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We will get started, just briefly go on what we had seen in the last class ok. So, we had divided 

the number of configurations into 2 for oblique incidents. We defined what is known as the plane 

of incidence. It's the 2 dimensional diagram that we draw on the paper all right, describing the 

interface and the direction of travel right. 

And we saw 2 configurations for polarization which was possible one where the electric field is 

perpendicular to this plane of incidence and the other configuration was magnetic field 

perpendicular to the plane of incidence. And in the previous class we had derived the 

transmission and reflection coefficients for the electric field perpendicular to the plane of the 

incidence ok. 

So, this is you know, the left hand side one is known as the perpendicular polarization. We had 

written the expressions for the incident wave, ok transmitted and reflected wave, and then we 

had applied boundary conditions. 
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Which means here we have a dielectric dielectric interface and we have applied tangential 

components of the E field and tangential components of the H fields to be continuous all right. 
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Once we had the 2 equations, we solved the 2 simultaneous equations for gamma and tau ok 

that is where we stopped, this class we will go over the other polarization also and then we will 

try to mark some inferences from these 2 derivations right, all right.  

So, we will get started with parallel polarization here, the H field is perpendicular to the plane all 

right, and as in the previous lecture the assumption here is that the H field remains oriented in 



the same manner for the reflected and transmitted the electric field will change it’s direction 

depending upon k ok. 

So, likewise we had marked E incident to be in one direction corresponding to the right handed 

triad, the direction of travel is towards this interface at the origin it gets some portion of it gets 

reflected and the reflected wave travels back, because the k vector is in different direction. 

And the magnetic field is assumed to be in the same direction as the incident wave and the 

electric field has flipped ok. I think the way it has been drawn looks like a cross for the Hr so, i will 

just correct that a little bit ok. 

So, the magnetic field is out of plane and the electric field is oriented in such a way to form a right 

handed triad, so the same thing happens for the transmitted ray all right. The only detail that we 

need to add is  𝜃𝑡  can be different than  𝜃𝑖  and if it is two different media with  𝜖1 and 

𝜖2 permittivity 𝜃𝑡 is different than 𝜃𝑖 ok. 

So, we will start with writing down the expressions for the incident wave, transmitted wave, 

reflected wave and the boundary conditions. 
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Once again the electric field is going to have similar form right so, it is going to look like 

𝐸𝑖 = 𝐸𝑖𝑜𝑒−𝑗𝑘.𝑟 

in medium one right, and k incident is going to be 

𝑘𝑖 = 𝑘𝑥�̂� + 𝑘𝑦�̂� + 𝑘𝑧�̂� 

= 𝛽1�̂� 



Which is identical to the left hand side case and �̂� will have components x y and z. Which can be 

marked as nx, ny, nz all right, these are identical to the left hand side. 
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So, since everything is merely identical all right or everything is identical so far all right the 

components will look exactly the same [sin(𝜃𝑖), 0, cos(𝜃𝑖)]. Remember that we are resolving a 

vector over here the k vector between two different polarizations has not changed all right it is 

the same diagram it’s going in the same direction, so practically there is no difference in the 

expression for the k all right. 

So, here you can write that  

𝑘𝑖 = 𝛽1(𝑆𝑖𝑛𝜃𝑖�̂� + 0�̂� + 𝐶𝑜𝑠𝜃𝑖�̂�) 

= 𝛽1𝑆𝑖𝑛𝜃𝑖�̂� + 𝛽1𝐶𝑖𝑛𝜃𝑖�̂� 

 

Once again the only difference between the two is the way in E and H are oriented ok the 

expression will be 𝐸𝑖𝑒−𝑗𝑘.𝑟 

This is for a plane wave. r is going to be position vector 

𝑟 = 𝑥�̂� + 𝑦�̂� + 𝑧�̂� 

 

irrespective of the polarization. 



And in the wave that we have drawn the k is oriented in the same direction in both the cases, 

only the direction of the electric field is different right. So, which means that the expression for 

the electric field is going to look identical ok ok ok. the only difference being the  𝐸𝑖𝑜 all right how 

it is oriented extra because, I have drawn a vector symbol below 𝐸𝑖𝑜 I think some care has to be 

taken later on, but for now the expression is going to be exactly the same as the other 

polarization. 

Now since a this has been established that for the incident wave the form of the electric field 

expression is identical to the other polarization, it is very easy to say the same thing about the 

reflected and the transmitted fields also, because the k vector is going this way for the reflected 

a wave and the k vector is going the other wave for the transmitted. So, the components of k for 

the reflected and transmitted will be identical to those cases in the other polarization also. 
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So, directly one could write down the expressions for the electric field to look like what we had 

for the other polarization ok. And I am going ahead and writing down the expression for the 

transmitted electric field also right 

student: sir plus  

plus ok. 

The next thing that we did in the previous lecture was write down the expression for magnetic 

field in very simple form all right, all we did was use Ohm's law to figure out the magnitude of 

the magnetic field and then write down boundary conditions. 

Now electric field expressions are the same magnetic field expressions are also going to be the 

same because you are going to divide each of them by eta that is it all right. 
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So, it goes without saying that the form of the incident reflected and transmitted waves in both 

the polarizations are going to remain the same right. 
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Then where is the difference coming from? All right the difference is in the boundary conditions 

all right that is why the difference comes. So, we will write down the boundary condition and 

then we will go ahead and see what the differences can be all right.  



So, for both the polarizations the form of the electric field and the magnetic field expressions are 

identical the only change is coming due to the application of boundary conditions. So, once again 

the interface is at z equal to 0, and apply boundary conditions.  

Previously, we had the electric field pointing out of this plane all right, which means that the 

entire electric field was tangential to the interface. So, we had written  

𝐸𝑖 + 𝐸𝑟 = 𝐸𝑡 

 

Now we have to be a little careful because E is not pointing out of the plane so, that means, that 

we have to take the component of Ei which is tangential to the interface, and then we have to 

apply the boundary condition which is tangential E field is going to be continuous right. 

So, this means that you will have to resolve this into two parts ok, one which is like this and the 

other one like this and you have to take the tangential part which is the vertical component over 

here, and you have to apply the boundary condition that is tangential components will be 

continuous at the interface ok. 

So, I will go back the boundary condition here is at z = 0 ok, I have 𝐸𝑖𝑜𝐶𝑜𝑠𝜃𝑖  ok, and the electric 

field flipped it’s direction while it is going back so, you will notice that the vector direction for the 

incident wave for the tangential component is opposite to that of the reflected components, so 

you have to take the difference between the two all right. Which is the same thing what we did 

for the magnetic field in the other polarization right ok. 

And in the case of magnetic field in this configuration the magnetic field is pointing out of the 

plane so, whatever magnetic field you have is going to be tangential, so, the boundary condition 

corresponding to the magnetic field is simply going to be 

𝐻𝑖0 + 𝐻𝑟0 = 𝐻𝑡0 

The plus sign is simply because the magnetic field does not flip it’s direction so the net magnetic 

field vector is still pointing out of the plane on the left side and on the right ok all right. 

So, now once again you have a 2 equations the magnetic field can be written as 

𝐸𝑖0

𝜂1

+
𝐸𝑟0

𝜂1

= 

So, that means, you will have 2 equations simultaneous equations and you will have 𝐸𝑖𝑜, 𝐸𝑟𝑜, 𝐸𝑡𝑜  

to be calculated, since there are only 2 equations and 3 unknowns if you substitute, as in the 

previous case you can solve only for the ratio, so here we will denote the gamma by a suffix 

representing parallel polarization right. 
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So, this is 𝜂1 right reflected is the same ok. So, now you will have 2 equations and the unknowns 

that you can solve are only for the ratios, so the ratio is reflected to the incident right. In this case 

comes out to be 

𝛤∥ =
𝐸𝑟0

𝐸𝑖0
=

𝜂1𝐶𝑜𝑠𝜃𝑖 − 𝜂2𝐶𝑜𝑠𝜃𝑡

𝜂1𝐶𝑜𝑠𝜃𝑖 + 𝜂2𝐶𝑜𝑠𝜃𝑡
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Once again you can solve for the other ratio also which would be 𝐸𝑡𝑜  divided by 𝐸𝑖𝑜, and that 

turns out to be 

𝛵∥ =
𝐸𝑡0

𝐸𝑖0
=

2𝜂2𝐶𝑜𝑠𝜃𝑖

𝜂2𝐶𝑜𝑠𝜃𝑡 + 𝜂1𝐶𝑜𝑠𝜃𝑖
 

You do not need to memorize these expressions all right once again for the quizzes either these 

expressions will be given or you will be allowed to bring a formula sheet right, but the 

interpretations are important that is all ok. 

So, now that we have seen the reflection on the transmission coefficient for both the 

polarizations, it’s abundantly clear that there are some commonalities between the two there 

are also some distinctions between the two right. The commonalities if you look at the reflection 

coefficient for the perpendicular and the parallel polarizations, the first thing you notice is that 

the numerator has a minus b form that is there is a negative sign between two terms. Irrespective 

of whether you have perpendicular or parallel polarization all right. 

Which means that it is possible that under some scenario the numerator vanishes the reflection 

coefficient is 0 and the entire wave is actually transmitted all right, so the entire wave is actually 

transmitted and the reflection coefficient is 0 all right ok. 

So, let us take the numerator ok and just equate it to 0 all right and see what is the consequence 

or what could the material configuration be right. So, for gamma perpendicular to be equal to 0 

the only way is the numerator has to become equal to 0 so, we can say that ok it’s a ratio ok. 
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For gamma perpendicular to be equal to 0 the only way is ok ok. Now we already know that 𝜃𝑡 is 

dependent upon 𝜃𝑖 and the way 𝜃𝑡 is dependent upon 𝜃𝑖 is given by Snell's law 



𝑛1𝑆𝑖𝑛𝜃𝑖 = 𝑛2𝑆𝑖𝑛𝜃𝑡  

Which means that for a given material configurations with intrinsic impedance 𝜂1 and 𝜂2 it may 

be possible for us to adjust the angle 𝜃𝑖 in such a way that theta 2 cos 𝜃𝑖 becomes equal to 𝜂1 cos 

𝜃𝑡 and let us say that in an experiment we do not have control over everything the only thing we 

have control over is say the incident angle 𝜃𝑖 all right. 

And so let us say that for a particular angle 𝜃𝑖 if this were to happen what would that 𝜃𝑖 be ok So, 

since this is a special case we just say that a to denote that it is a special case let us say that a 

new variable all right, is equal to 𝜃𝑖 ok theta suffix equal to  𝜃𝑖 . So, this is the special angle at 

which this numerator becomes equal to 0 ok.  

Then a what we can do is we can rewrite this equation as 

𝜂2𝐶𝑜𝑠𝜃𝐵 − 𝜂1𝐶𝑜𝑠𝜃𝑡 = 0 

 

So, directly we can say that a  

𝜃𝐵⊥ = 𝐶𝑜𝑠−1(
𝜂1

𝜂2
𝐶𝑜𝑠𝜃𝑡) 

So, this particular angle is known as Brewster's angle all right. So, this is known as Brewster's 

angle, however, there are some small caveats ok and we will deal with these caveats in a minute 

now ok. 

Now, let us say that I have, I am going to start with Snell's law again so, I am having 2 x 2 variables 

over here, I am having 𝐶𝑜𝑠𝜃𝐵, 𝐶𝑜𝑠𝜃𝑡 so on the right hand side I have 𝜃𝑡, I want everything to be 

in terms of 𝜃𝐵 ok, I want to get rid of this 𝜃𝑡 because 𝜃𝑡 is any way dependent upon 𝜃𝐵see it by 

Snell's law that is it alright. So, you could write this down in terms of a single variable 𝜃𝐵 

everywhere instead of having 𝜃𝑡 on the right side. 
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So, for doing that you could make use of Snell's law you can say that a right. So, we can say that  

𝑛1𝑆𝑖𝑛𝜃𝑖 = 𝑛2𝑆𝑖𝑛𝜃𝑡  

𝑆𝑖𝑛𝜃𝑡 =
𝑛1

𝑛2
𝑆𝑖𝑛𝜃𝑖  

𝐶𝑜𝑠𝜃𝐵 = √1 −
𝑛1

2

𝑛2
2 𝑆𝑖𝑛2𝜃𝐵  

So, I could always do that instead of 𝜃𝑖 it is a special angle I will call it as 𝜃𝐵 and make a substitution 

in the prior case right. 

Now there are also other ways to look into it in more detail in general form the Brewster's angle 

is just this much if you are given enough a you know input and if you are asked to find out the 

Brewster's angle you could find out from the first expression which is 𝐶𝑜𝑠−1(
𝜂1

𝜂2
𝐶𝑜𝑠𝜃𝑖). 
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Because we know that phase constant in a medium 

𝛽1 =
2𝜋

𝜆/𝑛1
 

in that medium so, you could always write this down as free space wavelength divided by n1 right 

remember that when the when the wave travels into a denser medium than vacuum the 

wavelength will become smaller similar to the case with transmission lines where we had see lc 

on one side to be small, lc on the other side was increased and the wave length shrunk the 

velocity also reduced in the simulations right. 

So, similarly the phase constant in a medium is written as 2𝜋/𝜆 in that medium. So, it is 𝜆/𝑛  . 

So, if you were to take  𝛽 2 you will be having 
2𝜋

𝜆0
/𝑛2 so, this gives us some idea that n1 divided 

by n2 can also be written as a ratio of 𝛽1/𝛽2 ok.  

So, this means that in Snell's law ok, 

𝐶𝑜𝑠𝜃𝐵 = √1 −
𝑛1

2

𝑛2
2 𝑆𝑖𝑛2𝜃𝐵  

Now, one of the things a that we will notice over here is a n1 divided by n2 all right can also be 

written in other forms for example, you can write it as a ratio of permittivity and permeability  𝛽 

can also be written as the omega square root of mu\ epsilon right. So, you can always expand 



these components into more and more constituents and try to look at it more deeply there is no 

there is nothing wrong with it right ok ok. 
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Now, if I have written it with 

𝛽1 = 𝜔√𝜇1𝜖1 , 𝛽1 = 𝜔√𝜇1𝜖1 

𝜂2𝐶𝑜𝑠𝜃𝐵 − 𝜂1√1 −
𝛽1

2

𝛽2
2 𝑆𝑖𝑛2𝜃𝐵 = 0 

𝜂1 = √
𝜇1

𝜖1
   ,   𝜂2 = √

𝜇2

𝜖2
     

Then you could substitute that into your expression for finding out the Brewster's angle; it only 

gets more and more complicated when you make a lot of these substitutions ok. But let us go 

back and look at why we are doing all these things ok, the reason why I started with 𝛽 and not 

with n is because simply we remember and to be a square root of epsilon r 𝜇𝑟 In majority of the 

cases it’s only indicative of a relative permittivity and relative to permit permeability and 

permittivity all right. 

So, sometimes people tend to confuse us to what is going on beta, however, has an expression 

which is saying that is 𝜔√𝜇1𝜖1does it have the effect of the vacuum permittivity and your relative 

permittivity vacuum permeability and relative permeability. So, chances of making mistakes 

while doing some calculations are a little lower is what I observed right. 



So, once you have something absolute like this then there are some other inferences that one 

can start drawing for example, if you were to take the original expression where we started with 

numerator of the reflection coefficient is equal to 0 that’s where we started this, and we were to 

substitute all right. So, you will be having 

𝜂2𝐶𝑜𝑠𝜃𝐵 − 𝜂1√1 −
𝛽1

2

𝛽2
2 𝑆𝑖𝑛2𝜃𝐵 = 0 

This is the last expression that I have for cos 𝜃𝑡 is equal to 0, this is what that same expression 

would look like right. So, if you were to remember the previous expression it’s more than enough 

for you to determine what is the Brewster's angle, but we are just trying to see if instead of 

writing with terms of a 𝜂 and 𝜃𝑖 and a 𝜃𝑡Is it possible to draw some more inferences that are all 

right. 

If you do the substitutions and if you wish to solve for 𝜃𝐵 you will get a very large expression ok. 

I will not do the solving part alright I just plugged it into wolfram online and I got a solution for 

𝜃𝐵 which seems to match with the expression that people have been mentioning in the 

textbooks, I will write down the expression I got from wolfram right. 
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So, I got 

𝜃𝐵⊥
= {√

𝜇2

𝜇1

 √
𝜇2𝜖1−𝜇1𝜖2

𝜇2𝜖2−𝜇1𝜖1
} 

This is another expression that you can write for your Brewster's angle, the simplest expression 

is what we had before if you know that you are all set right. 



So, given a problem configuration if you are asked to calculate you know how to calculate all 

right, this is just to see in which cases this Brewster's angle can exist in which cases it cannot exist 

extra ok. Now that we have written this right, we can do the same thing for the other polarization. 

So, for gamma parallel to be equal to 0 we can take the numerator of the expression for the 

reflection coefficient and equate it to 0 right so we can write 𝜂1cos𝜃𝑖 - 𝜂2cos𝜃𝑡 = 0 and then you 

make the same assumptions let us say that an experiment you do not have a control over 

everything, but only the incident angle and let that incident angle which is a special incident angle 

where the reflection coefficient becomes 0 be known as 𝜃𝐵. 

Then you will rewrite as 𝜂1cos𝜃𝐵 - 𝜂2cos𝜃𝑡 = 0 , this implies that 

𝜃𝐵 = 𝐶𝑜𝑠−1(
𝜂2

𝜂1
𝐶𝑜𝑠𝜃𝑡) 

 

This is the simplest expression that you can use to get 𝜃𝐵 for both the polarizations, one of the 

things that we notice here is that because the numerators for the reflection coefficients were 

different for both the polarizations the angle at which the reflection coefficient goes to 0 is also 

slightly different. 

So, the angles at which the reflection coefficient becomes 0 for different polarizations is different 

all right. So, this is also known as Brewster's angle. The only thing is that Brewster's angle is also 

polarization dependent. 

If you have perpendicular polarization you have to use one expression if you have parallel 

polarization you have to use some other expression which means, that when we are talking about 

Brewster's angle we also have to indicate the polarization for which the Brewster's angle is 

calculated all right. 

So, likewise you can say that this is perpendicular this is parallel ok so, Brewster's angle for 

perpendicular polarization, Brewster's angle for parallel polarization this is how it is usually 

expressed ok. Now we can go through the Snell's law make substitutions for 𝜂2 𝜂1, make 

substitutions for 𝜃𝑡 in terms of 𝜃𝐵 all right and you could make substitutions in terms of 𝛽1 𝛽2 

then make it to a 𝜖1 𝜖2 extra it is the same drill over here right  

Except that the angle here, turns out to be slightly different because our starting expression itself 

was different alright so, to indicate that we are dealing with parallel and perpendicular cases so, 

I am just writing a suffix of perpendicular and parallel, turns out that 

𝜃𝐵⊥
= {√

𝜖2

𝜖1
 √

𝜇1𝜖2−𝜇2𝜖1

𝜇2𝜖2−𝜇1𝜖1
} 

 



It is a very big expression. I do not expect you to remember all this right. If you are able to do the 

first case which is this  𝐶𝑜𝑠−1(
𝜂2

𝜂1
𝐶𝑜𝑠𝜃𝑡) extra it is more than enough. 

So, there is a slight difference between these two expressions right, and a one can pay some 

attention to these slight differences all right one of the things that a I have touched upon in the 

past lectures is  𝜇1 𝜇2 being non a you know not the same as vacuum permeability and 

permittivity for I mean permeability. 

So, 𝜇1 and 𝜇2 are permeability all right you can write them as 𝜇0 𝜇𝑟 ok, however, in the majority 

of the materials there are no magnetic properties magnetic materials are rarer than the other 

dielectric materials. So, it is quite possible all right that for majority of the materials that you will 

encounter 𝜇1 and 𝜇2 is equal to 𝜇0 all right. 

In general case this is the expression for your Brewster's angle for perpendicular and parallel 

polarizations in the most expanded form suppose you are not given anything except 𝜇1 𝜇2 you 

will be able to do this all right all right.  

Notice that this expression has got nothing you just need 𝜇1 𝜇2 you will be able to find out the 

expression if you were to go back incident suppose you are transmitted angle is a given to you 

alright then you will be able to find out the Brewster's angle in the other case, but if nothing is 

given you will have to do some arithmetic's, but it is possible to write down the incident angle 

purely in terms of material parameters and arrive at what is the Brewster's angle ok. 

Now this is the final expression, but one could also go one step further and make it a little bit 

simpler for many people, in the sense that the majority of the materials. I am just writing the 

majority of the materials; not all materials have to undergo this. 

So, this is the expression that we have got as final and it’s correct all right, but in case you want 

to make some other inferences which are more common than some other cases right. I can say 

majority of the materials have 𝜇1 = 𝜇2 = 𝜇0 so, that is you do not have any magnetism related 

properties in these materials. 

So, vacuum permeability is the same as the material permeability or  𝜇𝑟 is equal to 1 it’s very 

common for most of the dielectrics, most of the metals also you will find that 𝜇𝑟 is equal to 1 ok 

ok.  

What then ends up happening is if 𝜇1 is equal to 𝜇2 is equal to 𝜇0 you can always go back to the 

final expression that you have substitute for 𝜇1 𝜇2 as 𝜇0 ok, the first thing you will notice is on 

the left hand side over here this ratio will become  

𝜃𝐵⊥
= { √

𝜇0𝜖1−𝜇0𝜖2

𝜇0𝜖2−𝜇0𝜖1
} 

 



Now you can take 𝜇0 common from the numerator and denominator and you will just get a ratio 

which will look like ok, square root of 𝜇2 by 𝜇1 is just 1 all right and then I make a substitute for 

𝜇2 and 𝜇1 to to be 𝜇0 so I can take 𝜇0 outside right. 

𝜃𝐵⊥
= { √

𝜖1 − 𝜖2

𝜖2 − 𝜖1
 

Once again I can take a minus sign all right the ratio has to be equal to minus 1 so, I get tan inverse 

of minus square root of 𝜇0 right ok, tan inverse of square root of minus 𝜇0 is what I would get ok. 

Generally tan inverse a of a square root of minus 𝜇0 means that you do not have a angle that you 

can you know attached to 𝜃𝐵 perpendicular. 

So, tan inverse of square root of minus some quantity means that tan inverse of j something right. 

So, there is no real, angle real angle 𝜃𝐵 which will give you this relationship all right.  

So, people argue that in the case of perpendicular polarization for non magnetic materials, you 

may not have a Brewster's angle ok. So, in this case. So, there is so many conditions in the case 

of perpendicular polarizations, if you have nonmagnetic material on the left hand on the right 

you may not get a 𝜃𝐵 perpendicular because you will end up having tan inverse of square root of 

minus 𝜇0 all right. 

Student: Minus 1. 

Minus 1 all right whatever ok, so it is a.is it 

Student: 𝜇0 is common. 

Mu naught is common in the numerator and the denominator is it not? 

Student: Yeah. 

Ok so, it’s √−1  so, it becomes tan inverse of a j right. So, it becomes tough to find out what this 

𝜃𝐵 perpendicular is. So, in case of planar angles it is not going to be possible. There are some 

other arguments you can say that you can say that the angle is out of plane and all that.  

So, if you have the entire diagram in the plane you can always argue that if you shoot the beam 

out of the plane you will get something else right, but we are not getting into solid angles ok. 

So, it is not possible to find out a real angel 𝜃𝐵 perpendicular so, people tend to say that for 

perpendicular polarization Brewster's angle does not exist ok, but it is under the assumption that 

you have nonmagnetic materials right. Now how about we apply the same condition to the right 

hand side ok. 

So, for 𝜇1 = 𝜇2 = 𝜇0  



𝜃𝐵⊥
= { √

𝜖1

𝜖2
} 

 

So, if you consider majority of the materials to be non magnetic ok, then for a particular 

polarization you may not be able to find out a Brewster's angle, but for a other polarization you 

will be able to find out a Brewster's angle which, means, that for a given material configuration 

that is nonmagnetic. 

The interface will have reflection coefficient being equal to 0 for some component of the electric 

field that is parallel, that is in parallel polarization, but if your incident wave is going to have some 

other polarization it may have some reflection coefficient coming in. 

So the polarization plays a major role at the interface ok, in determining your reflection 

coefficient. This aspect is very different from transmission lines, the in the case of transmission 

lines you strictly add (𝜂2 - 𝜂1) / (𝜂2 + 𝜂1 )or equivalently we wrote it as (𝑧𝑙 − 𝑧0)/(𝑧𝑙 + 𝑧0). 

If you are material properties dictated zl 𝑧0 extra then you are pretty much fixed whatever 

voltage and current waves you are launching will adder to this (𝑧𝑙 − 𝑧0)/(𝑧𝑙 + 𝑧0). But in this 

case merely the material configuration is not enough, you also need to have the polarization 

being aligned in some direction all right. So, it has to be parallel polarization in the case of non 

magnetic materials to have reflection coefficient equal to 0 ok. So, this means that impedance 

matching in the case of electromagnetic waves should also consider polarization ok. 

It is perfectly possible to have no reflection of 1 polarization, but a lot of reflection of the other 

polarization, it is perfectly possible all right. So, that is what it is going towards, so impedance 

matching in the case of electromagnetic waves having oblique incidence on interfaces is not a 

very simple problem ok. 

Now, this has a lot of practical applications. Many of you when you buy eyeglasses ask for some 

anti reflection coatings extra. Essentially what they are trying to do is make sure that you know 

you get a lot of light inside, but you could also look at it as another problem. It say that there 

exists some angle Brewster's angle for the light that is coming to your glasses, you do not want 

any light to be reflected from the glasses directly because it needs to reach your eye ok. 

So, you can say that I do not want reflection, so I want reflection from coating there, you could 

also determine. What could that it could say that 𝜖1 and 𝜇1 correspond to air, 𝜖2 and 𝜇2 are 

corresponding to some material that you are going to be coating. You could calculate a Brewster's 

angle. You can say that for this angle a lot of light is going to be coming in, that is only for 1 

polarization or other polarization. It is not going to be working very easily. 

So, you will need a more complicated you know coating for your glasses all right. So, impedance 

matching in the case of E m waves is not a very easy thing to do all right unless you have very 



good control of the polarization extra. It is a disadvantage in that case, but it is also an advantage 

in some other cases for example, if you are driving all right or if you are outdoors, it seems that 

the polarization of glare ok, coming from natural sunlight it’s very different from the polarization 

of use full information that is also coming from these material. 

So, you will have glare cutting glasses ok or polarizing glasses extra. So, it is also possible that if 

you have reflection coefficient 0 for the useful information to come and reflection coefficient not 

equal to 0 for the glare part it is actually coming in glasses right. So, it could be used in useful 

ways or it can become a disadvantage when you are actually trying to solve problems. So, the 

only thing that I can say at this point is impedance matching in the cases of electromagnetic 

waves is non trivial ok, using just manipulating angles you need to do something else all right. 

So, I think we will stop here one of the reasons why, I mentioned these is because a in the case 

of transmission line impedance matching was trivial all you needed to do was find out z l minus 

𝑧0 by z l plus 𝑧0 and then make sure that you go to the center of the smith chats somehow ok 

here, however, if you go to the center of the smith chart for one polarization you may not be at 

the centre of the smith chart for another polarization. So, it becomes very important to draw 

smith charts for different polarizations. 

And then decompose every incident wave into a parallel and a perpendicular component strictly 

a refill need not be parallel or perpendicular to the plane it can be anywhere in between those 

cases you will decompose it into two and then you will have reflection coefficient for one 

component being some value, the other component being some other value and then you have 

to take the summed up effect. 

So, effectively what we are saying is polarization is a very important property. In the next class 

what we are going to do is account for polarization, when it travels from one medium to another 

medium ok  

So, here we have made an assumption that the E field is perfectly perpendicular, the other cases 

it’s perfectly you know in plane it’s components what if it is in between ok? What happens and 

what happens to say linear polarization circular polarization on the interfaces? What can you 

expect? So, these are something's that we are going to see ok. 

So, for now I will stop. 


