's
angle, however, there are some small caveats ok and we will deal with these caveats in a minute
now ok.

Now, let us say that | have, | am going to start with Snell's law again so, | am having 2 x 2 variables
over here, | am having Cos68g, CosO, so on the right hand side | have 6;, | want everything to be
in terms of 65 ok, | want to get rid of this 6; because 8, is any way dependent upon 6zsee it by
Snell's law that is it alright. So, you could write this down in terms of a single variable 65
everywhere instead of having 6, on the right side.
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So, for doing that you could make use of Snell's law you can say that a right. So, we can say that

n,Sinf; = n,Sinb;

. ni ..
Sinf, = n—SmGi
2

2
— Mg
Costg = |1 ——Sin“0p
n;

So, | could always do that instead of 8; it is a special angle | will call it as 85 and make a substitution
in the prior case right.

Now there are also other ways to look into it in more detail in general form the Brewster's angle
is just this much if you are given enough a you know input and if you are asked to find out the
Brewster's angle you could find out from the first expression which is Cos"l(z—1 Cosb;).

2
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Because we know that phase constant in a medium
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b= Any

in that medium so, you could always write this down as free space wavelength divided by n1 right
remember that when the when the wave travels into a denser medium than vacuum the
wavelength will become smaller similar to the case with transmission lines where we had see Ic
on one side to be small, Ic on the other side was increased and the wave length shrunk the
velocity also reduced in the simulations right.

So, similarly the phase constant in a medium is written as 2t /A in that medium. So, itis A/n .

So, if you were to take B 2 you will be having i—n/nz so, this gives us some idea that n1 divided
0

by n2 can also be written as a ratio of g, /f, ok.

So, this means that in Snell's law ok,

2
ny.. .
Cosbg = |1 ——Sin“Og
ny
Now, one of the things a that we will notice over here is a nl divided by n2 all right can also be
written in other forms for example, you can write it as a ratio of permittivity and permeability S
can also be written as the omega square root of mu\ epsilon right. So, you can always expand



these components into more and more constituents and try to look at it more deeply there is no
there is nothing wrong with it right ok ok.
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Now, if | have written it with

B, = w\/Hi€1, B = W4/ H1€1

2
n,Cos0p — 1y |1 — 'B—leinZHB =0

B
Tll € » M2 €,

Then you could substitute that into your expression for finding out the Brewster's angle; it only
gets more and more complicated when you make a lot of these substitutions ok. But let us go
back and look at why we are doing all these things ok, the reason why | started with g and not
with n is because simply we remember and to be a square root of epsilon r x. In majority of the
cases it’s only indicative of a relative permittivity and relative to permit permeability and
permittivity all right.

So, sometimes people tend to confuse us to what is going on beta, however, has an expression
which is saying that is w+/u1€1does it have the effect of the vacuum permittivity and your relative
permittivity vacuum permeability and relative permeability. So, chances of making mistakes
while doing some calculations are a little lower is what | observed right.



So, once you have something absolute like this then there are some other inferences that one
can start drawing for example, if you were to take the original expression where we started with
numerator of the reflection coefficient is equal to 0 that’s where we started this, and we were to
substitute all right. So, you will be having

2
n,Cos0p — 1y |1 — 'B—leinZHB =0
B3
This is the last expression that | have for cos 6, is equal to 0O, this is what that same expression
would look like right. So, if you were to remember the previous expression it’s more than enough
for you to determine what is the Brewster's angle, but we are just trying to see if instead of
writing with terms of a n and 6; and a 6,ls it possible to draw some more inferences that are all
right.

If you do the substitutions and if you wish to solve for 65 you will get a very large expression ok.
I will not do the solving part alright | just plugged it into wolfram online and | got a solution for
f0p which seems to match with the expression that people have been mentioning in the
textbooks, | will write down the expression | got from wolfram right.
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So, | got

g, = Hy  [H2€1— .Ulfz}
Ky [Hy€E2—H €1

This is another expression that you can write for your Brewster's angle, the simplest expression
is what we had before if you know that you are all set right.



So, given a problem configuration if you are asked to calculate you know how to calculate all
right, this is just to see in which cases this Brewster's angle can exist in which cases it cannot exist
extra ok. Now that we have written this right, we can do the same thing for the other polarization.

So, for gamma parallel to be equal to 0 we can take the numerator of the expression for the
reflection coefficient and equate it to O right so we can write n, cos@; - n,cos6; = 0 and then you
make the same assumptions let us say that an experiment you do not have a control over
everything, but only the incident angle and let that incident angle which is a special incident angle
where the reflection coefficient becomes 0 be known as 6.

Then you will rewrite as n, cosfp - n,cos8; = 0, this implies that

Op = Cos_l(n—2 Cos0,)
M

This is the simplest expression that you can use to get 65 for both the polarizations, one of the
things that we notice here is that because the numerators for the reflection coefficients were
different for both the polarizations the angle at which the reflection coefficient goes to 0 is also
slightly different.

So, the angles at which the reflection coefficient becomes 0 for different polarizations is different
all right. So, this is also known as Brewster's angle. The only thing is that Brewster's angle is also
polarization dependent.

If you have perpendicular polarization you have to use one expression if you have parallel
polarization you have to use some other expression which means, that when we are talking about
Brewster's angle we also have to indicate the polarization for which the Brewster's angle is
calculated all right.

So, likewise you can say that this is perpendicular this is parallel ok so, Brewster's angle for
perpendicular polarization, Brewster's angle for parallel polarization this is how it is usually
expressed ok. Now we can go through the Snell's law make substitutions for n, 1y, make
substitutions for 6, in terms of 6 all right and you could make substitutions in terms of g, B,
then make it to a €; €, extra it is the same drill over here right

Except that the angle here, turns out to be slightly different because our starting expression itself
was different alright so, to indicate that we are dealing with parallel and perpendicular cases so,
| am just writing a suffix of perpendicular and parallel, turns out that

€2 M€ K6
€1 [HUy€E2—H €1

B, =1



It is a very big expression. | do not expect you to remember all this right. If you are able to do the
first case which is this Cos‘l(Z—2 Cos0,) extra it is more than enough.
1

So, there is a slight difference between these two expressions right, and a one can pay some
attention to these slight differences all right one of the things that a | have touched upon in the
past lectures is 4 p, being non a you know not the same as vacuum permeability and
permittivity for | mean permeability.

So, u, and u, are permeability all right you can write them as u, p,- ok, however, in the majority
of the materials there are no magnetic properties magnetic materials are rarer than the other
dielectric materials. So, it is quite possible all right that for majority of the materials that you will
encounter y, and u, is equal to u,, all right.

In general case this is the expression for your Brewster's angle for perpendicular and parallel
polarizations in the most expanded form suppose you are not given anything except u, u, you
will be able to do this all right all right.

Notice that this expression has got nothing you just need u, u, you will be able to find out the
expression if you were to go back incident suppose you are transmitted angle is a given to you
alright then you will be able to find out the Brewster's angle in the other case, but if nothing is
given you will have to do some arithmetic's, but it is possible to write down the incident angle
purely in terms of material parameters and arrive at what is the Brewster's angle ok.

Now this is the final expression, but one could also go one step further and make it a little bit
simpler for many people, in the sense that the majority of the materials. | am just writing the
majority of the materials; not all materials have to undergo this.

So, this is the expression that we have got as final and it’s correct all right, but in case you want
to make some other inferences which are more common than some other cases right. | can say
majority of the materials have u, = u, =y, so, that is you do not have any magnetism related
properties in these materials.

So, vacuum permeability is the same as the material permeability or u, is equal to 1 it’s very
common for most of the dielectrics, most of the metals also you will find that 4 . is equal to 1 ok
ok.

What then ends up happening is if u, is equal to u, is equal to u, you can always go back to the
final expression that you have substitute for u, u, as u, ok, the first thing you will notice is on
the left hand side over here this ratio will become

Ho€1—Hy€E2
0p, ={ |———>}
Ho€2—Hp€1



Now you can take u, common from the numerator and denominator and you will just get a ratio
which will look like ok, square root of u, by u, is just 1 all right and then I make a substitute for
{4, and p, to to be u, so | can take p, outside right.

€1 — €
€ — €1

0, ={

Once again | can take a minus sign all right the ratio has to be equal to minus 1 so, | get tan inverse
of minus square root of u, right ok, tan inverse of square root of minus y, is what I would get ok.
Generally tan inverse a of a square root of minus u, means that you do not have a angle that you
can you know attached to 65 perpendicular.

So, tan inverse of square root of minus some quantity means that tan inverse of j something right.
So, there is no real, angle real angle 685 which will give you this relationship all right.

So, people argue that in the case of perpendicular polarization for non magnetic materials, you
may not have a Brewster's angle ok. So, in this case. So, there is so many conditions in the case
of perpendicular polarizations, if you have nonmagnetic material on the left hand on the right
you may not get a 8 perpendicular because you will end up having tan inverse of square root of
minus u, all right.

Student: Minus 1.

Minus 1 all right whatever ok, so it is a.is it

Student: y, is common.

Mu naught is common in the numerator and the denominator is it not?
Student: Yeah.

Ok so, it’sv—1 so, it becomes tan inverse of a j right. So, it becomes tough to find out what this
0 perpendicular is. So, in case of planar angles it is not going to be possible. There are some
other arguments you can say that you can say that the angle is out of plane and all that.

So, if you have the entire diagram in the plane you can always argue that if you shoot the beam
out of the plane you will get something else right, but we are not getting into solid angles ok.

So, it is not possible to find out a real angel 6 perpendicular so, people tend to say that for
perpendicular polarization Brewster's angle does not exist ok, but it is under the assumption that
you have nonmagnetic materials right. Now how about we apply the same condition to the right
hand side ok.

SOI for w =K, = Ho



€1

0p, = a}

So, if you consider majority of the materials to be non magnetic ok, then for a particular
polarization you may not be able to find out a Brewster's angle, but for a other polarization you
will be able to find out a Brewster's angle which, means, that for a given material configuration
that is nonmagnetic.

The interface will have reflection coefficient being equal to 0 for some component of the electric
field that is parallel, that is in parallel polarization, but if your incident wave is going to have some
other polarization it may have some reflection coefficient coming in.

So the polarization plays a major role at the interface ok, in determining your reflection
coefficient. This aspect is very different from transmission lines, the in the case of transmission
lines you strictly add (1, -n,) / (1, +n, )or equivalently we wrote it as (z; — zo)/(z; + 2).

If you are material properties dictated zl z, extra then you are pretty much fixed whatever
voltage and current waves you are launching will adder to this (z; — zy)/(z; + zy). But in this
case merely the material configuration is not enough, you also need to have the polarization
being aligned in some direction all right. So, it has to be parallel polarization in the case of non
magnetic materials to have reflection coefficient equal to 0 ok. So, this means that impedance
matching in the case of electromagnetic waves should also consider polarization ok.

It is perfectly possible to have no reflection of 1 polarization, but a lot of reflection of the other
polarization, it is perfectly possible all right. So, that is what it is going towards, so impedance
matching in the case of electromagnetic waves having oblique incidence on interfaces is not a
very simple problem ok.

Now, this has a lot of practical applications. Many of you when you buy eyeglasses ask for some
anti reflection coatings extra. Essentially what they are trying to do is make sure that you know
you get a lot of light inside, but you could also look at it as another problem. It say that there
exists some angle Brewster's angle for the light that is coming to your glasses, you do not want
any light to be reflected from the glasses directly because it needs to reach your eye ok.

So, you can say that | do not want reflection, so | want reflection from coating there, you could
also determine. What could that it could say that €; and p, correspond to air, €; and p, are
corresponding to some material that you are going to be coating. You could calculate a Brewster's
angle. You can say that for this angle a lot of light is going to be coming in, that is only for 1
polarization or other polarization. It is not going to be working very easily.

So, you will need a more complicated you know coating for your glasses all right. So, impedance
matching in the case of E m waves is not a very easy thing to do all right unless you have very



good control of the polarization extra. It is a disadvantage in that case, but it is also an advantage
in some other cases for example, if you are driving all right or if you are outdoors, it seems that
the polarization of glare ok, coming from natural sunlight it’s very different from the polarization
of use full information that is also coming from these material.

So, you will have glare cutting glasses ok or polarizing glasses extra. So, it is also possible that if
you have reflection coefficient O for the useful information to come and reflection coefficient not
equal to 0 for the glare part it is actually coming in glasses right. So, it could be used in useful
ways or it can become a disadvantage when you are actually trying to solve problems. So, the
only thing that | can say at this point is impedance matching in the cases of electromagnetic
waves is non trivial ok, using just manipulating angles you need to do something else all right.

So, | think we will stop here one of the reasons why, | mentioned these is because a in the case
of transmission line impedance matching was trivial all you needed to do was find out z | minus
Zy by z | plus zy and then make sure that you go to the center of the smith chats somehow ok
here, however, if you go to the center of the smith chart for one polarization you may not be at
the centre of the smith chart for another polarization. So, it becomes very important to draw
smith charts for different polarizations.

And then decompose every incident wave into a parallel and a perpendicular component strictly
a refill need not be parallel or perpendicular to the plane it can be anywhere in between those
cases you will decompose it into two and then you will have reflection coefficient for one
component being some value, the other component being some other value and then you have
to take the summed up effect.

So, effectively what we are saying is polarization is a very important property. In the next class
what we are going to do is account for polarization, when it travels from one medium to another
medium ok

So, here we have made an assumption that the E field is perfectly perpendicular, the other cases
it’s perfectly you know in plane it’'s components what if it is in between ok? What happens and
what happens to say linear polarization circular polarization on the interfaces? What can you
expect? So, these are something's that we are going to see ok.

So, for now | will stop.



