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We will get started, ok. So, previously we have seen how to write Maxwell's equations and time 

domain, all right. And we also saw some similarities between Maxwell's equations and 

Telegrapher's equations. We classified the materials into different types.  
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We also derived the wave equation which looks very very similar to the transmission line wave 

equation, right.  
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And we saw about this direction of propagation, electric field being a vector, magnetic field also 

being a vector. Previously voltage versus scalar quantity, now we are getting used to this vector 

notation and then we are also saying that the direction of propagation is z that means that your 



electric field cannot have a component in z. Similarly, your magnetic field cannot have a 

component in Z, so you have to get used to these things, right.  
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And then we drew a table where there was a similarity between Maxwell's equations and a 

telegrapher's equation. We saw that there is a one to one correspondence, all right between the 

equations, the quantities, the solutions, all right, and also the interpretations, ok.  
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We also then modified the program. All the modification that we did was just modifying the 

variable names, we ran and it ran fine, all right. 

(Refer Slide Time: 01:28) 

 

 But the interpretations were slightly different. For example, in the case of a transmission line 

simulation, you would have voltage equal to 0 being a short circuit, in this case you will have to 

deal with an electric field being equal to 0, that is a perfect electric conductor, all right. So, the 

slight changes in interpretations we touched upon them, all right. And we also briefly saw about 

a characteristic impedance and or intrinsic impedance of a medium and the velocity. And then 

we'll begin where we left off, ok.  

So, in this class the idea is to introduce the concepts which are particularly different with respect 

to the electromagnetic waves rather than the transmission lines and one of the things that we 

are going to be introducing is a polarization, ok. Previously, we saw that the one of the key 

differences was electric and magnetic fields being vectors; that was one difference, ok. Now, we 

are going to go ahead and show what polarization actually means, ok. So, we will begin where 

we left off and then proceed systematically towards the concept of polarization, ok.  
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Where we left off was writing the velocity of the electromagnetic wave, ok, ok. And it is a denoted 

by the letter C. Previously, we had used u for the transmission line, just to differentiate that we 

are talking about an electromagnetic wave, we just switched to a different variable, all right and 

it turned out to be 

𝑐 =
1

√𝜇𝜖
 

 And  𝜇 is for the medium, 𝜖 is for the medium.  

In case a we are talking about vacuum, ok we represent it with the suffix of 0, right, 𝜖0. So, that 

is going to be equal to 8.854 ∗ 10−12 𝐹/𝑚. And the value of  𝜇0, ok it is going to be 4𝜋 ∗

10−7 𝐻/𝑚. If one has a look at the units you will find out that this looks similar to L and C the 

distributed L and C, ok, H/m and F/m, all right.  

So, there is a one to one correspondence and for the case of vacuum 𝑐0 is, ok is approximately 

3 ∗ 108 𝑚/𝑠. This sets the upper bound for the velocity of an electromagnetic wave in the course 

that we are going to be studying, all right. In any other medium we already discussed that in the 

denominator for the velocity, you will be expanding it for a homogeneous isotropic frequency 

independent medium, all right.  

 

We will be just writing this as a product of  𝜇𝑟𝜇0𝜖𝑟𝜖0   all of these are constants for a particular 

medium. And then, we notice that a 𝜖𝑟 and 𝜇𝑟 for any material medium are going to be greater 



than or equal to 1, which means that the velocity in any medium other than vacuum is going to 

be smaller than the velocity in vacuum itself, ok. So, the vacuum velocity sets an upper bound 

which means that there is a maximum velocity, the velocity cannot be infinite once again just like 

in transmission lines we talked about, ok.  
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We also briefly talked about the impedance, ok. The characteristic impedance 𝜂 that we wrote 

down in the previous class was 𝜇 by 𝜖 for any medium. You can expand those to 

𝜂 = √
𝜇0𝜇𝑟

𝜖0𝜖𝑟
 

 all right. And in the case of vacuum 377 Ohms, you can also remember this as 120 pi, ok, ok. 

These are things that we have already seen towards the end of the previous lecture.  

We also had a short discussion about if the electric field is 1 volt per meter. The magnetic field is 

going to look like a smaller value in amperes per meter, all right, but that does not mean that the 

effects are going to be, I mean far lower or anything depending on the material. And we said that 

this is one of the reasons why we ran the programs with the relative units of you know 𝜇𝑟 and 𝜖𝑟 

rather than 𝜇0 and 𝜖0 to avoid some 0 approximation errors concerning the magnetic field. This 

is what we had talked about at the end of last class. So, we will begin where we left off, ok.  

The first thing that we can start with is now that there is a one to one correspondence. We can 

start to look at the ac excitation of transmission line analogous in this case. So, if you have an 

electric and a magnetic field that has a frequency dependence, all right and that is what we mean 

to say is our constant frequency source of electric and magnetic fields, ok. Previously we had a 

constant a frequency source for a voltage that we will be considering as an AC source, 



equivalently here we will be having a constant frequency source of an electric and the magnetic 

field, ok. So, we will begin with that. The previous class already we were discussing about travel 

direction of propagation direction being z, we will retain the same, ok, ok. 

And in the previous class we had seen that the electric field cannot have a component in the z 

direction because it will not create a time varying magnetic field that has to be Ex or Ey and the 

previous class we are taking Ex to begin with. And we will retain the same over here, we will say 

that the field has an x component, all right and x component only, ok, ok. 

If this is the case, the electric field, ok in general, is a function of both space and time just like 

your voltage is a function of space and time. Previously, we had written V(z, t), all right. Here just 

to be clear because it is a vector quantity, you can always start with a general description of E 

and say that it depends on E (x, y, z, t) just to say that it depends upon space and time, all right. 

However, we know that a with respect to x and y there is no change in the value of electric field 

that is how we had written the 𝛻 × 𝐸 in the previous lecture. We had crossed out  
𝜕

𝜕𝑥
 , 

𝜕

𝜕𝑦
 , we 

retain only 
𝜕

𝜕𝑧
 . So, E is a function of only (z, t), the manner in which we have considered this 

problem.  

So, you can always write this as it has an Ex component which is a function of z, ok pointing 

towards x direction, right. On top of that we are introducing a time dependence which is going 

to be periodic, right. So, the time dependence we just write it down as  𝑒𝑗𝜔𝑡, this will have 

𝑐𝑜𝑠(𝜔𝑡)  + 𝑗𝑠𝑖𝑛(𝜔𝑡). We can always write this down as 𝑒𝑗𝜔𝑡. Later on we can include only the 

real part for our analysis, and as we had discussed before the advantage of using exponential 

expression for the trigonometric quantities is derivatives become easy to calculate, ok.  

So, first what we can do is we can start by writing down the wave question in the frequency 

domain, all right or we can start to write the wave question for the alternating source of electric 

field, right, similar to what we had written a for the voltage, ok.  
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So, here once again to emphasize 
𝜕

𝜕𝑥
 = 0, 

𝜕

𝜕𝑦
 = 0. So, I am very well known now already in the class, 

ok.  

So, we can start to write down the wave equation as. 

𝑑2𝐸𝑥(𝑧)

𝑑𝑧2
= −𝜔2𝜇𝜖𝐸𝑥(𝑧) 

assuming that there is a variation with respect to time that is periodic I have not written the 𝑒𝑗𝜔𝑡 

over here explicitly, but Ex(z) should involve that also. So, if you want to be more specific you can 

always write this down left hand side and right hand side can be multiplied with 𝑒𝑗𝜔𝑡 and you will 

get the exact E(z,t) on both the sides, ok.  

In the case of voltage, we had not considered this because with respect to time it is only periodic, 

ok. If you know the time period, you can always calculate what is happening at any instant of 

time at a point in space. So, this would be the equivalent expression for a wave question, all right, 

for an alternating source.  

And just like in the voltage case for transmission lines we will call this gamma to be a propagation 

constant, ok. Now, the variable names are also not changing so much, ok, ok and in this particular 

case this omega is 𝑗𝜔√𝑢 𝜖. Previously, in the case of transmission line you had 𝑗𝜔√𝐿𝐶, so, we 

are just replacing L with 𝜇,  C with 𝜖,  

𝛾 = 𝑗𝜔√𝑢 𝜖 

 

 



We already know from the transmission line case that this corresponded to a lossless 

transmission line there was no r and g involved in that. So, in this case also it is the same. This is 

a lossless transmission line with no wires, we are dealing with fields that are all, all right. And 

equivalently we can say that this has 

𝛾 = 𝑗𝜔√𝑢 𝜖 = 𝑗𝛽 

 

where this is the phase constant. So, there is really a one to one correspondence, not much is 

changing other than changing variables with respect to transmission lines, ok. Having written this, 

ok it is an easy way to write down the solution. 
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Now, looking at our previous notes we can just write this to be 

𝐸𝑥 = 𝐸𝑥
+𝑒−𝑗𝛽𝑧 + 𝐸𝑥

−𝑒𝑗𝛽𝑧 

ok. This is with respect to space. If you want to include the effect of time, all right then you will 

just say that, ok. So, if you want to find out the instantaneous value of the electric field you can 

always multiplied with 𝑒𝑗𝜔𝑡, ok. 

𝐸𝑥(𝑡) = [𝐸𝑥
+𝑒−𝑗𝛽𝑧 + 𝐸𝑥

−𝑒𝑗𝛽𝑧]𝑒𝑗𝜔𝑡 

 



 Once again as we proceed we see that the equivalence only is increasing and increasing, there is 

no big deviation between what we saw in the case of transmission lines and electromagnetic 

fields at all, all right. 
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Now, we have talked in length about this electric field, ok. Let us uh write down the equation for 

no 𝛻 × 𝐸, right, ok. We are considering a time harmonic case or a case where the source is 

periodic in time, all right, which means that a you can also write down the right hand side of your 

equation to  

𝛻 × 𝐸 = −𝑗𝜔 𝐻 

Now, we can write down the left hand side. So,  

|

𝑥̂ 𝑦̂ 𝑧̂
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐸𝑥 𝐸𝑦 𝐸𝑧

| 

We already know that a we can cross out 
𝜕

𝜕𝑥
 and 

𝜕

𝜕𝑦
 because the propagation direction is along z 

and there is no way you can have Ez cross that out. Ey we have assumed it to be 0, we are having 

only Ex, ok. So, the condition that we have post, ok and the right hand side is −𝑗𝜔𝜇𝐻, ok. 

This means that I can write down the left hand side, all right to be 



−𝑦̂ (−
𝜕𝐸𝑥

𝜕𝑧
) = −𝑗𝜔𝜇𝐻 

which already tells you that the direction of the magnetic field can only be y because on the left 

hand side I have the like unit vector for y direction.  

We already know that the magnetic field is going to have only a y component, all right. And we 

can write down an expression, because now we have a solution for Ex, ok we can always plug 

that solution over here. The general solution is what we will plug in over here to find out what 

the general solution for H is going to look like, ok.  

So, we can just write this down as  

−𝑦̂ (−
𝜕𝐸𝑧

𝜕𝑥
) = −𝑗𝛽𝐸𝑥

+𝑒−𝑗𝛽𝑧 

The general solution that we have written is  

−𝑗𝛽𝐸𝑥
+𝑒−𝑗𝛽𝑧 + 𝑗𝛽𝐸𝑥

−𝑒𝑗𝛽𝑧 = −𝑗𝜔𝜇𝐻𝑦 

 

I have dropped the vector terms because I am just equating y component to y component, ok. 
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So, I just want to equate the y component to y component. So, I am just taking the coefficient of 

the vector unit vectors and I am just equating, whatever is corresponding to  𝑦̂ on the left hand 



side should be corresponding to 𝑦̂ on the right hand side, ok. Thus, we can make some 

rearrangement and write down the expression for the magnetic field, right? It is going to look 

like, so, minus j can be canceled on all the left and the right hand side and you can start to write 

down an expression for Hy saying that it will have  

𝐻𝑦 =
𝛽

𝜔𝜇
𝐸𝑋

+𝑒−𝑗𝛽𝑧 −
𝛽

𝜔𝜇
𝐸𝑋

−𝑒+𝑗𝛽𝑧 

We again notice the similarity only keeps adding up and adding up and adding up, when we had 

the expression for the current in the case of transmission line, the forward current was having a 

positive sign, the backward current was having a negative sign.  

Once again we are dealing with a magnetic field, the unit is ampere per meter, the forward 

magnetic field seems to be having a positive sign, the backward magnetic field is having a 

negative sign. So, the correspondence is only increasing and increasing and increasing, all right. 

And we can now write down that there is going to be a forward characteristic impedance and a 

backward characteristic impedance.  
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So, you can take H, the characteristic impedance the way we have to now define is 

𝜂 = 𝐸𝑥
+/𝐻𝑌

+ 

 ok. You can always substitute for 𝐸𝑥
+/𝐻𝑌

+, ok and you can see what is the value that you are 

getting, all right.  

For the backward case, all right, you will end up getting a negative sign identical to the case with 

transmission lines. The negative sign does not mean that you are having a negative intrinsic 



impedance, just means that the direction of travel is reversed, ok. So, the similarity keeps on 

increasing, ok.  

Now, at the beginning of the class we said that we are going to look into an aspect which is not 

very similar. So far we are just strengthening the similarity too much, ok. What is the dissimilarity 

and what are we going to do about it? Right.  

So, this configuration where you have electric field x component, magnetic field y component, 

and the direction of travel to be z component resembles the fingers in your right hand, all right 

where you hold your thumb index and middle fingers orthogonal to each other, ok. The direction 

of travel is given by a thumb, that direction of your electric field is the index, all right and the 

direction of the magnetic field is the middle finger, ok. And you can point it to one direction and 

say that this is the z direction. So, for all practical cases we will say that we will use x to be like 

this, we are used to drawing xy graphs where x is like this, y is like this, and the z is pointing out 

of the plane that is how we always look at it.  

Now, one of the things that you can easily figure out is as you rotate your wrist, all right while 

keeping the direction that your thumb is pointing to be the same way, you can notice that you 

can rotate the electric field, the magnetic field will rotate itself by the same angle, but the 

direction of travel remains the same, ok.  

This actually means that if you fixed the horizontal axis to be x, the vertical axis to be y, it is not 

mandatory that you should have propagation in z direction only for Ex and Hy, you can also have 

anything in between. You can have a component of electric field along x, component of electric 

field along y, correspondingly your magnetic field will have a component along x and y. And you 

can keep rotating and this means that your direction of travel is still going to be the same. This is 

something which is different from your transmission lines, ok.  

So, you could have an electric field having components in x and y. But remember that electric 

fields cannot have a component in z, ok. Under no circumstance your finger is going to point 

towards this; you are rotating everything in the plane. The electric and the magnetic field lie in 

the plane perpendicular to the direction of travel and one of the terms that is used for these 

waves are plane waves, ok.  
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So, here we can say that in the most general case, right, the electric field can be decomposed to 

Ex and Ey. When you do that, that means that the equivalent is rotating your hand by keeping 

the direction of travel fixed, when you move away from the horizontal axis you can always take 

a projection of the index finger on the horizontal axis. Projection of this on the vertical axis you 

will get Ex and Ey. Correspondingly the magnetic field can be decomposed to Hx and Hy, ok.  

But you will notice that you will always be decomposing them into Ex, Ey, Hx, Hy extra, but never 

have a component in z direction, ok. Now, the direction of travel is referred to as the longitudinal 

direction, ok that is the direction of length, ok. If your point a is here, point b is here the distance, 

I mean the line that is connecting them easier, if it is your direction of travel we call that as the 

longitudinal direction.  

What you can do is if you have a source on one place and receiver on the other place you can 

point your thumb towards from the source to the receiver, and you will notice that the electric 

and the magnetic fields are going to be perpendicular to this direction of travel or perpendicular 

to the longitudinal direction, ok. So, the electric and the magnetic fields are going to be having 

only transverse components, ok. So, the term that we use transverse is perpendicular to the 

direction of travel. It will always lie in the plane perpendicular to the direction of travel.  

So, these kinds of waves where the electric field is perpendicular, magnetic field is perpendicular 

to each other and to the direction of travel are known as transverse electromagnetic waves or 

simply put TEM waves, ok. So, ok more generally one can also say that you know if I know the 

value of the electric field. For example, if I know that electric field is having an x and y component, 

all right, one can quickly calculate at least the magnitude, ok of the magnetic field let us say  



|𝐻| = √𝐻𝑥
2 + 𝐻𝑦

2 

= √(
𝐸𝑦

𝜂
)

2

+ (
𝐸𝑥

𝜂
)

2

=
|𝐸|

𝜂
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If one writes like this you can just say that the magnitude of the magnetic field is going to be the 

magnitude of the electric field divided by that characteristic impedance, which is similar to the 

magnitude of the current being equal to the magnitude of the voltage divided by the 

characteristic impedance, ok. This gives you the magnitude, ok. Now, we are going to talk about 

the direction, ok.  

Now, there are many cases, right. You can have the electric and the magnetic field pointed in this 

same way, and have all points in space, ok. You could also have for example, with respect to time 

in a particular point in space, you could observe different things happen. It is quite possible that 

at some instant of time you are having Ex, I mean Ex, Hy and Ez like this, all right or you know like 

this is how we usually are. And maybe at another instant of time it is like this, maybe at another 

instant of time it is like this, maybe at another instant of time it is like this all of these are valid as 

long as your direction of propagation is still pointing to the same side.  

So, it is quite possible that at a given point in space with respect to time the fields cannot go 

along the plane, right. They can rotate about the plane, right. So, it is quite possible. And if it is 

possible, all right what do we call that. Now, how do we distinguish between and at some instant 



of time? If the wave is like this, all right and at all instants of time suppose it is like this, we have 

to distinguish that from another wave where the direction of travel is like this, but it is doing this 

periodically with respect to time we need to distinguish. So, what we do is we use the term known 

as polarization, ok. 
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So, broadly it is defined as a temporal evolution, all right or the time evolution of the E field, had 

a given location in space, had a given location in space with respect to time. What happens to 

the direction of the electric field is called polarization, ok.  

Now, we need to look at this a little bit more closely because this is something very different from 

the transmission line case. Most of them were similar. Most of the properties are similar until 

now, but now there is a new property that is coming into the picture, ok.  

In the case of transmission lines, we just had what is known as polarity; we never had polarization, 

right. So, here we are having polarization and we are also saying that at a given location in space 

with respect to time it could be doing this, but still the direction of travel is pointing in the same 

direction, right. So, what are all the possibilities, all right and what are they called is what we are 

going to be seeing now, ok.  
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So, we will start with the general case and then make it more specific, ok. Once again we are 

always assuming here plus z to be the direction of travel, ok. We are having a very you know 

general case where you could have Ex, where you could have Ey also, ok. because you are 

breaking down the electric field into some two components in the plane perpendicular to the 

direction of travel. So, in the most general case you will have some competent Ex and Ey, ok. So, 

you can just write these down, all right to be periodic. 

You can say that this is say 

𝐸𝑥 = 𝑅𝑒{𝐸𝑥0𝐶𝑜𝑠(𝑒𝑗𝜔𝑡−𝑗𝛽𝑧} 

So, in this expression 𝐸𝑥0 will determine your amplitude or magnitude, all right. It is just 

magnitude, ok. And 𝜔𝑡 − 𝛽𝑧 will be known as the phase, ok. So, the phase is 𝜔𝑡 − 𝛽𝑧, magnitude 

is 𝐸𝑥0, ok. And since we are dealing with Ey in a similar manner we can write down it has some 

magnitude 𝐸𝑦0, ok, and you have 𝑒𝑗𝜔𝑡 minus E to the minus j oops, minus E to the j beta Z, ok. I 

think it is −𝑗𝛽𝑧 , oops. In fact, I have to multiply, ok. I had to multiply, but I added the term. So, 

𝑒𝑗(𝜔𝑡−𝛽𝑧), ok.  

So, once again, we can look at the same configuration and decide whether this is the most general 

case or not, ok. Now, your direction of travel is in one way, the electric field is rotated, all right. 

It is quite possible that both the components x and y for the electric field may have the same 

phase or may not have the same phase. This is something to think about, all right. 

So, we have written 



𝐸𝑦 = 𝑅𝑒{𝐸𝑦0𝑒𝑗𝜔𝑡−𝑗𝛽𝑧} 

 

But it is not necessary. All we are worried about is the resultant electric field, composed of these 

two components has to point towards your index, but it is not necessary that they need to have 

the same phase at all, ok. So, you could have Ex and Ey in the most general case out of phase and 

the resultant would still be pointing in this direction, ok.  

So, the better way to write this is actually to say that the most general case you could have a 

phase difference between Ex and Ey, and it is the most general case, ok, ok. So, you could have 

Ex and Ey out of phase and the resultant should be having some magnitude pointing in the 

direction of your index finger that is all, ok.  

Now, we can say that similar to your electric circuits you can say that 𝜙  if it is positive. We already 

know that you know Ey will lead Ex by  𝜙 , ok, if 𝜙  is negative you can say that Ey lags Ex by 𝜙 , 

ok. Very similar to ac circuits where you will have some a phase between voltage and current. 

You will say voltage lags current, current lags voltage, extra, similarly they say that Ex and Ey can 

have a phase between them. So, if we have to write down the expression for the electric field, 

the right can always write this down as 𝐶𝑜𝑠(𝜔𝑡)𝑥̂ , ok, looks like.  

Now, one may notice that a I have not included space over here, it has to be 𝜔𝑡 − 𝛽𝑧, correct. 

The most technical sense, the real part has to be 𝜔𝑡 − 𝛽𝑧. The way we have defined the word 

polarization is at a given space, we are trying to find out the temporal evolution. At a given space 

means that I have to assume a point and then observe that particular point at all instances of 

time. The simplest point that I can observe is z equal to 0. If I make z equal to 0 I get rid of one 

term. So, I can focus on the remaining terms easily, all right. So, now I am focusing exclusively on 

z equal to 0, so I remove some terms, all right. So, it becomes 

𝐸 = 𝐸𝑥0𝐶𝑜𝑠(𝜔𝑡)𝑥̂ + 𝐸𝑦0𝐶𝑜𝑠(𝜔𝑡 + 𝜙)𝑦̂ 
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So, at point z equal to 0, I am going to be observing what is happening with respect to you know 

𝐸𝑥0 𝐸𝑦0, and what happens to the electric field in general. We can also use some basics of 

trigonometry and write down that this case cos omega t is simply defined as you know 

𝐶𝑜𝑠(𝜔𝑡) =
𝐸𝑥

𝐸𝑥0
 

And  

𝑆𝑖𝑛(𝜔𝑡) = √1 − (
𝐸𝑥

𝐸𝑥0
)

2
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Similarly, you can write down 

𝐸𝑦

𝐸𝑦0
= 𝐶𝑜𝑠(𝜔𝑡 + 𝜙) 

You can use some trigonometric identities, Cos(a+b), you can use the formula 𝐶𝑜𝑠(𝜔𝑡 + 𝜙) , so 

you can write this down as 

𝐸𝑦

𝐸𝑦0
= 𝐶𝑜𝑠(𝜔𝑡)𝐶𝑜𝑠(𝜙) − 𝑆𝑖𝑛(𝜔𝑡)𝑆𝑖𝑛(𝜙) 

 

This means that I can write down the expression as  

𝐸𝑥

𝐸𝑥0
𝐶𝑜𝑠(𝜙) − √√1 − (

𝐸𝑥

𝐸𝑥0
)

2

𝑆𝑖𝑛(𝜙) 

 

Now, there are a few things that we can do. One of the things that we can do is a start to look at 

mathematical manipulations of these terms, and try to see if there is some relationship between 

Ex, Ey, 𝐸𝑥0, 𝐸𝑦0 extra and try to see if we are getting an equation for something that we are able 



to follow, ok. So, one of the things that we can do is, ok. We can take two sides, all right of an 

equation we can say that 𝐶𝑜𝑠2𝜙  if we are able to find out, 𝑆𝑖𝑛2𝜙  if we are able to find out,  

𝐶𝑜𝑠2𝜙 + 𝑆𝑖𝑛2𝜙 

all right. Can I use this trigonometric identity to establish some relationship between Ex, Ey, 𝐸𝑥0, 

𝐸𝑦0? This is some question that we can think about, right.  

So, I know the phase is 𝜙 , right. So, 

𝐶𝑜𝑠2𝜙 + 𝑆𝑖𝑛2𝜙 = 1 

Can I use this equality to establish some relationship between Ex, Ey, a you know 𝐸𝑥0, 𝐸𝑦0 extra?  
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So, you could just say if I am able to find out what is 𝐶𝑜𝑠2𝜙 + 𝑆𝑖𝑛2𝜙 = 1  and write this down in 

an equation form. So, I can write down what cos square 𝜙  is going to be like, what sin square 𝜙  

is going to be like. Then I can substitute and I can have an equation for Ex, Ey, 𝐸𝑥0, 𝐸𝑦0 extra, ok. 

So, I can do this and you can use the relationships that we have prior to us, all right. So, we can 

just write down the equation and then spend some time on the interpretation of the equation.  

So, I will have 

(
𝐸𝑥

𝐸𝑥0
)

2

−
2𝐸𝑥𝐸𝑦𝐶𝑜𝑠𝜙

𝐸𝑥0𝐸𝑦0
+ (

𝐸𝑦

𝐸𝑦0
)

2

= 𝑆𝑖𝑛2𝜙 



We are using this to arrive at a relationship between Ex Ey, that is all we are trying to do. And we 

will spend some time on the interpretation rather than the equation itself, right. So, let us say 

that I have some equation and I want to find out what it means and I then start to look at different 

cases, right.  
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The first case that I look at is Ex is not equal to Ey, ok and say the phase between them is 0, ok. 

In other words, the way we have written we have Ex, 𝐸𝑥0 extra. So, the way we have written this 

means that  

𝐸𝑥

𝐸𝑥0
=

𝐸𝑦

𝐸𝑦0
 

Let us take this particular case, right or you could also write this down as if I know Ex I could write 

this down as 

𝐸𝑦 = (
𝐸𝑦

𝐸𝑦0
) 𝐸𝑥 

 So, this resembles y equal to mx, ok which is the equation of a line that passes through the origin, 

ok. 

What does this mean? This means that Ey is always a constant multiplied by Ex, ok, Ey is always 

a constant multiplied by Ex. So, instead of looking at all these things you could look at the 



configuration that you had, right. You are having a net electric field like this, the y component is 

always a constant multiplied by the x component, ok.  

Now, we know that a constant will not change the direction at all, ok a constant will not change 

the direction, a constant will not change phase, ok. So, it means that if I decompose this electric 

field to having an x and y component, the phase of the electric field in the x direction is going to 

be the same as the phase now I direction because I am going to be multiplying by just a constant, 

only the value will change. If I had 1 volt per meter, maybe I had 3 volts per meter, all right. But 

the phase does not change their always in phase 

So, 𝐸𝑥0 I mean that the x projection and the y projection will always be in phase. So, even with 

respect to time it means that, all right, if I have something like this at some instant of time, at 

another instant of time I will be able to draw the projection. And still I will find that the projection 

is such that Ey and Ex have a constant multiple between them, it is always a constant, ok.  

If that is the case, at any point in time if I know the value of 𝐸𝑥0 I will be able to figure out what 

is the value of Ey and the direction of Ey also by just multiplying it with 𝐸𝑦0/𝐸𝑥0 ok. So, this kind 

of a scenario, right, where your y component is a constant times x component, all right of the 

electric field is known as linear polarization, ok.  
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This also means that there is no phase between Ex and Ey, they are oscillating with the same 

phase. Imagine that your electric field is oscillate bits with a time dependent electric field source 

that means, if you draw the projections at some instants of time it will go like this, all right it will 

reach a maximum, then the arrow will string it will go to 0, then it will go to minimum and then 



it will keep coming to 0, and it will be during this periodically, all right. This is going to be how 

your x component is doing things.  

The y component is just going to increase go to 0, decrease and go to 0 extra. But they are going 

to be doing this at the same time, that is if your x is increasing, y is also going this and then at the 

same instant of time they will do this and then it does this. That means, there is no phase 

difference between them, ok. But the peak values that they can reach could be different, all right.  

You can have for example, x going you know this much and at the same time y is going this much, 

but then they meet here and then they cross extra, ok. So, there is no phase difference between 

all phases. Ex and Ey will pass through the 0 points at the same instant of time, ok. But with 

respect to time Ex is oscillating like this, Ey is oscillating like this, all right. They will pass through 

the 0 at the same time, ok. That is meant by having a no phase difference between your x and 

the y component of your thing.  

What is 𝐸𝑥0? 𝐸𝑥0 is since your electric field is doing this the peak value that your x component of 

the electric field is reaching is 𝐸𝑥0, and if you multiply that with your cosine omega t then you 

will get the time dependence of this doing in the horizontal direction that is all, ok. 𝐸𝑦0 

corresponds to the peak of the electric field of the y component, it does this. So, I will just mark 

this as 𝐸𝑦0, ok. So, 𝐸𝑥0, 𝐸𝑦0 extra is very simple. 

If you know with respect to time the electric field is actually oscillating like this. So, the x 

component is doing this, y component is doing this. But they arrive at the origin at the same 

instant of time which means that they do not have any phase, but they could have different 

values, all right, they could have different values.  

Now, one of the things that a person can do is try to see, ok at all instances of time what shape 

describes this kind of polarization, right. That means, that at every instant of time you will take 

an x component you will take a y component you will draw the resultant, ok. Now, for the 

resultant in this case it is going to point in this direction, correct. The resultant is going to point 

in this direction.  

What will happen at another instant of time is say the arrow has decreased, this arrow has also 

decreased in value. The resultant is going to be smaller, but it is going to point in the same 

direction because Ey is equal to constant times Ex, all right. The resultant has become smaller, 

but the angle it makes with respect to the x axis is the same, ok. Then what happens? You reach 

the 0 point, both of the Ex and Ey reach the 0 point at the same time resultant is 0, ok.  

For a vector of length 0, you cannot determine the angle, so you forget about it and then you see 

what happens more at some other instant of time. 
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 It is only correct that your electric field x will switch direction, all right to a small value, but since 

your y component is a multiple by a constant it will also switch the value, switch the direction, 

right. So, it will be like this. 

The resultant will then be like this, ok. And then your electric field x component will increase in 

value, correspondingly your y will increase in value, but this is going to now be like this. Now, if 

you take this all together and try to draw for several cycles of time, what will happen? All right. 

If I take an xy axis like this the resultant will go like this all the way and then will trace this path 

back oops, right. It will pass through the 0, ok. And then what will happen? This thing will keep 

going like this. Remember that the red and black are collocated just for the sake of clarity I am 

drawing like this. So, it will go like this and it will come back. 

So, the locus of all the points that the resultant will sweep with respect to time is a line, ok. So, 

linear polarization is actually very tough to imagine from the way we have written the equation 

extra, ok. But a linear polarization just means that your y component is going to be a constant 

times x component at all instances of time. So, the resultant, if your x component is 0 y 

component is also 0, ok. If your x component is maximum y component is maximum, but the 

values need not be identical because you are multiplying with a constant. If your x component is 

negative y component is also negative.  

So, you will go between the first quadrant and the fourth quadrant, but you will not go to the 

other two quadrants at all, ok. So, if you are assuming that the Ex is going to be positive then you 

will be having always you know, first and fourth quadrant only you will not be going to the other 

quadrants it is like that, right, ok. 



So, the resultant with respect to time in space makes a line, ok. So, this is known as linear 

polarization. This line could be aligned in any way perpendicular to the direction of travel, but 

with respect to time the resultant is always along a particular line this is known as a linear 

polarization. You should be able to visualize. What will do, so we will also write a simple program 

to just make this concept clear because the equation the way in which you are driving is slightly 

complicated to imagine, ok. So, it will be easier to just see pictorially what is happening by 

plugging in those equations and then seeing what it sweeps with respect to time.  

Now, since we have done this we also realized that there are other possibilities. It is not always 

necessary that this is the only locus that is possible there are other things which are possible. We 

will see them in the next class. But what we will do is we will write a program, ok. And then what 

we will see is, we will vary Ex, Ey with respect to time and then try to plot the resultant and then 

you know you will realize what is what, ok. 

Of course, many of you would have guessed there is something circular polarization, elliptical 

polarization and all that. But we will arrive at that through the program rather than doing this 

first, ok because this may become confusing because there is Ex, 𝐸𝑥0, Ey, 𝐸𝑦0 extra. So, people 

will start getting confused as to what is happening, ok. So, but once you see the program things 

will start to register what is meant by Ex, what is meant by 𝐸𝑥0, all these things will become very 

very clear, what is meant by 𝜙  everything will become clear, ok. 

So, I will stop here.  


