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Lecture – 19 

Electromagnetic Waves in a Conductive Medium 
  

We will get started right. So, the last aspect that we saw was polarization, today we are going to 

just see how to start incorporating the effect of conduction current density specifically 

conductivity and the presence of free charges in the medium. The assumption thus far has been 

that we have medium free from the charges all right and now we are going to incorporate that 

part. The analogous part in the transmission line is introducing resistance and conductance in the 

equivalent circuit for the transmission line section. 

However, the details are slightly different because here we have both conduction and 

displacement current densities. So, the interpretations and the number of cases are slightly 

different, but the analogy is exactly the same as what we saw in transition a, transmission lines 

ok.  
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So, in order to start with this ok I am going to rewrite the two curl equations for now right ok. I 

am going to start with the 𝛻 × 𝐸 and in the prior sessions we have written them in time domain 

ok. 



Now, along with the introduction of losses, I want to introduce the effect of frequency because 

we know already that in the case of transmission line, we dealt with  𝑗𝜔𝑙 and  𝑗𝜔𝑐 unless you 

introduce the frequency, you will not be able to extract the correct value of inductive reactance 

and capacitive reactance. Similarly, here we want to have the effect of frequency specifically we 

want to analyze what a material medium will do in general at high frequencies how do they 

behave at low frequencies how do they behave. 

So, we have to introduce the frequency ok. So,  

𝛻 × 𝐸 = −𝑗𝜔𝜇0𝜇𝑟𝐻 

The assumption here is electric field and the magnetic field are time harmonic all right, they are 

periodic and the expression will be 𝐸0𝑒𝑗𝜔𝑡 and 𝐻0𝑒𝑗𝜔𝑡 ok. So, when you take a derivative 

of𝐻0𝑒𝑗𝜔𝑡 you will get 𝑗𝜔𝐻0𝑒𝑗𝜔𝑡t. 

So, we have just marked H0 here again this part is exactly same as what we did with transmission 

lines there we would have had a voltage which was a sinusoid specifically we took a cosine and 

then we will take a real part of  𝑒𝑗𝜔𝑡. So, the same thing is being done here right. So, again 𝛻 × 𝐻  

previously we had neglected conduction current density now we are starting to incorporate the 

conduction current density also right. So, this would mean you have a conduction current density 

J right. 

𝛻 × 𝐻 = 𝜎𝐸 + 𝑗𝜔𝜖0𝜖𝑟𝐸 

𝛻 × 𝐻 = (𝜎 + 𝑗𝜔𝜖0𝜖𝑟)𝐸 

So, this was 
𝜕𝐷

𝜕𝑡
 all right and assuming that your medium is isotropic all right I mean isotropic then 

you will have  𝜖0 𝜖𝑟 𝜖𝑟 coming into the picture and then you are also assuming that its frequency 

independent for the 𝜖𝑟 value ok. The frequency dependence that we are interested in is using 

the 𝜔 and assuming that even if 𝜖𝑟 and 𝜖0 are going to be fixed. 

They are going to be fixed right and if 𝜎 is going to be fixed thus 𝜔 play a big role in determining 

whether a material will behave like conductor or a dielectric this is the broad question and we 

are going to look only at the two curl equations right. So, we can begin this analysis by saying 

that, if the medium has a conductivity right and we represent conductivity with 𝜎 ok. We can 

write down Ohm's law for the conduction current density. You can say that the conduction 

current density which is in A/m right it's going to be 

𝐽 = 𝜎𝐸 

So, this is just Ohm's law unit of electric field volts per meter all right. So, correspondingly on the 

left hand side I have included a conduction current density. So, this means that the first equation 

does not change all right because we did not have any conduction current density related term 

over there, but the second equation 𝛻 × 𝐻 we can expand J in terms of 𝜎 and E all right. So, we 



can substitute 𝜎 E instead of J in 𝛻 × 𝐻 equation. So, we can start with 𝛻 × 𝐻 ok you can write 

this down as 

𝛻 × 𝐻 = 𝜎𝐸 + 𝑗𝜔𝜖0𝜖𝑟𝐸 

So, you can take the constants out you can say that  

You can go one step further and a, we can try to rearrange the terms inside the bracket all right 

and try to see if we can divide this into some a, real part imaginary part extra all right. Already 

we have a 𝜎 term, which is not dependent on the frequencies what it looks like and then we have 

a 𝑗𝜔𝜖0𝜖𝑟 term suppose we rearrange all right.  
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And we do some distribution of terms then can we make a different physical interpretation right. 

So, what we can do is we can rewrite this as j omega ok 𝜖0 and then you can rewrite this as 

𝛻 × 𝐻 = 𝑗𝜔𝜖0 (𝜖𝑟 − 𝑗
𝜎

𝜔𝜖0
) 𝑅 

is the same thing all right where we have taken some common terms out and we have rewritten 

the same expression, the idea is very simple. If you look at the original 𝛻 × 𝐻 equation we had j 

omega 𝜖0 𝜖𝑟 E and you added a j. 

Suppose I rewrite this down as j𝜔𝜖0 some 𝜇 quantity times E, it will resemble the original equation 

that we wrote for vacuum also right. It will resemble, but the interpretation is going to be 

different. 

So, what you are trying to say here is the term in the bracket right we can create a new constant 

or we can create a new variable name right and call this as 𝜖𝑟𝑐. c means complex all right. So, 



previously we had j𝜔𝜖0𝜖𝑟𝐸, now we have created a new term, it has a real part and an imaginary 

part. And we call this as 𝜖𝑟𝑐 meaning that we are saying that let us assume that the permittivity 

relative permittivity if it is to be a complex number, then we can account for the conduction 

current density also right. Then what happens is the way you write the equation becomes similar 

to the way you were writing prior to inclusion of j right. 

So, you can write this as 

𝛻 × 𝐻 = 𝑗𝜔𝜖0𝜖𝑟𝑐 

 

It's just a simpler way to write the curl equation it resembles the original equation that we wrote 

except that we have suffixed c for the subscript of 𝜖𝑟 right. So, now, this term needs more 

attention right. So, this term needs more attention previously it was only j omega 𝜖0 𝜖𝑟 all right 

now it is 𝜖𝑟𝑐That means, we have created some new term and we have to look into it in detail. 

That is it right. 

So, we use this constant or variable right, this a, case its known as relative permittivity of a 

conductive medium, you can just say that relative permittivity of a conductive medium. 

Previously we just had relative permittivity all right now we are adding something to specify that, 

it could be a conductive medium if it does have conduction current density present ok. 
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Once again the 𝜖𝑟𝑐 is also known as a complex permittivity, in some text or complex dielectric 

constant all right. Complex permittivity is easier, complex dielectric constant is kind of weird 

because you are talking about a constant related to dielectric, but you are saying it is complex 

and you are including some conductivity, it may be confusing for a few people. So, you can just 

call it complex permittivity. It includes both the displacement and conduction quantities ok. 
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So, 𝜖𝑟𝑐 the first thing that we note is let us write down this expression, it has the real part, it has 

an imaginary part ok. One of the things that we notice here is a, even if you assume 𝜖𝑟 to be fixed 

ok all right. 

Even if you assume 𝜖𝑟 to be fixed that is the real part is fixed even if you start with some number 

say 1 and if you start with non zero 𝜎 and keep it fixed you can say it's also equal to 1 all right. 𝜖0 

is the constant say 8.854 ∗ 10−12 right. 

But depending on the frequency, 𝜖𝑟𝑐 can change right. The first thing that we notice here is even 

if you keep the relative permittivity conduction a, and you're a relative I mean absolute 

permittivity of the vacuum to be fixed, depending upon the frequency your complex permittivity 

can change all right. The only way you can remove any frequency dependence in such kind of 

media is by plugging 𝜎 equal to 0 correct. So, in a pure dielectric medium its possible to do that 

right over a wide range of frequencies, but at a conducting medium 𝜖𝑟𝑐 depends on frequency. 

So, this is the first thing that we have to deduce no matter what you do it's going to be complex 

and it is going to be say frequency dependent ok. One also can say that the term J = 𝜎E right is a, 



characteristic of a conductor ok its a characteristic of an electric conductor and 𝜖0𝜖𝑟E is a 

characteristic of a dielectric ok. 

So, there is some term corresponding to characteristics of a conductor, there is some term 

corresponding to the characteristics of a dielectric in the most generic case where you write down 

the complex permittivity ok. Now then the question is is the material I am sorry usually I turn it 

off ok. 

(Refer Slide Time: 13:24) 

 

 

So, then the question becomes could we take the ratio of one quantity to another to determine 

whether the metal a material is behaving more like a conductor or a dielectric right. So, we can 

say that conduction current density divided by displacement current density supposes it is much 

greater than 1 ok. Suppose the conduction current density divided by the displacement current 

density is much greater than 1 or equivalently 𝜎 divided by omega 𝜖0 𝜖𝑟 is much greater than 1 

we call such materials as good conductors ok. 

So,  

𝜎

𝜔𝜖0𝜖𝑟
≫ 1 

we call it as a good conductor all right. Now there is a small detail that we have to notice over 

here. It's not a very big thing, but there is a small detail. 𝜎 greater than 1 does not automatically 

qualify for being a good conductor in these cases, you have to take 𝜎/𝜔𝜖0𝜖𝑟 and that has to be 

much greater than 1 ok. 



So, the ratio is more important all right. For example, one can always say that if you keep on 

increasing, the frequency of operation ok your denominator will keep on increasing invariably 

you will start with fixed value of 𝜎 and the ratio will be going towards 1 and then less than 1 extra. 

So, it depends on the frequency and looking at this expression here, we can say that, there is a 

good chance that at very low frequencies, a material will be a very very good conductor, but at 

higher frequencies, the same material may actually behave like a dielectric ok. So, we can also 

write down if 𝜎/𝜔𝜖0𝜖𝑟 << 1, you will call this as a good dielectric ok. So, the ratio is very much 

greater than 1 its a conductor, ratio is very much less than 1 you can call it a dielectric. 

So, it means that if you start with fixed values of 𝜎 fixed value of 𝜖𝑟 and as you change the 

frequency, it is inevitable that at low frequencies you will observe that the material seems to be 

having a large amount of conduction current all right compared to the displacement current 

density. But at very high frequencies the material will be more or less dielectric this is the way it 

is all right.  

Now we notice that the ratio goes between very much greater than 1 to very much less than 1 

which means that has increased the frequency, the material has to pass through a frequency 

where both these quantities are nearly equal because you cannot go from one to the other 

without passing through that equality ok. 
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So, then you can have a case were 𝜎/𝜔𝜖0𝜖𝑟, see in the order of 1 right ok. So, there will exist a 

frequency for a material where you cannot figure out whether it is a dielectric or whether it is a 

conductor ok. 



So, these materials you can just say as its neither good dielectric nor good conductor ok. So, this 

means that if 𝜎 is approximately equal to 𝜔𝜖0𝜖𝑟, you can expect that material to be neither a 

good dielectric nor a good conductor in other words you cannot say absolutely if the material is 

a dielectric or a conductor, this is true for any material all right and this happens at specific 

frequencies for specific materials. 

For example, if you take copper it may have a value of 𝜎 all right assuming that 𝜎 does not change 

with frequency at all and assuming that 𝜖𝑟 of copper is 1 for all frequencies. You can calculate at 

what frequency omega 𝜎 will become equal to omega 𝜖0 𝜖𝑟There will exist a frequency where 

both these components are equal and after that copper will start behaving more like a dielectric 

ok. 

So, the trend here is at low frequencies many materials could be very good conductors, at high 

frequencies the same materials could exhibit dielectric-like behaviors ok. Now this is an 

important aspect because we use metals for interconnects on boards ok. Suppose you start 

increasing the frequency of operation of these chips and suppose you start increasing the 

frequency of operation of your entire system all right you need to be aware that the best 

conductors will not behave like the best conductors anymore ok. 

So, it is a very important aspect while designing high frequency circuits or high frequency 

communication systems extra right. Just to give you an example all right all right. For copper I 

just looked up a value on the internet, some standard value people use this 𝜖𝑟 is approximately 

equal to 1 all right hard to believe, but copper seems to be having relative permittivity of just 1 

similar to that, aware all right. 

But where it differs from vacuum is the very high value of conductivity ok. So, I have written the 

distributed parameter 5.6 ∗ 107 ℧/𝑚  ok it's a very high value compared to 𝜖𝑟 right. So, we can 

say 

𝜎

𝜔𝜖0𝜖𝑟
= 1 

𝜔 =
𝜎

𝜖0𝜖𝑟
 

 

So, we can say that the omega at which this transition happens right you can divide it by two 𝜋 

and you will get the frequency in hertz right. So, that frequency is known as transition frequency 

ok its known as transition frequency in this case just taking these values alright. It appears that 

the frequency in this case where I have taken these particular values is 1018 𝐻𝑧 ok seems 

abnormally high, that is simply because I have taken some values which I have assumed do not 

change with frequency also ok. 

But in the simplest case it does look like at very high frequencies, copper should start exhibiting 

equal dielectric and conductive behavior and it's very high all right. For sea water all right. I saw 



that the relative permittivity from some source its about 80 all right and 𝜎 is 10−3 ℧/𝑚. Again 

these are not validated sources of this information but these are some sources that I have picked 

up just to demonstrate that there is a transition frequency. 
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And in this case if you do the substitution for 

𝜎

𝜔𝜖0𝜖𝑟
= 1 

 

and try to find out the transition frequency from there, it appears that the transition frequency 

is approximately 225 kiloHertz. 

So, I just wanted to show the high range of frequency and relatively very low range of frequency 

by you know appropriate choices of 𝜖𝑟 and 𝜎 That is all right. This transition frequency in 

semiconductors they also call it as dielectric relaxation frequency, at this place you will not be 

able to figure out whether the material is behaving like a conductor or a dielectric. In 

conventional optics it's also common to call this plasma frequency because you cannot figure out 

the property as to whether it is a dielectric or a conductor ok. 

So, these are just different terms, we will use the term transition frequency ok.  
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Now, we can go back and have a look at our modifications to the wave equation 

𝛻2𝐸 = −𝜔2𝜇0𝜇𝑟𝜖0𝜖𝑟𝑐𝐸 

This is how we would have written it in the frequency domain, we had written in the time domain 

before the frequency domain assuming that you are having a single frequency source of electric 

and magnetic fields, this is how you would have written. 

The only change now we need to make is change 𝜖𝑟 to 𝜖𝑟𝑐 to indicate that yes you are including 

some conduction current also. In the same way for magnetic field 

𝛻2𝐻 = −𝜔2𝜇0𝜇𝑟𝜖0𝜖𝑟𝑐𝐻 

 

In this case to indicate that you may be taking care of the conduction current density in the suffix. 

So, that rearrangement for the permittivity and conductivity is useful because we can revisit all 

our equations and add some subscripts all right and then we will be good to go right. 

Now, let us take this first equation and start looking at the right hand side. So, once again you 

can go ahead and substitute for what is happening to 𝜖𝑟𝑐 ok you can always substitute for 𝜖𝑟𝑐. 

So, there can be a rearrangement possible on the right hand side. So, I will just rearrange the 

right hand side 𝑗𝜔𝜇0𝜇𝑟(𝜎 + 𝑗𝜔𝜖0𝜖𝑟)𝐸 

 



It is just to say that you can always separate terms, you can always rearrange it right, you can 

take some common terms out, but this I believe is hard to remember for the students, it's easier 

to just remember this right. So, if you remember this and later on if you want to substitute for 

𝜖𝑟𝑐 you could always do this and rearrange it, it's not a problem ok. 
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Now, we can also look at the equation again and say that a,for the majority of materials, for the 

majority of the materials it is safe to assume that a,the materials do not have any relative 

permeability greater than air, many of the materials are non magnetic all right. So, majority of 

the materials its safe to assume that 𝜇𝑟 is equal to 1. Of course, when you are doing serious 

research you can plug in the exact values and proceed, but it's not a, incorrect to assume that for 

a lot of the materials that you will encounter  𝜇𝑟 is actually equal to 1 that just removes one over 

term from the right hand side of the wave equation right. 

So, which means that, I can now start to look at the solutions to the wave equation we already 

know that there will be a forward and a backward wave extra. We already know that there will 

be a propagation constant previously we had only phase constant now because you have 

included the conductivity part. There will be a propagation constant and we already know from 

transmission lines that the propagation constant will have a real and an imaginary part, real part 

will correspond to attenuation, imaginary part will correspond to the phase constant ok. 

So, we are going to do the exact same thing as we did in the case of transmission lines ok. So, in 

this case there are some details that we will add because in the past we have come across these 

details we have to be specific to say that for a plane wave ok travelling in the z direction. So, now, 

we are becoming more specific in the way we a,you know talk about the plane wave, we are 



saying that it is travelling in the z direction and we also know from the prior class that we have 

to talk about polarization all right. So, we say that x polarized. 

So, in the beginning or in the prior classes we have seen that the majority of the time we took Ex 

and then we took Hy and then the propagation direction was z. So, we are specifying that you 

know using a verbal statement saying that, its travelling in the z direction and it is x polarized. So, 

the wave equation can then be written as 

𝜕2𝐸𝑥

𝜕𝑧2
= −𝜔2𝜇0𝜇𝑟𝜖0𝜖𝑟𝑐𝐸𝑥 

𝜕2𝐸𝑥

𝜕𝑧2
= 𝛾2𝐸𝑥 
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So, which means what we have done is we have created a new variable gamma is going to be  

𝛾 = 𝑗𝜔√𝜇0𝜖0√𝜖𝑟𝑐 

This will be our propagation constant in the case of plane waves in a medium having conduction 

current ok ok. And now ok we also know that, by casual look we will make a deduction that we 

have j omega something which means that it is purely imaginary. But that is not true that is the 

illusion that a, this substitution for I mean 𝜖𝑟𝑐 is giving us one should always remember in the 

back of the mind that this is again a complex number. So, even though you have written 

j𝜔 Something here is a complex number. So, you will end up having a real and an imaginary part 

ok.  



So, you will end up having a real and imaginary part and the task to separate them is not very 

simple ok. So, I will write down right anyway I will substitute for the 𝜖𝑟𝑐,  

𝛾 = 𝑗𝜔√𝜇0𝜖0 {𝜖𝑟 − 𝑗
𝜎

𝜔𝜖0
}

1
2

 

 

If we put it like this, then it becomes clearer that there is a real and there is an imaginary part ok. 

So, one has to be very careful and it's obvious that there is a real and an imaginary part, but 

separating them is not very easy ok. 

So, what I did is I just plugged it in wolfram 𝛼  on the internet and I checked what is the real and 

the imaginary part ok. I am not going to go inside how to separate the real and the imaginary 

parts over here, but I can make use of a symbolic math tool like x maxima or wolfram 𝛼  and 

quickly see what is the real and the imaginary part ok. And I saw that 𝛼  which is the real part of 

the propagation constant, this case turns out to be 

𝛼 = 𝑅𝑒{𝛾} = 𝜔√
𝜇𝑜𝜖0𝜖𝑟 

2
[√1 +

𝜎2

𝜔2𝜖0
2𝜖𝑟

2
− 1]

1
2
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So, it was justified that I did use a tool to calculate ok. 𝛽 It is an imaginary part of gamma. I am 

writing down these expressions just for the sake of completeness. I do not believe that you have 

to remember this for your exams and quizzes. If we come to a stage where you need to make 



formula sheets extra you definitely could do that all right, but even better will me to ask questions 

that do not involve this kind of expansion. So, I will see to it that that happens ok. 

So, 𝛼  is the real part of gamma say attenuation constant, 𝛽 is the imaginary part of a, gamma 

which is the phase constant all right and they are very complicated expressions for us to make 

any direct a, evaluation all right. The only thing that one can say is 𝛼  and 𝛽 depend on frequency 

alright and I can say that there is omega multiplied by something and then I have  

𝛽 = 𝐼𝑚{𝛾} = 𝜔√
𝜇𝑜𝜖0𝜖𝑟 

2
[√1 +

𝜎2

𝜔2𝜖0
2𝜖𝑟

2
+ 1]

1
2

 

Generally I can notice that since there is an 𝜔 term coming over here, I can make a general remark 

saying that as omega increases 𝛼  could increase as omega increases 𝛽 could increase these are 

the only things that broadly you can make out from here, but the prior argument was much easier 

to follow than this one ok. So, a, there is only one more term that people often use ok which is 

known as loss tangent ok we use the term loss tangent ok. So, this is usually given by 

𝑡𝑎𝑛𝛿 =
𝜎

𝜔𝜖0𝜖𝑟
 

  

So, if you were to consider this in the form of a, 𝜎 being represented in one axis, j𝜔 I mean 𝜔𝜖0 

𝜖𝑟 being in another axis you could mark and angle between the real a, axis alright. And between 

whatever value of 
𝜎

𝜔𝜖0𝜖𝑟
  with respect to the origin right and it will resemble the triangle and you 

are taking the tan of that angle. 

So, people call this loss tangent alright. So, they also mark it with a, term tan delta ok and you 

have 
𝜎

𝜔𝜖0𝜖𝑟
 ok. And higher the value for this higher is going to be your attenuation that is all ok 

that we already know because if 𝜎 is going to be higher right because 𝜎 is present in the 

numerator of 𝛼 . Obviously, you are going to be having more attenuation right which means that 

the electromagnetic waves that we are talking about ok. 

So,  

𝑡𝑎𝑛𝛿 =
𝜎

𝜔𝜖0𝜖𝑟
 

is the loss tangent and usually higher this value ok one can immediately notice that you are having 

this term coming into the picture over here so, obviously, higher is going to be your attenuation 

alright it's another way of looking at it and a, there is also some other things that can be used to 

simplify things right.  
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Let us take a material for example, where 𝜎 is much greater than omega 𝜖0 epsilon r. 

The reason why I am writing all these things is because in the real world you can make some 

approximations by saying that one is much larger than the other and scratch out terms, so that 

it becomes easier to simplify that is why we are doing this in a number of places. So, if 𝜎 is very 

much greater than 𝜔𝜖0 𝜖𝑟 all right you can write down the propagation constant all right to be 

simply  

𝛾 ≈ √𝑗𝜔𝜇0𝜎 

Once again, this will have a real and an imaginary part ok and square root of j is usually confusing 

for some students right. So, if you want to write down the square root of j the best way to do this 

is to make use of Euler's theorem all right. Write it as you know  

√𝑗 = √𝑒
𝑗𝜋
2 = 𝑒

𝑗𝜋
2 = 𝐶𝑜𝑠 (

𝜋

4
) + 𝑗𝑆𝑖𝑛(

𝜋

4
) 

𝛾 = √𝜔𝜇0𝜎 {
1 + 𝑗

√2
} 

𝛼 = 𝛽 = √
𝜔𝜇0𝜎

2
 

So, in this case one can notice that its very very easy to separate 𝛼  and 𝛽, you will have a j term 

alright and you will have a non j term that is all. The other observation that we make over here 

is when 𝜎 >> 𝜔𝜖0𝜖𝑟, it's rather a peculiar case where 𝛼  is equal to 𝛽 and it's just  



𝛼 = 𝛽 = √
𝜔𝜇0𝜎

2
 

 

So, if you make some simplifications, in this case we said first  𝜇𝑟 is equal to 1, then we said that 

if 𝜎 >> 𝜔𝜖0𝜖𝑟, then you can start cutting terms and then the expression for 𝛼  and 𝛽 becomes 

much simpler and then you can make some reasonable deductions you can take one parameter 

at a time increase and see the effect on 𝛼 . 

Now, it is clear that if I increase the value of 𝜔, 𝛼  will increase if I increase the value of 𝜔, 𝛽 will 

increase ok. So, at higher frequencies you will experience higher attenuation in conductive media 

ok at higher frequencies the phase constant is also higher, that means, the wave will go from 0 

to 2𝜋 much faster than what it did in vacuum ok. 

So, these things become clearer if you start making some assumptions scratch out terms and 

then you know looking at a simpler expression ok. So, in general a, one can write down that for 

non magnetic media where conduction current density is much higher than displacement current 

density or the material is almost a good conductor ok. Omega if it is high it will have high 

attenuation and it will have high phase constant. 
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The other way to write this down is if the conductivity is very high which is the case with this 

structures I mean with the with this materials all right 𝜎 is very high compared to 𝜔𝜖0𝜖𝑟 in this 



case. You can also write down that your 𝛼  will be high 𝛽 will be high. These are probably easier 

to remember than the a, large expression that you had for 𝛼  and 𝛽 ok. 

So, I hope that now you have some general idea about the behavior of materials itself, it is safe 

to assume that any material at low frequencies will be a good conductor and the same material 

at very high frequencies will be close to a good dielectric ok. So, this is the natural trend at low 

frequencies whatever conducts at very high frequencies it will become you know dielectric all 

right. So, there is not much you can do about it.  

Secondly, at low frequencies 𝛼  is low that means you can get a long range of propagation of 

electromagnetic waves all right. So if you send a plane wave at a very low frequency it will travel 

a much longer distance in the medium than a plane wave at very high frequencies right. So, as 

you start increasing the frequency of the electromagnetic wave, you will notice that in the same 

medium it will start propagating lesser and lesser and lesser distance ok. So, it means that these 

things pose some technological challenges ok. The evolution of communication has been from 

low frequency and it is going towards higher and higher frequency of operations. 

So, when they had radio waves right when they had long range when they had medium range 

when they had short wave communication all these things alright you would have had some 

propagation distance, they were able to communicate over long distances, but they needed 

maybe large areas extra. But then later on we have switched to much higher frequencies, but the 

challenge is as the frequency increases the range of your system for communication will naturally 

decrease because of attenuation present. 

So, even in the air you will have some content of say water, water vapor extra this will also have 

some tiny amounts of salts and other things and which will increase the conductivity you know 

and then as higher frequencies happen, you will end up with 𝛼  becoming higher ok. So, this is a 

practical scenario where one can assume that at low frequencies you can expect a high 

propagation lens ok and you can expect the material to be highly conductive. Losses are going to 

be very low, at high frequencies the materials will heat up very fast ok your losses are going to 

be high propagation lenses are going to be really low and this is inevitable. 

Now, there is one more thing that we need to look at in the case of plane waves which is the 

power. In the case of electric circuits you would have learnt that a, if you applied a voltage and 

the system draws a current of I, then you will multiply the voltage with the current and then you 

will say that the power supplied is in watts The power delivered is in so, many watts extra. In this 

case simply because we are dealing with vector quantities ok we do not deal with the scalar 

voltage and a current we are dealing with vector quantities all right the calculation of power is 

slightly different from that of transmission lines ok. 
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So, the power density ok ok is defined as 

𝑃 = 𝐸 × 𝐻 

. Remember that the power density is a vector alright its a vector it does have direction. It tells 

you where the source is and where the sync is ok. So, it is a vector and it is given as a cross product 

between your electric and magnetic fields. So, the unit for the electric field again is V/m, the 

magnetic field is A/m. So, you will have 𝑉𝐴/𝑚2 all right. If you assume that there is no phase 

difference between your electric and magnetic fields all right instead of writing down volt-

ampere you could use watts and say that its watts per meter square is ok. 

So, dimensionally it is fine and it means that if your electromagnetic wave is arriving at a 

particular medium, you will have to take the size of the beam that is hitting the medium. Calculate 

the power density and integrate it over the entire area because you are having only 𝑊𝑎𝑡𝑡𝑠/𝑚2. 

To get watts you will have to integrate this power density over the area in which your beam is 

hitting, then only you will be able to get the net power all right that is crossing a surface ok. 

So, the net outward power alright which is P sometimes it can become confusing. So, I will just 

use W it's going to be your surface integral ok 

𝑊 = ∮ (𝐸 × 𝐻). 𝑑𝑎̂ 

It is slightly different from how you will calculate in electric circuits or even in transmission lines 

because you did not have vector quantities ok. 



So, it is E cross H which also resembles what we had seen earlier classes for the discussion of the 

polarization, we had used the right hand rule where we we would use the electric field to be 

along the index finger, magnetic field along the middle finger and then you had a direction of 

propagation to be your thumb. 𝐸 × 𝐻 just represents the thumb all right. So, the power is going 

from this side to the other side which is along the direction of propagation all right. 

So, it's safe to assume that the source is somewhere here and the sync is somewhere on this side 

ok. So, you can use the same rule all right to figure out where the power is actually going and 

there are some more details that we will have to slowly uncover. For example, we have to start 

looking at how the power depends on space and how the power depends on time. 

Because we are having time harmonic electric field, time harmonic magnetic field it's quite 

possible that there is a phase difference between electric and magnetic field there is no phase 

difference between electric magnetic fields all right. And instantaneous power versus average 

power, just like in electric circuits you would have had instantaneous power and average power, 

you would have had real power, reactive power and apparent power all those things. So, similarly 

we will have to see what we can figure out from here right. So, that will be the goal for the future 

lecture right. So, I will stop here. 


