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We will get started right. So, I think we are going to start with ok. We are going to look at Oblique 

Incidence on dielectric dielectric interfaces for this class ok and I am going to divide the page into 

two columns for two different configurations ok.  

So, I will start with the first configuration ok. So, similar to the last lecture where we talked about 

normal incidence ok.  
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 So, we have an axis which is the x axis here, z axis here and to form a right handed triad we had 

a y axis marked in this way. We talked about a specific case where the polarization of the incident 

wave was having an electric field component in the plane of the diagram, and the magnetic field 

was perpendicular to the plane of the diagram.  
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And the transmitted wave, the assumption was that there is no change in any polarization and 

then we calculated what is the value of a reflection and transmission coefficients. And we found 

that it looked exactly the same as what we got in transmission lines except that in transmission 



lines we did not calculate transmission coefficient, we calculated only the reflection coefficient 

right.  

(Refer Slide Time: 02:18) 

 

Nevertheless, the key thing that we saw in the previous lecture also was that the boundary 

conditions for the case of dielectric dielectric interfaces is that the tangential E field and the 

tangential H fields are continuous. Please remember that this is valid only for dielectric dielectric 

interfaces. A for dielectric metal interfaces we will have a separate lecture where we will derive 

the reflection and the transmission coefficients. But the boundary conditions are slightly different 

because it will involve surface currents ok.  
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So, we derived the 𝛤 which looks like 

𝐸𝑡0

𝐸𝑖0
=

2𝜂2

𝜂2 + 𝜂1

= 𝛵 

You can assume this 𝜂2 to be load in the case of transmission line and say that its zl ok 

characteristic impedance and 𝜂1 𝜂1 could be 𝑧0 characteristic impedance of the first transmission 

line and then you will get 

𝑧𝐿 − 𝑧0

𝑧𝐿 + 𝑧0
= 𝛤 

This is what we had seen plus we also calculated another new quantity called 𝛵 all right. The 𝛵 

was the transmission coefficient and it had the form 

2𝜂2

𝜂2 + 𝜂1
= 𝛵 

This is some quantity that we had not calculated before all right.  
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And there was a relationship between the transmission and reflection coefficients ok. And we 

found that 1 + 𝛤 = 𝛵 all right. This means that the transmission coefficient can be greater than 

1 when we are talking about the value of the electric field all right. So, it means that your incident 

electric field can be 1 V/m, the transmitted electric field can always be higher than that, but it 

does not mean that the energy conservation is violated.  

Whenever the electric field goes up in the second medium the magnetic field will proportionally 

go down to make sure that the conservation of power or conservation of energy is held correctly 

in the system, this is what we had seen broadly. And in today's lecture we will create a slightly 

more complicated system, where a wave is going to hit the interface at an angle with respect to 

the discontinuity of the plane of incidence. And this kind of setup is not there in transmission 

lines ok. So, this is a difference ok. So, I am going to mark the axis in the exact same way as we 

did before.  

So, I am going to have the x axis marked vertically, here is my x axis ok. The z axis is what we were 

taking on the horizontal ok and to form the right handed triad you will need to have your y axis 

going out of the paper is the same coordinate system as what we had used in the last class ok.  

Now, there are some small definitions that we will need to look at ok. First of all the term that 

we will call a plane of incidence is ok, it's a very important term plane of incidence ok. So, before 

defining this I will define a couple of things much more clearly ok. So, I am having a medium all 

right on the left hand side the dielectric constant is 𝜖1 on the right side the dielectric constant is  

𝜖2.  

So, its a dielectric dielectric interface and I am also assuming that a  𝜇1 could be equal to  𝜇2 like 

in majority of the cases ok even if it is different does not matter, but there is no sigma coming 



into the picture sigma is 0 in both the sides ok. So, 𝜖1 and 𝜖2, the interface between  𝜖1 and 𝜖2 is 

at z equal to 0.  

So, this point here corresponds to z equal to 0 all right. So, z less than 0 corresponds to 1 dielectric 

with dielectric constant 𝜖1, z greater than 0 corresponds to another dielectric with 𝜖2. And we are 

assuming that these 2 media are semi-infinite which means that on the left hand side this 

medium is extending infinitely and on the right hand side this medium is also extending infinitely.  

The reason for doing that is we want to avoid more interfaces coming into the picture suppose 

you had another material coming in then you would have one more interface and there would 

be a reflected wave from there and all that. So, right now we are taking a very simple case where 

there are 2 semi-infinite dielectric media on the left and the right ok.  

So, the plane of incidence in this case is going to be the x z plane. So, whenever people talk about 

planes of incidence, you have to draw this diagram with the dielectric discontinuity ok and you 

also need to mark some incident reflected, transmitted waves extra.  

So, I will go ahead and draw an incident ray ok. So, the incident ray goes and hits the interface at 

the origin ok, it can get reflected and part of it can get transmitted extra. So, that means, that we 

are going to be having some reflected ray going out like this and we are going to have a 

transmitted ray let us say going like this ok.  

So, in this configuration the plane of incidence is x, z ok and z has the discontinuity in the dielectric 

permittivity ok. So, now, having drawn these rays there are many configurations possible simply 

because our E and H fields are actually vectors all right, they are vector fields. So, directionality 

can come into the picture ok. Now, the arrows that are marked here correspond to the direction 

of the k vector or the direction of propagation more specifically its the direction of your pointing 

vector all right.  

So, in order to satisfy these pointing vectors it is quite possible that you can have multiple 

configurations of E and H, we have already seen that in the case of plane waves. You can orient 

your thumb towards the direction of propagation, but you are free to rotate the other 2 fingers 

all right about the wrist and still you will be able to satisfy the condition of direction of 

propagation.  

But the E field H field configurations can be known rotating about this transversal plane. So, we 

need to put some guidelines and we need to talk about more details ok. So, one of the 

configurations that I am going to draw on the left hand side ok is such that the electric field is out 

of plane, it's pointing out of the paper ok this is one configuration all right.  

So, now I can orient my thumb and I can position my electric field to be going out of the paper 

and I get the direction of the magnetic field to be pointing downwards in the plane of the 

diagram. So, I can now mark the direction of the magnetic field as H. To be clearer I will use some 

suffix. I will say that this is my incident electric field, this is my incident magnetic field. Please 

make a note that the electric field is pointing out of the plane of incidence ok.  



In other words, the electric field here is perpendicular to the plane of incidence ok. E field here 

has only y component ok right, its perpendicular to the plane of incidence and such a 

configuration we call this as perpendicular polarization ok. So, given a problem you should be 

able to identify the plane of incidence, then you should be able to draw an incident wave and 

clearly indicate what polarization you are considering. So, in this case the electric field is pointing 

out of this plane of incidence diagram that you have drawn.  

So, it is perpendicular, so you can call it perpendicular polarization ok. Now, this forms a right 

handed triad and the wave is going and hitting the interface, since we are talking about oblique 

incidence we can start marking some angles ok. Now, we have to mark what is known as the 

angle of incidence ok. The angle of incidence is the angle made by the wave with respect to the 

normal drawn to the interface.  

So, the normal here to the interface is the z axis itself all right. So, we have to mark some angle 

and we will say that this angle is 𝜃 incident or 𝜃𝑖 ok. Now, because 𝜖1 and 𝜖2 are different, you 

are going to be having intrinsic impedance mismatch at this boundary.  

So, that means, that your wave is going to get reflected and part of it is going to be transmitted. 

So, let us start marking the red part which is the reflected ray. Now, we have to make some 

assumptions all right. Now, we will say that in this left hand side we are going to be sure that the 

electric field is always going to remain perpendicular to the plane of incidence right.  

So, we are making an assumption that there is no polarization change all right with respect to the 

directionality of the E field. So, there is no suppose we say that the E field is going to be pointing 

out of the plane of incidence right, the magnetic field will adjust itself to compensate for the 

direction of propagation right.  

So, if that is the case all right we can go ahead and say that my reflected electric field is going to 

have the same characteristics of the incident electric field in terms of direction all right, but now 

the k vector is going in another direction. So, in order to satisfy that we are saying that the 

magnetic field is going to be aligning itself to form a right handed triad.  

So, since the direction is reversed over here the magnetic field has to flip its direction compared 

to the incident. So, we can go ahead and mark a reflected magnetic field looking like that right 

ok. Now, there is another quantity that we need to still mark the angle of reflection all right, I 

think many of us already know that the angle of incidence is going to be equal to the angle of 

reflection. So, you could mark it directly as 𝜃𝑖 ok, 𝜃𝑖 is equal to 𝜃𝑟. So, we just use 1 variable to 

denote the angle of reflection ok.  

Now, proceeding to the transmitted part ok. A, the transmitted part again we are making sure 

that the E field always is in a is perpendicular to the plane of incidence. So, I am going to have E 

transmitted pointing out of the paper magnetic field is simply going to follow a similar form as 

your incidence fields, so that means, it's going to look like this to form the right handed triad ok 

ok.  



Now, there is one more quantity we need to mark here which is 𝜃t and 𝜃t can be different than 

𝜃𝑖 ok. So, we do know that there is something known as Snell's law where 

𝑛1𝑆𝑖𝑛𝜃𝑖 = 𝑛2𝑆𝑖𝑛𝜃𝑡  

So, it is quite possible that 𝜃t is different from 𝜃𝑖. So, if 𝜖2 is different from 𝜖1 𝜃t will be different 

than 𝜃𝑖 and to just indicate that I have marked the green colour with a smaller angle could also 

be a different angle right depending upon the ratio of permittivity extra, we will get to that later 

right.  

So, this is one configuration and in this configuration we refer to this system as oblique incidents 

on a dielectric dielectric interface, but specifically we are talking about perpendicular 

polarization, that means, the E field is always for the transmitted reflected incident it is always 

perpendicular to the plane. Under this scenario we wish to calculate what is the value of the 

reflection and the transmission coefficient ok.  

So, that is the objective of the lecture for this configuration. Now that we have drawn this 

configuration, let me draw the other configuration on the side. So, that we can work out one part 

and then go to the other part and try to mimic the same thing again right. So, I will go ahead and 

draw the axis again ok ok.  

So, I am having the x axis and I am going to be marking an incident ray ok. In this case what we 

are doing is the magnetic field ok is going to be out of plane ok, out of plane of incidence ok. So, 

the plane of incidence is xz. So, I am going to make a mark here and I am going to call this as Hi, 

the direction of the arrow that is going to the interface is the direction of k. So, you can use your 

right hand all right and try to figure out what direction your E field will be. So, the E field in this 

case is pointing up all right. So, I am going to be marking an arrow.  

Let us say that this is my Ei ok, the angle is there an issue error all right there is an error you 

immediately point it out ok before it gets big. So, its  𝜃𝑖 is the angle of incidence again all right. 

Now, again we can have a reflected and transmitted wave. So, I will also mark 𝜖1, 𝜖2 ok, I am 

having the ray going out like this and the assumption we are making is the magnetic field does 

not flip its direction at all.  

So, what happens is you mark the magnetic field in the exact same way. So, this is going to be 

your H r, if this is your Hr the direction of the thumb will point to the direction of propagation 

and your magnetic field is going to look outwards. So, that means that your electric field is going 

to flip its direction.  

So, now it is going to point something like this, ok ok. Once again we mark the angle of reflection 

to be the same as the angle of incidence and then we mark a transmitted ray also yeah. Once 

again the assumption is that the magnetic field remains out of plane and is not flipped extra.  

So, we just mark this to be H transmitted and in order to form the right handed triad with the k 

vector pointing in this direction the E field will look ok. So, just to be clear over here. So, 



sometimes it can become difficult to remember this, E field perpendicular is perpendicular 

incident, E field in the plane is parallel ok because if you say H field perpendicular you may be 

remembering perpendicular for both the cases.  

So, it's easier to remember in terms of the electric field because we define polarization as you 

know a dependence on the electric field and how with respect to time the electric field direction 

is changing. So, this particular case is known as parallel polarization ok. There are also other 

notations that are used widely for example, s and p polarizations, TE and TM polarizations extra.  

But I think I will just stick to perpendicular and parallel because it's easy for me to remember, s 

and p is from some other language I do not remember what s and p usually means right, TE and 

TM, one can say because the transverse part of your electric I mean transverse electric field or 

transverse magnetic field extra that is also one way of remembering. So, you can pick one of 

them, but I am going to stick to perpendicular and parallel for this set, yeah ok.  

Now, once having created these two systems then we have to start doing a few things. The first 

thing that we want to write down is expressions for incident reflected and transmitted waves in 

both these configurations ok. So, we start with the case on the left hand side.  
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So, I am having ok, I am having an incident wave and I am going to write down some expressions 

specifically, I want to write down the expression for the electric and the magnetic fields ok. So, I 

will write down what we had seen before and then build on it ok ok.  

So, I am denoting the electric field incident to be Ei ok, it does have some magnitude and a 

direction all right and it varies with respect to the space right as −𝑗(𝑘𝑖. 𝑟). We had seen that for 



a plane wave that is traveling in an arbitrary direction the way to write down the expression for 

the electric field is 

𝐸 = 𝐸𝑖𝑜𝑒−𝑗𝑘.𝑟  

𝑟 = 𝑥𝑥̂ + 𝑦𝑦̂ + 𝑧𝑧̂ 

So, we will do all of these now systematically, but you need to remember that this is the generic 

expression for the electric field. Now, our objective is to calculate correctly the value of k. Plug it 

into this expression and then start to look at what we can do with it ok. So, from one of the 

previous lectures we will remember that 𝑘𝑖  in an arbitrary direction will have components in the 

x y and z axis ok.  

So, in order to find the dot product between k and r you need to know kx, ky, kz, then only you 

can find out the dot product right. We also saw that the ki is actually 𝛽𝑛̂ ok. In the earlier lectures 

we had said that it's multiplied by the combination of the phase constant pointing in the direction 

of the unit vector along k right. So, if you go back a couple of lectures ok.  
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So, we had written the expression k to be equal to 

𝑘 = 𝛽𝑛̂ = 𝛽(𝐶𝑜𝑠 𝜙𝑥𝑥̂ + 𝐶𝑜𝑠 𝜙𝑦𝑦̂ + 𝐶𝑜𝑠 𝜙𝑧𝑧̂) 

 

 𝛽 times 𝑛̂, where 𝑛̂ is the unit vector in the direction of travel. So, 𝛽 is the phase constant it's 

simply 
2𝜋

𝜆
 
2𝜋

𝜆
. So, now, we know two we can estimate 

2𝜋

𝜆
 provided 𝜆 is given to us in the problem 

all right it's a constant that can be evaluated. You need to get some input in the problem. Which 

means, that now I have to find out what my 𝑛̂ or the unit vector is going to be all right in order 

to find out the expression for the plane wave system that I am doing right.  
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So, I can always say that 𝛽 𝛽 all right for the medium on the left hand side is 𝛽1 or 𝛽1𝑛̂ all right to 

be very clear because permittivity is 𝜖1 and we already know that the phase constant is going to 

be different in different media all right. The velocity is also going to be different in different media 

these are 2 things that we have seen from simulations in the past ok. Which means that now the 

problem is really how I correctly ascertain what my nx, ny, nz components are going to be. These 

are the components of the unit vector ok ok.  

So, now, I go back to my diagram and the direction of travel is given by the arrow on this blue 

colour ray over here, this is the direction of the unit vector 𝑛̂ all right and its magnitude is going 

to be equal to 1 because it's a unit vector in that direction. So, I can take that unit vector, I can 

decompose it into having an x component and a I mean x component and the z component sorry 

because we have drawn a weird axis all right, x component usually we mark it along the 

horizontal, but we have drawn x to be in the perpendicular direction.  

So, all we have to do is the unit vector has to be resolved into a x component and a z component. 

Now, I can see clearly that I can decompose this vector ok by drawing a vector in this direction 

and a vector in this direction, that means, I am having positive z axis and positive x axis all right.  

So, if I go along the positive z and along the positive x if I draw 2 vectors I can decompose my unit 

vector in that direction right. So, now, I have to find this vector horizontal and this perpendicular. 

So, I can use some identities for angles. So, this angle that we have marked is 𝜃𝑖. So, in this triangle 

using the alternate interior angles are supposed to be equal. So, I can mark the angle on the left 

hand side here to be also 𝜃𝑖 ok. Now, I can write down all right sin and cos 𝜃𝑖, nx which is the 

vertical component divided by n is equal to sin 𝜃𝑖 all right. So, we will just write down the 

components of n ok.  



 

𝑛 = [𝑆𝑖𝑛𝜃𝑖 , 𝜃, 𝐶𝑜𝑠𝜃𝑖] 

𝑘 = 𝛽1(𝑆𝑖𝑛𝜃𝑖𝑥̂ + 𝜃𝑦̂ + 𝐶𝑜𝑠𝜃𝑖𝑧̂) 

= 𝛽1𝑆𝑖𝑛𝜃𝑖𝑥̂ + 𝛽1𝐶𝑖𝑛𝜃𝑖𝑧̂ 
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Now, what we can do is we can denote the position vector to be 

𝑟 = 𝑥𝑥̂ + 𝑦𝑦̂ + 𝑧𝑧̂ 

 

We need to find the dot product of ki and r ok.  

So, now I can directly write down the electric field expression is equal to 

𝐸𝑖 = 𝐸𝑖𝑜𝑒−𝑗𝛽1(𝑥𝑆𝑖𝑛𝜃𝑖+𝑧𝐶𝑜𝑠𝜃𝑖) 

So, given a configuration now you should be able to systematically do this and write down the 

expression for a plane wave electric field going in an arbitrary direction towards the interface. 

That part should be clear by now as to how you have to do it right. Now, in order to do this a little 

bit further now, that we have the expression for the incident wave, why don't we try to write 

down the expression for the transmitted and reflected wave. So, I will start with the reflected ok.  
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Now, your reflected wave can be written as say 

𝐸𝑟 = 𝐸𝑟𝑜𝑒−𝑗𝑘𝑟.𝑟 

𝑘𝑟 = 𝛽𝑛̂ 

𝑛 = [𝑆𝑖𝑛𝜃𝑖 , 𝜃, −𝐶𝑜𝑠𝜃𝑖] 

𝑘𝑟 = 𝛽(𝑆𝑖𝑛𝜃𝑖𝑥̂ − 𝐶𝑜𝑠𝜃𝑖𝑧̂) 

Once you have found this the next step is very trivial now all you need to do is write down the 

form for the position vector.  

𝑟 = 𝑥𝑥̂ + 𝑦𝑦̂ + 𝑧𝑧̂ 
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Now I can write down the expression for my reflected electric field right.  

𝐸𝑟 = 𝐸𝑟𝑜𝑒−𝑗𝛽1(𝑥𝑆𝑖𝑛𝜃1−𝑧𝐶𝑜𝑠𝜃𝑖) 
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Now that we are experts with this part we can write down what is going to be the form for the 

electric field for the transmitted. Transmitted field let us say that I call is Et, it's going to look like  

𝐸𝑡 = 𝐸𝑡𝑜𝑒−𝑗𝑘𝑟.𝑟 

𝐸𝑡 = 𝐸𝑡𝑜𝑒−𝑗𝛽2(𝑥𝑆𝑖𝑛𝜃𝑡+𝑧𝐶𝑜𝑠𝜃𝑡) 

Now, we have written the electric field expressions for the incident wave reflected and the 

transmitted wave all right.  
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What we can do is we can make our life a little bit simpler by just saying that look at the incident 

magnetic field is going to follow Ohm's law. Magnitude of it it's going to be 

|𝐻𝑖| =
|𝐸𝑖|

𝜂1

 

So, I can simply say that this is going to be divided by eta that gives me the magnitude directly all 

right I know that its oriented along y direction ok wait which configuration are we seeing oh it's 

in the xz plane sorry ok Hr is simply  

|𝐻𝑟| =
|𝐸𝑟|

𝜂1

 

 

And just to be specific I will just mark this as 𝜂1 for these 2 cases because they are in the same 

medium ok ok.  



If you wanted to write down the detailed magnetic field expressions the procedure is going to be 

exactly the same as what you did for the electric fields ok. You can resolve the components of 

the math only thing is you will have to be careful with the components which component is going 

along the x direction which component is along the z direction extra and you will have to be a 

little careful with your a k vector that is it right.  

But the procedure is exactly the same, there is no big difference here right. Now, once we have 

written these two expressions for example, we have written electric field expressions for the 

incident reflected transmitted wave in detail. Magnetic fields we have just said that using Ohm's 

law magnetic field is going to be equal to electric field divided by characteristic impedance that 

is what we have done so far right.  

Now, what are we interested in? We are interested in finding out the reflection coefficient and 

the transmission coefficients in this configuration right. So, all we need to do now is we need to 

look at the boundary or the interface.  
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So, here the interface is at conveniently z equal to 0 ok. So, the position coordinate with respect 

to z I mean z equal to 0 marks the discontinuity between medium number 1 and medium number 

2. So, at z equal to 0 is the exact interface all right. So, at the interface we need to apply boundary 

conditions and the boundary conditions for dielectric dielectric interfaces is tangential E fields 

are continuous, tangential H fields are also continuous that is it all right.  

So, now what we are going to do is we are going to apply these boundary conditions ok. So, all 

we can say is that the way we have drawn the configuration here is perpendicular to the plane 

of incidence which means that all the electric field is tangential to the interface ok.  



So, the interface is like this and your electric field is like this, so it's all tangential. So, you can 

simply write down that 

𝐸𝑖 + 𝐸𝑟 = 𝐸𝑡 

This is simply because Ei and Er are assumed to not be flipped in directions. So, Ei is pointing 1 

way Er is also pointing in the same way. So, we have added Ei with Er and it has to be equal to 

whatever is being transmitted Et.  

So, this is actually a give should give you some idea that transmission coefficient could be greater 

than incident, I mean transmission coefficient could be greater than 1 and the transmitted 

electric field on the right hand side could be greater than incident electric field right. So, it's not 

a very you know unnatural consequence, we still have to remember that the magnetic field will 

adjust itself if this happens. So, this is one boundary condition ok and for the magnetic field we 

have to take the tangential components and then we have to see that it is continuous. So, we 

have to go back to the diagram ok.  

Now, our Hi is looking like this for the sake of some clarity. What I will do is I will mark another 

Hi here right and I need to take the tangential component. So, it is pointing like this ok. So, it is 

pointing like this: I need to find this component and then I have to mark it for all the 3 rays at the 

boundary and I have to apply the tangential field to the right.  

So, I can use trigonometry to find out the angles ok, I can use trigonometry to find out the angles 

I will not go into too much detail, but I will just write down, it will look like Hi cos 𝜃𝑖. Now, 

remember that for the magnetic field the direction was flipped for the reflected case all right.  

So, you have to be careful you are having 1 vector going like in 1 direction another vector in the 

other direction. So, you have to make 

𝐻𝑖𝐶𝑜𝑠𝜃𝑖 − 𝐻𝑟𝐶𝑜𝑠𝜃𝑖 = 𝐻𝑡𝐶𝑜𝑠𝜃𝑡  

and this is that z equal to 0. So, you can also be more specific saying that at z equal to 0, this 

means that whatever you wrote within your exponential, exponential minus j k dot r all right it is 

at z equal to 0 ok.  

So, this just means that you are having 

𝐸𝑖0 + 𝐸𝑟0 = 𝐸𝑡0 … … … . .1 

𝐸𝑖0

𝜂1

𝐶𝑜𝑠𝜃𝑖 −
𝐸𝑟0

𝜂1

𝐶𝑜𝑠𝜃𝑖 =
𝐸𝑡0

𝜂2

𝐶𝑜𝑠𝜃𝑡 … … .2 

 

 

So, now we have some equations. We have equation number 1, equation number 2, now we 

have to say what is known, what is unknown extra and what we wish to solve for. Let us say that 



𝜂1 and 𝜂2 are known that you are given some value of permittivity permeability for medium 

number 1 permittivity and permeability of medium number 2. You will be able to find out the 

characteristic impedance all right for medium number 1 and medium number 2.  

So, 𝜂1 and 𝜂2 are known ok, 𝐸𝑖0, 𝐸𝑟0, 𝐸𝑡0 extra alright let us say that we want to find out the ratio 

of 𝐸𝑟0 to 𝐸𝑖0, 𝐸𝑡0 to 𝐸𝑖0. So, there are actually 𝐸𝑖0 if you consider it as unknown, 𝐸𝑟0 as unknown 

𝐸𝑡0 as unknown and there are 3 unknowns and we have only 2 equations right. So, we cannot 

solve, so we take the ratio of 𝐸𝑟0 to 𝐸𝑖0, 𝐸𝑡0 to 𝐸𝑖0 all right.  

Student: Cos 𝜃 second equation.  

Oops Cos𝜃𝑖, Cos𝜃𝑖 both the cases. So, this will be Cos𝜃t on the right side ok. So, again 𝜃𝑖 is given 

𝜃t is something that you can calculate from a Snell's law because you have been given 𝜖1, 𝜖2, 𝜇1 

and 𝜇2 right then you can calculate 

𝑛1𝑆𝑖𝑛𝜃𝑖 = 𝑛2𝑆𝑖𝑛𝜃𝑡  

 

then you should be able to calculate 𝜃 t these are known quantities. We wish to find out what is 

𝐸𝑟0 by 𝐸𝑖0 and 𝐸𝑡0 by 𝐸𝑖0 right.  

(Refer Slide Time: 47:23) 

 

So, in other words you can solve these 2 equations simultaneous equations and you can write 

down 𝛤 which is nothing, but 𝐸𝑟0 divided by 𝐸𝑖0 ok. The solution looks like 

𝛤⊥ =
𝐸𝑟0

𝐸𝑖0
=

𝜂2𝐶𝑜𝑠𝜃𝑖 − 𝜂1𝐶𝑜𝑠𝜃𝑡

𝜂2𝐶𝑜𝑠𝜃𝑖 + 𝜂1𝐶𝑜𝑠𝜃𝑡
 



 

It is a big formula and it is a very confusing formula. You will not be expected to remember this 

for your quizzes extra alright if needed. All these formulas can be given or you could make a 

formula sheet. We will work it out, but you do not need to memorize it. To just make a additional 

point that this 𝛤 and 𝛵 that we had previously written before did not have the polarization 

marked all right. From now on we have to be very clear when we are talking about 𝛤 we have to 

say which 𝛤 is it parallel polarization or perpendicular polarization extra has to become clear.  

So, we are talking about 𝛤 suffix a perpendicular symbol to clearly indicate that this we have 

calculated only for a specific E field H field configuration ok. Now, once you have calculated this 

you can also go ahead and try to calculate what the transmission coefficient 𝛵 will look like   

𝛵⊥ =
𝐸𝑡0

𝐸𝑖0
=

2𝜂2𝐶𝑜𝑠𝜃𝑖

𝜂2𝐶𝑜𝑠𝜃𝑖 + 𝜂1𝐶𝑜𝑠𝜃𝑡
 

 

You can already see that the denominators are identical all right and it will look like 

 1 + 𝛤⊥ = 𝛵⊥  

So, there are no issues with that. It looks similar as the case with the normal instance where 1 +

𝛤 = 𝛵 For similar I mean polarization configuration ok. So, given a problem like this you should 

be able to estimate the 𝛤 𝛵 𝛵 and also say for example, if an incident wave electric field is given 

you should be able to figure out what the reflected electric field and the transmitted electric field 

are going to be like ok.  

Specifically, you should be able to tell what is the value of the electric field that is transmitted 

reflected given a configuration with an incident electric field ok ok. Now, we can always go back 

and start filling the right hand side for each of these right and we will do it in the next class and 

then we will start comparing the left and the right hand sides all right and we will also see some 

conditions. If you look at the 𝛤 perpendicular condition over here, the numerator has a negative 

sign already it should trigger some you know thought that is it possible for the numerator to be 

equal to 0 ok.  

What would that be all right, is it possible for the numerator to be positive, is it possible for the 

numerator to be negative all right, when these things would would happen what material 

configuration do you need, what is the relationship between 𝜖1 and 𝜖2 that will give you these 

things alright.  

So, we have to see when 𝛤 will be 0, 𝛤 will be negative, 𝛤 will be positive all right and the same 

thing we have to do for the other polarization case also. And then we will try to see what 

condition corresponds to what and we will give unique names to each of these conditions all 

right. Some of these conditions could be you can say total deflection or you can say Brewster's 

angles something like that all right.  



So, we are going to assign different cases for these different conditions. So, right now we have 

just done in for perpendicular polarization. In the next class in a little swift manner we will write 

this for the parallel polarization now that you are aware of how to do this ok. And then we will 

try to draw inferences from what can happen when a plane wave strikes the interface assuming 

that the E field or the H field do not flip right only one of them flips and the other one remains a 

constant ok. And then we will try to make some inferences from them, yeah I will stop.  


