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So, now let us move on to Boundary Conditions, again this should be a refresher for most of                  

you. 
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So, we will start with what are called as tangential boundary conditions ok. So, in tangential                

boundary conditions, I want to get a relation between the tangential electric fields or              

tangential magnetic fields as the case may be right. So, let us take a medium over here. So, let                   

us call this medium 1 and medium 2 and as I say medium 1 and medium 2 so medium. What                    

is different over here, what differentiates one medium from another medium? 

Student: ,ε μ  

 and .,ε μ σ  

Student: .σ  

Right so that is we can say and and similarly for medium 2 ok. And it is a surface;       ,ε1 μ1   σ1             

so surface is going to be characterized by some normal vector over here ok. So, let us say that                   

this is continues over here and I want to get a relation between the tangential fields. So, we                  

have all done this in undergraduate right. What do you do? You take a small little wireframe                 

that straddles the boundary. 

So, it is half above the boundary half below the boundary ok, let us take something like this                  

let us call this and let us call this . So, if I want to let us say get a relation between the    yΔ       lΔ               



electric fields above and below, the boundary that is my objective. So, what do you suggest I                 

do? 

So, I want the electric field along this curve and what I am going to do is I am going to make                      

tend to 0 that is what will give me the relation just above and just below ok. So, I want toyΔ                       

go along the boundary so, which theorem. 

Student: Stokes theorem. 

Stokes theorem is what is going to help us right. Stokes theorem needs a curl and I see                  

Maxwell’s equations over here sitting with a curl like readymade for me. So, what do I need                 

to do to this equation to get it into Stokes form? I need to integrate that is right, but what kind                     

of integration? 

Student: (Refer Time: 02:28). 

The. 

Student: Line integral. 

The line integral, but I do not see a line integral if am going to get a line ok, line integral is                      

there on one side of stokes equation what is the other side? 

Student: Surface. 

Surface integral right so, if I take this surface over here right. It is a open surface bounded by                   

this boundary right. 

So, I can say, I am going to integrate over the surface and what way is the surface normal                   

pointing the surface normal is coming out of the board ok. So, I can do this right                .dS∇ × E   

and this is my stokes theorem helps us and this is what I get ok. Now when I look at the              .dlE         

right hand side I must I can substitute from this equation over here right. So, it will,        ∇ × E           

there is no special way to simplified it will remain as it is ok.  

So, this so this will become ok. So, so far all I did is I took my Maxwell’s      − ωB ).dS( j −M              

equation over here and integrated over this shaded surface over here that is fine right. And                



Stokes theorem simplifies this over here as over the contour. So, when I start from let       .dlE           

us say let me start from this point over here and work my way all the way back over here. So,                     

we will assume that these and quantities are small such that the electric field is     lΔ   yΔ           

constant along these edges alright. So, I have  over here and I have  on this side.E1 E2  

Student: (Refer Time: 04:20) end cap. 

is just the normal vector for this surface that defines the boundary ok, because whenever In̂                  

define a interface I how do I define the interface? I give the surface normal the interfaces                 

define right. 

So, when I start from this point over here is going to give me what? So, I will get ,         .dlE            E2  

but not just I will get the tangential part of right. So, tangential multiplied by   E2         E2    E2     lΔ  

then I finished this part then I move to the next segment, what do I get? Plus  tangential.E2   

Student: (Refer Time: 05:05). 

So, let us call this so instead of calling a let us call this along say x direction right,          tΔ      E2       

and this  is going to be along y direction. And how much length?E2  

Student: .y/2Δ  

, similarly if I go further I am going to get  next term.y/2Δ E ) Δy/2( 1 y  

Student: .− E  

− E1   

Student: X delta. 

 then minus.) Δl− (E1 x  

Student: E 1. 

. So, what I have done? I have calculated this line integral piece by) Δy/2 ) Δy/2(E1 y − (E2 y               

piece. So, I am going to take the limit; this limit tending to 0. So, which so all the           yΔ          yΔ  

terms over here; they are going to become, they are going to tend to 0 ok. Another                 



assumption we are making is that these fields are physical quantities they are not going to                

blow up to infinity. 

So, when a finite term is multiplied by a vanishingly small term, I can get rid off it right. So,                    

what I will be left with is right and on the right hand side what do I have       (E ) E ) )Δl( 2 x − ( 1 x             

left now right. So, I can say that so this for example, I can write it as that is                 jωB )Δl− ( +M   

the surface and we are assuming that we are talking about the component of B and M that is                   

along the ds vector ok.  

So, let me so is that is clear right because I have to take the dot product between this vector                    

and this vector over here. So, whatever survives along this that is coming out of the plane of                  

this page is surviving in this term that is the only term that is retained ok. So, if you want you                     

can put a hat over here. What can I do about these term or what can I say about these terms?                     

Which terms will survive which terms may not survive? What about the first term? Magnetic               

field multiplied by , or ; would it be 0 or nonzero as I take the limit tends to   yΔ lΔ   yΔlΔ             yΔ    

0. It is a magnetic field, it is a physical quantity and we do not expect a physical quantity to                    

blow up. There is no; there is nothing special happening at this, it is just a boundary between                  

two interfaces. 

So, what can I reasonable assumption to make is that as I shrink this to 0, I have a finite              yΔ        

quantity multiplied by a vanishingly small quantity right. So, this guy is going to actually               

tend to 0. What about this current over here? It is a magnetic current, forget for a moment                  

whether it is physical not physical its some quantity over here. Will can it be finite or can it                   

be in finite. So, if it is finite; that means, it is this contribution we will tend to 0 right. So, that                      

is one case easy to handle, the other case is supposing it is infinite how can it be infinite? 

So, infinitely conductive material right; so, in a like we take a perfect electric conductor and                

ask you where is the current on the conductor, in how much thickness is it in, what would you                   

say? 

Student: .σ   

So, no it is a perfect conductor is infinity, then what will you say where is how much       σ             

thickness is the current flowing in? 



Student: It is not at the (Refer Time: 09:10). 

0 almost right, it is a pure surface current. So, if it is a pure surface current only then in the                     

sense that at the interface itself its value is infinite right, but this M into that will be a               yΔ      

finite quantity ok. So, that is what is called a pure surface current ok. So, if I keep this over                    

here the only term that has a possibility of surviving is and this term I will call as           ΔyΔl− M̂         

 ok.M s  

So, to sort of state that again this; if it is a pure surface current is going to be very very        M̂               

large, but this very large quantity multiplied by a vanishingly small quantity is what is going                

to give me a finite surface current. We are not used to thinking about it in such threadbare                  

means, but that is how we arrived at this equation right. So, when I compare both the left                  

hand side and the right hand side what I get is. So, this and this I am going to compare ok. So,                      

this this is nothing, but the tangential part of electric field above or below the medium E )( 2 x                 

and is the tangential part of the electric field above the medium ok. There is a here E )( 1 x                 lΔ   

and there is a  here, these will cancel off.lΔ   

So, when I combine these two equations I must combine them keeping the vectors in mind                

right. So, when I combine these two equations you will see this is the equation that I get ok.                   

So, you see this that is why I defined this n over here. So, let us take a electric field over here                      

let us say, like let us say is pointing like this right. So, if is in the plane n is in       E2        E2 × n   E2         

the plane where is pointing? Outside the plane; will it be tangential to the boundary?    n × E2             

n cross any vector will be perpendicular to n and n is perpendicular to the boundary. 

So, will always be along the boundary right. So, this is one very clever way of using n × E                  

vectors to give us the tangential field immediately, the high school way of writing it is like                 

this, or tangential. That is how you would see you know , but we E )( 2 x   E )( 2            Etan 1 = Etan 2    

can write it in a more sophisticated way now using the language of vectors. So, just to                 

summarize is going to be perpendicular to n. And what is perpendicular to n? The n × E                

interface; so, it is the tan so this what is written over here this is exactly the tangential fields                   

and what is left on the right hand side is simply this thing. So, I will call this the pure surface                     

current all right.  



So, I can repeat the same exercise for the second Maxwell’s equation right; again there what                

do I have? I will have is equal to. So, right I can mimic the same proof line      ∇ × H      ωDj + J          

by line the only thing that will survive. So, this guy is D is a physical quantity or                  

displacement field when I will stick it into a surface integral I can say it is the contribution                  

will vanish I will only be left with a J and this time J is carrying a positive sign in this                     

equation J was carrying a sorry M was carrying a negative sign. So, you can see that this                  

relation is what I will get for tangential H fields. 

So, this is tangential E and this is tangential H fields right. So, what is this again over here                   

this is also a pure surface current pure surface currents means it lives in the surface in a                  

vanishingly small thickness, only then can it contribute. So, if I take a non conducting               

medium unless you take you know glass wall floor whatever right you do not they are there                 

are no its not they are not perfect conductors. So, in that case what will you, what is the most                    

commonly used way of expressing boundary condition? Tangential fields are the same right,             

that is because these guys J s and M s are 0.  

So, you get and we write that in the language of vectors using have you   Etan 1 = Etan 2            n ×    

seen this derivation before very good. So, this is as far as tangential boundary conditions go                

the other. So, you notice that we use the first two equations of Maxwell right. So, you can ask                   

what happens when I use the remaining 2 equations right. 
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So, that takes us to normal boundary conditions and I will use. So, I think I made a mistake                   

over here it should be plus right normal boundary conditions over here. 

So, again I have an interface over here, this is medium 1 and medium 2 what is the way of a                     

finding a boundary condition over here if anyone remembers? 

Student: Cylinder. 

Take a cylinder right. So, I take a cylinder like this ok. So, this is a medium 1 and 2, the hint                      

for whether you take a open surface or a closed surface how would you get that hint? That                  

hint comes from looking at the. 

Student: (Refer Time: 14:59). 

Integral form of Maxwell’s equations right, over here when I did this equation over here in                

integral form I got I was taking curl. 

Student: Curl. 

Curl I know by stokes theorem is going to convert to a line integral. So, I needed a open                   

surface, when I look come to this equation I have a divergence term and I know that the                  

theorem that applies to divergence has a volume integral. So, I think of a volume pill over                 



here. You can try using applying this theorem on a wire frame like the previous example, you                 

will find that you do not go anywhere. So, if I take this over here then as you already                   

mentioned the theorem that we will use is divergence here right.  

So, if I take a volume integral on both sides. So, and this is going to give me the           .DdV∇          

flux of D right flux over the closed surface right, . So, I have a over here and the          .dSD      yΔ     

is the area over here right. So, exactly similar to what we did in the previous example ISΔ                   

will calculate this integral on by both ways. So, in this case maybe we do not need to go                   

through the entire derivation. 

So, what I what we can just sort of intuitively see , how many surfaces should we break           .dSD        

this up into to evaluate it. So, it so this for example, this is one surface the top cap then the                     

bottom cap 1 right and then there is going to be some contribution from the curved surface                 

and I know that contribution from the curved surface what will happen to it.  

Student: (Refer Time: 16:47).  

It is going to go to 0, because I am going to set the take the limit that is going to 0 I want                  yΔ        

to squeeze this field as much as possible so I get a relation between the fields here just above                   

and just below. I do not want the relation between field here and field here that is all you                   

know you it is not a boundary condition I want to shrink these guys these guys down to as                   

close to the boundary.  

So, what will survive will be whatever is contributing from these caps over here. Now what is                 

the surface normal for the cap over here is like this right that is what is content will contribute                   

to the outward flux, what is normal to the surface is flux. So, as I shrink this delta y down to 0                      

the normals to this to these caps will be along the normal to the surface itself right to the                   

interface, in this case it will be plus n in this case it will be minus n hat right. 

So, when I do this accounting over the 3 volumes over here I will be left with for example, I                    

just write it over here component multiplied by and component and     )(D1 n     SΔ  )− D( 2 n   SΔ   

plus 1 term which is let us say right that is the curved surface area and this term is        πrΔy2             

going to go to 0 right. Then the remaining tricky part is to look at the right hand side over                    

here. So, the right hand side is going to be right. So, how much charge is enclosed in          dVρe          



this volume integrated over dV and this dV is going to be I can write simply as            dVρe       SΔ  

and right. That is the volume of this cylindrical box right. Now what can you say πrΔy2                 

about this whether will this be 0 or not? 

Student: There is no integral.  

There is no there is no integral over here we got rid of it, yes. So, will this be 0 or nonzero                      

and what condition will it be 0 or nonzero. 

Student: (Refer Time: 19:24). 

Student: (Refer Time: 19:27). 

Exactly; so, just like in the case of the current discussion if I had a volume charge distribution                  

a charge that is distributed through the volume then what will happen is the finite charge                

residing in a volume that is shrinking to 0; so its contribution will be negligible. On the other                  

hand if I have a pure surface charge that can again happen for like perfect conductors who                 

take a perfect metallic conductor put charge on it, where does a charge live purely on the                 

surface right. 

So, the only possible way for this term to survive is if the charge is a pure surface charge. So,                    

this is a pure surface charge and and , this captures the normal component of       .Dn̂ 2   .Dn̂ 1        D1  

and that is the only part that will survive the dot product with in an. And I can repeat the  D2                    

same logic with the second divergence relation and I will get. So, this is also a pure magnetic                  

charge ok, is that fine. So, keep these techniques in mind you will have to apply them                 

depending on the problem at hand and these like you can see we are just using the tools of                   

vector calculus to simplify a surface integral into a line integral or a volume integral into a                 

surface integral that is the basic idea over here ok. 
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So, let us look at what is the power in a field. So, again this should be familiar to all of you                      

have what is called the instantaneous Poynting vector the definition of instantaneous            

Poynting vector is simplest when I look at real valued physical quantities ok. So, in terms of                 

that its simply the ok, it does not get simpler than that. This expression gets a little bit    E × H                

more complicated when I introduce my phasors right. So, I want to now find out, I want to                  

express this Poynting vector in a phasor notation because I am going to do all my calculations                 

in phasor I should have an expression for power in terms of the phasors right. 

So, we have already done this the real valued quantity is expressed in terms of the real part of                   

the phasor right. So, if I asked you to simply this what how would you write down real part of                    

a complex number. 

Student: (Refer Time: 22:04) cos. 

Cos is one way, another way would be supposing I give you a complex number z and I asked                   

you give me a real part of z. 

Student: (Refer Time: 22:13). 

right. So, I can also write this as half of; so, ok. So, that is asz )/2( + z*             Ee e )/2( jωt + E* −jωt        

far as the electric field goes. Similarly I can do the same thing for H I will write it as                    



ok. So, what do I do next is I am going to take this expression and thisHe e )/2( jωt + H* −jωt                    

expression and put it into the expression for pointing vector and we will see what we get.  

So, when I take the cross product between these two quantities how many terms will you             ωtj     

observe? So, for example, when this guy combines with this guy what will I get? I will get                  

into the ; when this guy combines with this guy what will I get?jωt2   

Student: Minus. 

I will get  similarly when this guy combines with this guy what will I get no.e−2jωt  

Student: No. 

Dc and what you get 0. And similarly, when this guy combines with this guy what do I get?                   

Frequency terms are the phasor terms are 0 right. So, even without doing all the opening up                 

all these expressions I know that these are the frequency terms that I will get. I will get a 0 I                     

will get a it is not possible for me to get a right you can just intuitively see it   jωt2           ejωt         

immediately. So, when you simplify this further let us write down s what expression you get                

is first term is this which is at 0 and the second term that you get is ok.  

So, all the boundaries are brackets after this is what I get ok. So, you see that the power                   

seems to have 2 components; one is at dc and one is at . So, if I take the average of             jωt2         

phasors that is oscillating at twice the frequency has how much average? 0 right you integrate                

 over 1 period the way we are undergone 2 fluctuations is average is going to be 0.os(2ωt)c   

So, that is why the average power the only the dc term survives right. So, now, you have a                   

very and usually we are interested in average power ok. So, average power is now given in                 

terms of the phasors the ok. So, this is and take half of it right. So, you can     e(E )R × H*      H*           

see that the power it this E cross H term over here E cross H star can be real can be imaginary                      

right and we will have both parts the complex number. So, the real part is going to give me                   

the power. And, what about the imaginary part? What do we call it people from circuits                

background. 

Student: Reactive. 



Reactive power so, this concept of real power and reactive power will be very interesting               

when we look at the radiation from antenna. In the near field of an antenna most of the energy                   

is reactive, as I go into the far field we will find that it becomes more and more real ok. So, it                      

is not just for theoretical fun its actually happening in nature these things ok. 


