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We will get started with a quick review of what we had seen yesterday.  

(Refer Slide Time: 00:19)   

 

Started with an elementary circuit which had a battery with the series internal resistance and a 

switch, that can open and close and a load resistance on the other side. A typical low frequency 

circuit diagram where the lengths of the wire connecting the switch to this resistor is not 

mentioned. Suppose, we are connecting interconnection between the switch and the load 

resistance becomes very large. We expect that the signal will not propagate at infinite speeds, 

but have some finite velocity to travel from.  
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And, this is very important especially if you are connecting different ICs on a board or if you are 

connecting different components within an IC all of this becomes important, ok. 

(Refer Slide Time: 01:02) 

 

 

 So, we saw that we could not apply KCL or KVL directly when you had a case where the wire 

length was abnormally large compared to the wavelength of the signal that you are putting in.  



 

So, we had to come up with a technique to apply the low frequency circuit analysis to this 

problem right, and the simplest way is to divide these wires into a number of small uniform 

sections and apply KCL and KVL to each of these sections.  
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And what we were noticing is that we need to account for a few things that happen in this wire.  
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First of all, since the velocity is finite we had to introduce some components that would introduce 

a delay between one side and the other side. And we already know from our low frequency circuit 

analysis that you could use  𝑅𝐿 or  𝑅𝐶 , ok. 

This is a phenomenological model which means that we are considering the self inductance of 

the wire and the capacitance between the forward path and the return path for the current, 

alright. In the case of a board you will be having traces on top of the board and a ground plan at 

the bottom of the board and there is a dielectric in between. So, you will end up having some 

capacitance.  

So, the capacitance is connected this way and the capacitance is not going to be the only 

component connected across because the dielectric is not going to be ideal. You will also have 

some small amount of current trickling between them. So, that is modeled as this. So, this repeats 

everywhere throughout the section of the wire and what we are now doing is known as a 

distributed model of an interconnect or a transmission line. 
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We have made a simple assumption that the series resistance in the parallel conductance is going 

to be 0 alright, this will avoid any potential drops that you will have in this section of the wire, 

alright. We are finally modeling a short circuit anyway so, it may be better to start with the 

lossless approximation. So, we started with resistance and conductance made as 0  
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and we proceeded to get some constituent equations by using KCL and KVL. 

In one of the sections and we found that we were obtaining space derivatives in circuit equations 

this is where we had stopped, alright.  
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Today, we will proceed a little bit further, we will try to understand what these equations mean 

and we will try to see whether we can decouple these equations. So, on the left hand side we are 

having a spatial derivative, on the right hand side you are having a time derivative, but you are 

having a current component on the left side and a voltage component on the right side.  

Decoupling means that you will be having the same quantity on the left and on the right and let 

us see if that gives us any more information, ok. And, we start today's content. So, let me write 

down the telegrapher’s equations just for the sake of completeness. 
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 Ok, these were the two equations that we had got at the end of application of KCL and KVL to 

one section of the transmission line which was lossless, ok. Now, we will take this first equation 

and try to obtain the second derivative with respect to space, right. So, we will try to write down  

𝜕2𝑉

𝜕𝑧2
= −𝑙

𝜕

𝜕𝑧
(
𝜕𝐼

𝜕𝑡
) 
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Here since z and t are independent variables we could switch the order in which we are taking 

the derivatives, right. So, we could go ahead  

𝜕2𝑉

𝜕𝑧2
= −𝑙

𝜕

𝜕𝑧
(
𝜕𝐼

𝜕𝑡
) 

= −𝑙
𝜕

𝜕𝑡
(−𝑐)

𝜕𝑉

𝜕𝑡
 

𝜕2𝑉

𝜕𝑧2
= 𝑙𝑐

𝜕2𝐼

𝜕𝑡2
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Now, the advantage of this equation here is that on the left hand on the right hand side you have 

the same quantity, you just have different derivatives being taken on the left and the right hand 

side. So, we will see what this can mean in the further classes ok. 

So, one of the things that we can start with when you have an equation like this ok, start to 

perform dimensional analysis, that is you start comparing units of quantities on the left and the 

right hand side to see if there are any new meanings that you can derive from this equation.  
𝜕2𝑉

𝜕𝑧2
 

on the left hand side right has the units of 𝑉/𝑚2, ok. 



 

So, let us write down a dimensional analysis, oops is this is 𝑉/𝑚2. And on the right hand side you 

are supposed to be having the same effective units right, duo square v by duo t square will have 

the units of 𝑉/𝑠2, right. Now, this gives us that 

𝑙𝑐 =
1

𝑢2
 

Otherwise u and v will become confusing. So, where u is the velocity, I will just go to the next 

page and has the units of a 𝑚/𝑠. 
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So, this u now corresponds to  

𝑢 =
1

√𝑙𝑐
 

seems to be having the units of velocity or 𝑚/𝑠, we would not have thought about it in the first 

class. Because, l would have been described in henries per meter and capacitance would have 

been in  F/m and 
1

√𝑙𝑐
 is turning out to be having a unit of velocity which is in 𝑚/𝑠. 

Now, there are some questions that we can ask using this dimensional analysis, right. In the class 

yesterday we had plugged in R is equal to 0 and g is equal to 0 and some questions would have 

come into the mind why do not we plug l equal to 0 and c equal to 0, right. If we were to do that 

the way we have built this argument it would appear that if you did not have any inductance per 

unit length any capacitance per unit length you will end up having a velocity that is infinite which 



 

is a counter argument for the exact point that we are trying to state that the signals cannot travel 

at infinite velocity, ok. 

So, this components l and c are trying to not only tell you that the velocity is going to be finite ok, 

they also give you some insight as to how you can model the signal propagation by neglecting 

the resistance, but you will still not be able to avoid some circuit passives like inductance and 

capacitance is coming in, ok.  

So, though you can neglect your resistance and cap conductance, l and c will play a dominant role 

in determining how fast your signal is going to be traveling according to this argument. Now, 

since we did a dimensional analysis for this particular equation alright, a similar thing can also be 

done for the current which can be decoupled.  
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So, you will have an equation for the current that is going to be decoupled using the exact similar 

steps, right. So, we will be having 

𝜕2𝐼

𝜕𝑧2
=

1

𝑢2

𝜕2𝐼

𝜕𝑡2
 

 

Now, these two are second order partial differential equations alright and one can start looking 

at general solutions to these partial differential equations and start building analytical solutions 

to these equations and trying to derive meaning from it. In this course we will be trying to do two 



 

things ok In my experience I have found that the students have difficulty in understanding general 

solutions to partial differential equations, alright. 

At the end they do not have an understanding why it is a general solution, why can they not be 

some other solution? What is exactly a boundary condition and how do we determine the value 

of the constants? All these questions start to come to mind. So, we are going to use two 

approaches.  

We are going to go for analytical solutions of these equations, but we are going to back it up with 

some other approach where we are going to use a computer to do this work for us without 

plugging in any analytical solution. And, trying to see what the solutions are going to look like and 

whether it reinforces what you will be trying to learn in the analytical approach ok. 

So, these two equations are usually called the wave equations ok and the if you take the voltage 

equation over here. The voltage wave equation we can write down the general solution to be a 

function of position and time ok it is going to look like 

𝑉(𝑧, 𝑡) = 𝑓+ (𝑡 −
𝑧

𝑢
) + 𝑓−(𝑡 +

𝑧

𝑢
) 

 So, the general solution looks like 

𝑓+ (𝑡 −
𝑧

𝑢
) 

and many students have difficulty in following this general solution and what their implications 

are, ok. 

So, what we will do is we will try to go analytically and in the classes coming in future what we 

will be trying to do is without plugging in these general solutions into a computer can we make 

similar meaning of what we had done in the analytical part is the part that we are going to do in 

you. So, if somebody asks how do you know that this is the general solution, the general answer 

that is given is take this solution substitute it in this equation, try to find the left hand side, try to 

see the light right hand side and see if they are equal if they are equal you know that it is the 

general solution. 

So, in this case we can take the first term alone right ok and we can plug this into the voltage 

equation, and see what left hand side and right hand side are coming to be this is just a refresher 

of some change of variables techniques that you may have forgotten after your undergraduate, 

alright. So, we are just getting warmed up. So, I will do this part alright.  
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So, we are having v of z comma t is assumed to be some function of t minus z by u, right. So, then 

we can find out the first derivative with respect to space for the left hand side. So, we can say  

𝜕𝑉

𝜕𝑧
=

𝜕

𝜕𝑧
[𝑓+ (𝑡 −

𝑧

𝑢
)] 

Alright and we can use a change of variables over here.  
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You can say that let  

𝑡 −
𝑧

𝑢
= 𝑠 

𝜕𝑠

𝜕𝑧
= −

1

𝑢
 

𝜕𝑉

𝜕𝑧
=

𝜕

𝜕𝑡
(𝑓+(𝑠)) 

=
𝜕

𝜕𝑠
𝑓+(𝑠)

𝜕𝑠

𝜕𝑧
 

= −
1

𝑢

𝜕

𝜕𝑠
𝑓+(𝑠) 

The left hand side in our equation had a second order derivative which means  that  
𝜕2𝑉

𝜕𝑧2 is what 

we need, right. 
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 So, that is going to be 

𝜕2𝑉

𝜕𝑧2
=

𝜕

𝜕𝑧
(−

1

𝑢

𝜕

𝜕𝑠
𝑓+(𝑠)) 



 

= −
1

𝑢

𝜕

𝜕𝑧
(

𝜕

𝜕𝑠
𝑓+(𝑠)) 

= −
1

𝑢

𝜕2

𝜕𝑠2
𝑓+(𝑠)

𝜕𝑠

𝜕𝑧
 

=
1

𝑢2

𝜕2

𝜕𝑠2
𝑓+(𝑠) 

  

Now, f is simply a function of s alright there is no other independent variable involved after you 

have made a change of variable. So, this partial derivatives can be converted to an ordinary 

derivative, you do not need to have a partial derivative over there because there is just one 

independent variable for your 𝑓+ function. 

𝜕2𝑉

𝜕𝑧2
=

1

𝑢2

𝑑2

𝑑𝑠2
𝑓+(𝑠) 

 

This is the left hand side of the equation, assuming a part of the general solution right and we 

can go to the right hand side. The right hand side was right, we can start with the right hand side 

of the voltage wave equation it was 
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1

𝑢2

𝜕2𝑉

𝜕𝑡2
=

1

𝑢2

𝑑2

𝑑𝑡2
𝑓+(𝑠) 

 



 

So, in this case we can do the exact same change of variables technique, right. 

𝑠 = 𝑡 −
𝑧

𝑢
 

 So, here we will be trying to find out 1 by u square duo square by duo t square of, right. So, now, 

we can go ahead and try to find out what the derivative with respect to time is going to be. So, 

we have 

𝜕𝑠

𝜕𝑡
= 1 

So, we will be having RHS has 

=
1

𝑢2

𝑑2

𝑑𝑡2
𝑓+(𝑠) 

=
1

𝑢2

𝜕2

𝜕𝑠2
𝑓+(𝑠) 

=
1

𝑢2

𝜕

𝜕𝑡
(

𝜕

𝜕𝑡
𝑓+(𝑠)) 
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 Using the change of variables, you will write in the similar way that we had done for the left hand 

side duo s by duo t fortunately is equal to 1, right. So, we can cross this term out and mark it as 



 

1 right, now we need to find the second derivative right and we use the same process once again, 

right.  

=
1

𝑢2

𝜕

𝜕𝑡
(

𝜕

𝜕𝑡
𝑓+(𝑠)

𝜕𝑠

𝜕𝑡
) 

 

 

The partial derivative can be replaced with an ordinary derivative and then when we look at the 

LHS and the RHS they are identical. So, it is definitely a solution to the equation.  

One can also go ahead and plug the other part and try to see whether it is going to be a solution 

to this equation, but I will leave that to you as homework you can do out of your own curiosity.  
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You can always take voltage to be 𝑓−(𝑡 +
𝑧

𝑢
). And the general solution also says that a linear 

combination of these two will also work out as solutions to your partial differential equation ok, 

having done this, ok. Let us have a look at what the solution actually meant, ok. 
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Let us take a scenario where you are representing your voltage which is a function of position 

and time to be 𝑓+(𝑡 −
𝑧

𝑢
) right, and this 

𝑡 −
𝑧

𝑢
= 𝑠 

Now, let us assume that the velocity of the signal that we are going to be having in the line 

dictated by l and c of the wires that we are going to be choosing to build your transmission line, 

let us say it is 1 m/s, ok.  

So, wild assumption, but let us make that assumption to just understand this solution, right. Let 

u be 1 m/s ok and let us say that the moment you have switched on the battery and you have 

connected it to the transmission line. You are marking some spatial coordinate on your 

transmission line and along the position is going to be z, ok.  

Let us say that at some instant of time ok, let us say that at t equal to 1 second; let us say that at 

t equal to 1 second the position is going to be let us say 0 meters. This is the place where the 

peak of your voltage is at the time you are measuring, right. 

So, you are taking the transmission line and you have switched it on and after 1 second you are 

seeing that the voltage has come to z equal to 0 according to you right from there you want to 

measure what is going to happen. And one of the ways to do this is we can say that at a later 

time, right at t equal to 2 seconds where would this voltage be would it have traveled along the 

transmission line to the right or to the left, if it has traveled to the right or to the left how much 

it has traveled? That is the question, right. 



 

So, we can merely substitute t equal to 2 seconds over here, right. So, you can say that t is equal 

to 2 seconds; so, you will have 𝑡 −
𝑧

𝑢
 to be fixed u is fixed over here, right. So, we can say that 2 

minus z by 1 right, in the original case you should have calculated what is this 𝑡 −
𝑧

𝑢
 going to be, 

right. So, for this choice of u equal to 1 m/s s is going to be equal to 1 minus 0 by 1 just going to 

be equal to 1 and since this voltage is a function of this quantity assuming s to be constant, right. 

So, we have to say that this is also going to be equal to s right, that is the definition of s, s is going 

to be t minus z by u at all instances of time at all positions for a given velocity 1 m/s. Then what 

happens is you will be having z is equal to 2 minus s sorry, that is equal to 2 minus 1 that is the 

position 1 meter, ok. So, when we took this solution part which was 

𝑉(𝑧, 𝑡) = 𝑓+ (𝑡 −
𝑧

𝑢
) 

 

What we are seeing is that as time increases, ok as time increases from 1 second to 2 second the 

position at which the voltage was is actually traveling to the right side of your z axis, alright. And 

if we mark the source to be z equal to 0 and the load to be z equal to some length l, it is actually 

going towards the source of the load all right. So, this kind of a solution we call it as a forward 

traveling wave or a forward voltage in this particular case, which means that the other solution 

part that you had is going to be known as a backward travelling or a backward voltage wave. 

And the general solution is telling, you that at any given space at any given time you are going to 

be actually having a superposition of a voltage that is going forward, and also a voltage that is 

going backward which is a very very weird solution that we are getting which would not 

conventionally happen in low frequency circuits and understanding this takes a little bit more 

time, alright. One can always argue where is this backward voltage coming from if your battery 

is positioned on one side and your load resistor is on the other side, alright. 

Even worse a question can be asked that if your transmission line is going to be infinitely long 

then it would never reach the end and then actually come back would you have a backward 

traveling wave or not, ok. So, there are many solutions which are possible for an infinitely long 

transmission line there is no question of a backward traveling way, because the wave has to travel 

to the end and then something has to happen and then the backward wave has to be created 

and you will have to measure a superposition of this forward and a backward wave.  

So, when we talk about an infinitely long transmission line, we usually mean that there is no 

backward traveling wave at all there is only a forward traveling wave ok, but in practice many of 

the systems that we put together do not have infinite length. Also there is a voltage wave that 

goes from your source to the load, but we already know that from circuit analysis you have 

something known as maximum power transfer theorem which says that maximum amount of 

power can be transferred to the load only if there are impedance matching or resistance 

matching conditions.  



 

If it is not there then you will not be transferring maximum power, which also means that the 

remaining power will have to come back through your transmission line. And so, when we talk 

about a solution having a forward and a backward wave usually it means that it is a finite length 

transmission line and the impedance may not be matched at the load end. So, you are having 

some kind of a reflection that is happening at the load end which creates the backward wave. So, 

for all these classes we are going to be assuming that we will start with the forward wave 

provided that there is an impedance match or an infinitely long transmission line on the other 

end, you will have no backward wave. 

But, in realistic conditions you are going to have finite length transmission lines with terminations 

or load resistors which are not going to be matched in some aspects. Then, it triggers a backward 

wave and at any given point of time you will be measuring the sum of the forward and the 

backward wave, ok. What that means, in terms of system design is something electrical engineers 

will need to worry about all right usually when we are designing transmission lines cables or you 

know tracers to carry some amount of voltage. 

We have a safe value of voltage and we say that this is the rated voltage that your transmission 

line can carry. In low frequency circuit analysis, most of the time we talk about only this forward 

voltage alright we try we talk about the transfer from source to load, we do not talk much about 

what happens when it is getting reflected back, but here it is very critical.  

So, this means that we have to design in such a way that the entire voltage which is traveling 

from source to sink, actually has a possibility to get reflected back. And then, travel towards the 

source backwards while the source is actually supplying some constant voltage. So, it means that 

at any given point in your wire there is a good possibility that you may end up with double the 

voltage, ok. This means that you will have to design the insulation between the top and the 

bottom layers of your PCB to be able to not break down with that voltage, alright and the heat 

dissipation capacities of your lines have to be determined based upon these things, ok.  

It is also quite possible that the voltage that is traveling forward gets reflected at the load end 

and travels back, but it has the opposite sign. It is quite possible that you are actually sending a 

voltage pulse from source to sink, but if you are using a multimeter or some other technique to 

measure what is the voltage across the transmission line at a given position. It is not uncommon 

for you to read a 0 because the voltage that is traveling forward may have got inverted in sine 

and actually traveling backward, alright.  

So, the conditions that dictate whether the voltage wave is going to travel forward only or it is 

going to travel backward, alright. If the entire thing is going to travel backward if the backward 

voltage is going to have the same sign as the forward voltage or inverted sign are all governed by 

what are known as boundary conditions and we need to understand these boundary conditions 

very well, ok. 

Now, in order to understand the boundary conditions, the best way is to actually have a computer 

simulation working for this which we will be building, ok and try to use different kinds of 



 

conditions on the load end and observe what happens, ok. In order for us to do this there is going 

to be some fundamentals that we will have to revisit. So, we will start with that now and we will 

go over it in the next class, and in the following class the aim is to be able to build a simple 

program that will model propagation in a transmission line, ok.  
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So, just to go ahead a little bit with this.  

One can always ask a question that given that your  

𝑉(𝑧, 𝑡) = 𝑓+ (𝑡 −
𝑧

𝑢
) 

One can always try to find out what the current is going to be right. So, can always ask if the 

voltage is going to be of this form what will be the current in your transmission line ok this can 

be found out by the equation that we have which is coupling the current to the voltage. So, you 

have 

𝜕𝑉

𝜕𝑧
= −𝑙

𝜕𝐼

𝜕𝑡
 

So, you can always use that equation and arrive at the current, and the current looks like 

𝐼(𝑧, 𝑡) =
1

𝑙𝑢
𝑓+ (𝑡 −

𝑧

𝑢
) 

 

So, this is coming from  



 

𝜕𝑉

𝜕𝑧
= −𝑙

𝜕𝐼

𝜕𝑡
 

 

Now, once you have an equation it is very easy to do a dimensional analysis of the left and the 

right hand side, ok.  

Now, if you have a look at this the left hand side I of z comma t it is going to be off the form of 

the amperes alright which means that on the right hand side you need to expect amperes. We 

already know that 𝑓+ (𝑡 −
𝑧

𝑢
) is the form for voltage. We already know what ohms law is going 

to be; so, lu needs to have the units of resistance, ok. So, we will write down, ok.  

We already saw that the velocity is going to be 

𝑢 =
1

√𝑙𝑐
 

𝑙𝑢 = 𝑙
1

√𝑙𝑐
= √

𝑙

𝑐
   𝑜ℎ𝑚𝑠 

It is a very very peculiar result that we will not see conventional low frequencies circuit analysis, 

right. Here, in the transmission line seems like square root of impedance, means inductance per 

unit length divided by the capacitance per unit length is actually having the unit of ohms which is 

a resistance, ok. 

So, it gets a little confusing why you are having some passive elements which do not actually 

dissipate any power to look like resistance, ok. So, some results are very very counterintuitive 

that is why we are going over it step by step. Now, if you also have a look at this lu and say that 

it is 

𝑙𝑢 = √
𝑙

𝑐
    

and the unit is ohms we immediately know that for a given geometry of the transmission line.  

Say, if it is a PCB trace with a ground plan at the bottom or if it is some kind of a 2 wire 

transmission line depending on the geometry, you are going to be having some inductance per 

unit length, some capacitance per unit length. Suppose you have made a choice of the 

transmission line which has a specific l and specific c, ok. 

Then it is somewhat of a characteristic of that transmission line to exhibit a resistance even if it 

is lossless, ok. So, this quantity to distinguish it from conventional resistance in low frequency 

circuit's people call it as characteristic resistance and it is usually represented by 𝑅𝑐 to distinguish 

it from conventional bulk resistors, right. 
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So, when people talk about characteristic resistance it means that they are talking about √
𝑙

𝑐
  for 

a transmission line. So, now your circuit diagram is going to look a little bit more complicated 

than before, right. So, if we visit our circuit diagram for the simple case, we will need to start 

adding quantities to it, alright. In order to say that this is a transmission line you will have to add 

what is l equal to, alright. 
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So, l would be equal to some x henrys per meter, c is equal to y F/m you will say that velocity. So, 

z 𝑚/𝑠 can also say characteristic resistance some a ohms, alright. 

So, previously in your low frequency circuits you did not mark quantities for a short circuit 

connecting a source and a load, but now you will have to start putting in quantities to represent 

that it is a really long line that is connecting the source and the sink. And to signify that in your 

circuit diagram you will start marking some quantities, you could give l, c, u, R. And, in many cases 

since we will talk about some finite transmission lines they will also mark the length of the 

transmission line over here, ok.  

So, these are some subtle ways of telling that you are not dealing with a simple low frequency 

circuit, but you are actually dealing with the high frequency transmission line and you will have 

to take into account all these parameters. ok. To summarize what we are seeing now, from the 

telegrapher’s equations it is possible to decouple the voltage and the current and we can write 

down wave equations for the voltage and current. At dimensional analysis of the left and the 

right hand side tells you that the velocity is given by 
1

√𝑙𝑐
, right.  

And the general solution looks like 

𝑉(𝑧, 𝑡) = 𝑓+ (𝑡 −
𝑧

𝑢
) + 𝑓−(𝑡 +

𝑧

𝑢
) 

One could substitute some values of t and u and try to find out z as it changes with respect to 

time and you will find that for 𝑓+ (𝑡 −
𝑧

𝑢
). It will appear to be going forward from source to sink, 

and for 𝑓−(𝑡 +
𝑧

𝑢
) will appear to go from load back to the source, ok. 
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So, correspondingly we would call these as forward and backward voltage waves. Now, in order 

to prove that these general solutions are valid, one approach is to simply substitute them in the 

second order partial differential equation that we have obtained using just the wave equation. 

And by using a change of variables you will be able to show that LHS is equal to RHS and; that 

means that it is in fact a valid solution.  

There is some example over here which we have seen to prove that actually z changes with 

respect to time and it is changing from source to load for a forward wave the same thing can be 

done for a backward wave. What is also unusual is for a given voltage of this form 𝑓+ (𝑡 −
𝑧

𝑢
), 

the current looks like 

𝐼(𝑧, 𝑡) =
1

𝑙𝑢
𝑓+ (𝑡 −

𝑧

𝑢
) 

according to ohm's law the unit has to be that of resistance, and this resistance is also given by 

√
𝑙

𝑐
. To distinguish this resistance from bulk resistors that we connect in low frequency circuits 

people call this as characteristic resistance. It depends upon the geometry, the material that you 

choose for your transmission line and for a given transmission line this can be some fixed 

quantity, ok. 

So, we will stop here for the next class. I want to now go over some absolute basics for solving 

partial differential equations using computers. Now, you have seen an analytical solution, 



 

substitution and LHS is equal to RHS, but in order to convince ourselves and visualize more 

correctly, it is very important that we take a completely different approach.  

So, the next class I will be starting with basic maths that will be allowing us to use a computer to 

program and find out solutions to partial differential equations, ok. So, I will stop here and try to 

talk to the TAS if you need help in installing octave. So, I expect that you will be installing octave 

on your laptops and I will tell you one class ahead whether you have to bring your laptops or not.  

And, the way we will be doing these exercises I will be coding in octave in front of you and I expect 

you to follow, ok. And at home you can go back deliberately tweak the code, make intentional 

mistakes and try to see what happens, alright and that way I think your intuition will be building 

up faster than just with analytical solutions, ok.  

I will stop here.  


