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Maxwell’s Equations 

 

We will start at today’s lecture with a review of Maxwell’s equations. All of you have done                 

Electromagnetics at some point in the course. So, this should just be a easy refresher. 

(Refer Slide Time: 00:24) 

 

So, the topics that we look at will be starting with Maxwell’s equations and then I go to                  

boundary conditions. So, all of you know that in the electromagnetics problem to solve it               

fully; I need to not just know the equations of Maxwell, but also what are the conditions on                  

the boundary ok. So, these two is sort of essential, then we will look at power, poynting                 

vector and concepts like that and a theorem a couple of theorems which you may or may not                  

have seen in an undergraduate course which is about uniqueness and equivalence theorems             

ok.  

So, one thing I would like you to keep in mind as we go ahead in this lecture and in the                     

course is that there are equations which are written for physical quantities currents and              



charges, what we will do is we will try to generalize it to make it in a mathematical way                   

which will give us more power. Those equations may not always have a physical meaning,               

but the mathematical power that we get from it helps us to solve some problems and that will                  

be covered in for example, in the equivalence theorems right. So, let us get started with                

Maxwell’s equations which all of you know. 

(Refer Slide Time: 01:35) 

 

So, we will start with for example, the very early experiments which lets say Maxwell, Hertz,                

Faraday, Ampere all of these would have done and at that time they would have worked with                 

real valued physical quantities, because that is what you measure in a lab. You measure               

voltage, you measure current right; you do not measure a complex quantity in the lab right                

that is a later mathematical abstraction. So, I am denoting these real valued physical              

quantities by this slightly different symbol like a script E and script H. So, just to tell you that                   

these are real quantities and so as you saw from the previous lecture, Maxwell’s equations               

were these four without the terms in the blue font ok, we all know everything in the black                  

font already.  

So, is rate of change of magnetic field and so on, there is the displacement current all ∇ × E                  

of that is known to us right. So, if I look at these four the first four equations without the blue                     

fonts. There is a sort of asymmetry in these equations right because if I look at rate of I mean                    

the curl of electric field, there is a rate of change of magnetic field and no other term.                  



Whereas, in the second equation, there is a , there is a rate of change proportional to        ∇ × H          

electric field and the current.  

So, there is sort of asymmetry in it and so to fix this asymmetry to give us some mathematical                   

power later on, what we do is we add to quantities to make these relations between electric                 

field and magnetic field symmetric. And what are those quantities? If J was a electric current                

then, M is a. 

Student: Magnetic. 

Magnetic current and if  is a electric charge  is a.ρe ρm  

Student: (Refer Time: 03:20). 

Magnetic charge ok; now as of now we say that these are not physical quantities ok, at least                  

magnetic charge is not supposed to be a physical quantity, but there is actually no theoretical                

reason why magnetic charge does not exist. So, if any of you do find it there is a nobel prize                    

waiting for you. So, that is about; so, these are the questions that we will work with ok. In                   

fact, there is a paper by I think Dirac which says sort of mathematically shows that there                 

should be a magnetic charge, but we have not found it ok.  

So, if you are interested you can read more on that. Then there is another equation which is                  

used alongside Maxwell’s equations which is the continuity relation for charge. So, do you              

think; so, that is this equation that I have written at the bottom over here. Do you think that                   

this equation is independent of the first four equations? 

Student: (Refer Time: 04:19). 

It can be derived right, how would we derive it? 

Student: Take the divergence of the second equation. 

Take the divergence of the second equation right. So, if I take divergence of the second                

equation over here, if I do this whole equation. So, we all know that so this      .∇            .(∇ )∇ × H  

for any vector H this is identity equal to. 



Student: 0. 

0 right. So, that is it then you can see the left hand side becomes 0 and the right hand side has                      

both the current term over here and ; we can use our Coulomb’s equation and       .D∇  .D∇         

converted to right. So, this is your continuity equation right, it is just written separately just  ρ                

for convenience, but it just comes from Maxwell’s equations and vector calculus ok.  

So, sort of to summarize what we have done is we have introduced these two new quantities                 

over here for the purpose of mathematical convenience and also to give us a sort of                

symmetric right. Electric field and magnetic field are interchangeable if I interchange electric             

and magnetic, I have to interchange magnetic and electric currents magnetic and electric             

charge right. When I convert this to a real life problem, I will make sure that I am not talking                    

about unphysical quantities. So, one extra step I have to take care of which we will do ok, it                   

will become clear in the rest of the course how we use these properties ok. So, those are your                   

Maxwell’s equations right. 

(Refer Slide Time: 05:49) 

 

Let us take a simple example of how we use them. We will do much more complicated                 

calculations in this course, but let us just take a simpler wave example. So, I have written                 

down Maxwell’s equations in vacuum and vacuum which has no sources or charges, no              

sources means is 0, no and charges also 0 and current is also 0 right. So, two simple  ρ                  



equations, I want to combine them somehow to give me a single equation ok. So, these four                 

equations, we have all seen before. There are two additional what are called constitutive              

relation which tell us the relation between D and E, B and H ok.  

Since its vacuum, it is very simple its related by and not at all difficult. So, now, if I          ε0   μ0          

take I want to, from the first two equations over here let us say I want to eliminate one of the                     

variables right. So, it is like there are two equations and two variables right. The two                

variables are; if I look at these first two equations what are the two variables in these                 

equations? 

Student: (Refer Time: 07:02). 

Student: R and t. 

Rand t, no; r and t I just telling us the equation that true at some point in space and time. But                      

at a particular point in space and time what are the 2 variables that I do not know? E and H or                      

E and B, electric field magnetic field this is what I do not know and I want to calculate right.                    

So, that will be the general idea of any cem example right, I want to find out the electric field,                    

magnetic field given some charge distribution, current distribution, boundary conditions blah           

blah right. 

So, I have two equations in 2 variables. So, in principle I should be able to solve them right.                   

So, what should we do? We will use some properties from vector calculus. So, we can take                 

let us say the curl of the first equation over here right. So, right; now there is a             ∇ )∇ × ( × E       

nice relation that you know from vector calculus for this which is. 

Student: (∇.E)∇ −  

enough ok, that is what we get. Now of these two terms is there any one(∇.E) E∇ − ∇2                  

term that gets simplified? 

Student: First one. 

The first term that simplified. 



Student: (Refer Time: 08:15). 

Using Coulomb’s law right because over here, and D is related to E just by a     .D∇    .D∇           

constant. So,  is going to be?.E∇  

Student: 0. 

0 right; so, this whole term is 0 ok. So, we have reduced this first term. So, the left hand side                     

is become ok. Just a quick check is this a scalar or a vector is the left hand side, is  E− ∇2                    

this expression over here is this a scalar or a vector. 

Student: Scalar. 

Is this expression over here a scalar or a vector? 

Student: (Refer Time: 08:57). 

So, how can a vector be equal to scalar? So, left hand side is clearly a vector, right hand side                    

therefore, also a vector why because how does this guy operate this is actually going to be                 

right. So, will act on each of these guys one by one and give me a(E x y z)∇2
x ˆ + Ey ˆ + Ez ˆ    ∇2                

vector ok, can act on the scalar it can act on a vector, but right now its acting on the  ∇2                    

vector so output will be a vector.  

So, that is one simple check that you should do, like in school we should do dimensional                 

analysis right. So, this is similar over here alright. So, I have a vector on the left hand side                   

also, I need to simplify the right hand side right. So, I have so I am going to take a curl on the                       

right hand side also alright. So, I will have minus del by del t, the del cross operator acts only                    

in space so I can take it across the time derivative alright. 

So, I am going to have a . And then what do I do? How do I simplify further, do I       ∇ × B               

have a relation that tells me what is , do I have a relation that tells me ? Yes;        ∇ × B          ∇ × H   

is there a relation between B and H? right. So, this will therefore, become so , I        μ0         ∇ × B   

can write as be as I can use this over here . So, this becomes minus .HB = μ0 μ0 ∂t
∂H   



Now I know right, is related by this equation over here. So, this expression ∇ × H     ∇ × H            

will become minus ; what else? So, one derivative will come from the second equation.   εμ0 0             

So, this becomes . What am I left with? I am substituting as and so   ∂2

∂t2
         ∇ × H   ∂t

∂D   ED = ε   

that  came out over here. What am I left with over here?ε0  

Student: E. 

E exactly ok; so, what I have got this is the right hand side so, therefore, this is equal to the                     

left hand side over here then squared E ok. So, we will write this in a familiar simpler form,                   

let us this side say take let us take a one dimensional example; that means, the physics varies                  

only in one dimension let us take the dimension to be x. So, in that case electric field etcetera                   

is just a function of x. So, this operator will only become right, partial derivative        ∇2      ∂2

∂x2     

with respect to x.  

So, if I simplify the what I have got so far I will get and this many of you              E ) E∂2

∂x2 = ( c
1 2 ∂2

∂t2
      

will know is called the wave equation ok. Now, why is it called a wave equation? 

Student: It describes a plane wave. 

It describes a plane wave; we can see what is the solution to this equation. So, for example,                  

does if I take something like this cos of; cos of what do I write? 

Student: Kx minus (Refer Time: 12:29). 

that is a phi naught right. So, when I take a derivative, two derivatives in x, whatxk − ω0 + a                   

will I get? I will get back cos right and some constants will come so I will get a on the left                   k2     

hand side. On the right hand side, what will I get? I will get E back over here, right hand side                     

I will take two derivatives with respect to time; cos will become sin will become cos I will                  

get back cos right. So, this will become omega squared by c squared back to E right. So, if k                    

is equal to omega c, then this guy is a solution right and this is exactly the equation of a wave                     

that is traveling.  

So, is this derivation clear? So, we used very simple things, we use Maxwell’s equations and                

all four of them were used right. We did not leave even one of them, we use the fact that                    



and the relation between D and E, we use the fact that and the relation.D∇ = 0              .B∇ = 0     

between B and mu. So, all of these relations were used along with some simple vector                

calculus identities right. So, you will find that this is going to be the story of CEM, using                  

Maxwell’s equations, boundary conditions, vector calculus you can calculate everything ok.  

And so this, when this kind of a derivation was first understood was a very big deal because                  

if you look at these equations Maxwell’s equations like I mentioned in the previous lecture               

these were derived in a lab dealing with resistors, capacitors, inductance currents. That is how               

these equations were derived and somehow you are able to get out of it a wave equation                 

which suddenly then explains to you how light from the sun reaches as its coming as a                 

electromagnetic wave.  

So, this connection between the electromagnetics and optics really was made possible by             

Maxwell. And if you notice if this term over here if this displacement term were not here this                  

thing would not have worked right, I would not have been able to get the second derivative                 

with respect to time, this guy would not have happened right. So, it is all comes together very                  

nicely alright. Any questions before we go ahead? Fairly simple many of you have probably               

seen this wave equation derivation earlier ok. So, this is all fine, this is how Maxwell and                 

company had written it in terms of real valued physical quantities ok. 
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Now, as it turns out we are all electrical engineers and we like phasors and why do we like                   

phasors? Again this is it is a simple property of electrical engineers we do not like pain so we                   

want to make math easier right. So, this using phasors helps us to reduce the mathematical                

complication right. So, what I do is I keep I take my physical quantity over here that is E and                    

I write it in terms of phasor.  

So, what is a phasor now? It is a complex vector; so this is complex. And I have put the e to                      

the j omega t that is the phasor and I this is; obviously, going to be a complex quantity and                    

since I want to only deal with real valued quantities in the lab world so I related by taking the                    

real part so, that is what we will do. By introducing this I am also separating the role of time                    

and space, I made it into two separate variables and I can that is convenient for me with                  

Maxwell’s equations because Maxwell’s equations are nicely linear right.  

So, what happens to all the time derivatives, wherever you see a there is a that will            d 

dt 
    ωj   

come out and the time derivative is gone right. So, that is what happens to my four equations                  

over here, I am not writing the continuity equation anymore because its understood. I have               

retained the magnetic current and the magnetic charge keeping in mind that they are not               

physical quantities ok, they will they are introduced for mathematical convenience ok; so, if              

someone asks you what are the equations that are valid in lab you will drop the blue terms ok. 

One other thing I want to mention which will happen to you when you read books from                 

different disciplines. If you are reading a book from electrical engineering the convention that              

electrical engineers is usually. If you read a book from the let us say the physics of the   ejωt                 

optics community they prefer to use ok. So, you should whatever book you pick up      e−jωt           

make sure you go right to the beginning and see what is the time convention they have used.                  

Both are correct, but if you get confused you will all your answers will be wrong by minus                  

sign everywhere ok, because of the simple difference ok.  

Of course, another differences that are physicists will not use a j they will use i, that is                  

another thing for the imaginary constant ah. So, those are the phasor relations ok. So, these                

are the equations that we will work within the course ok, once I solve this. If I if someone                   

says ok, now give me the lab quantity all you have to do is supposing you solve these                  

equations you got some E and H out of it. What do you have to do? 



Student: (Refer Time: 18:02). 

Put. 

Student: (Refer Time: 18:05). 

No you have solved this ok. Now you have got your E and H has come out as a result of a                      

calculation and someone says now give me the actual quantity in lab, the physical electric               

field in lab, what would you do? 

Student: Rho and then m. 

That is ok, rho and m the use is gone I have already used them to solve for E and H. Now                      

what do I do? She says take the real part ok, common mistake; now that is not enough. What                   

else do you need to do? 

Student: You have got a mu r (Refer Time: 18:31). 

I have to multiplied by right, if you just take the real part of E r you will get a time     ejωt                  

invariant quantity, we do not want that. So, remember to stick in the and that gives you             ejωt      

the full time dependent ok. So, those were the phasor forms of Maxwell’s equations; the next                

thing that is used is how do I relate D and E, B and H and the current. So, I am writing down                       

these so called constitutive relations over here. So, the relation between D and E is in terms                 

of epsilon permittivity right, relation between B and H is in terms of mu permeability ok. And                 

here is anyone who knows what this law is called? 

Student: Ohm’s law.  

Ohm’s law right this is your famous Ohm’s law ok. Now fields we have spoken about where                 

does the material actually come into picture, whether its glass or wood or free space? 

Student: (Refer Time: 19:38). 

Right; so these guys, these guys and these guys this is where the medium properties come                

into place ok. I have what I have written is a very simplified version of material properties. In                  

fact, in the strictest sense these equations that I have written a wrong and we will correct                 



them as we go further in the course this. For example, this seems to be a simple constant;                  

actually it could be a tensor for an isotropic media.  

And in lenses in optics you all we have that way of travels differently in one direction then                  

another direction and isotropic things are there that is captured by making this epsilon into a                

tensor or mu into a tensor ok. There are further complications with these equations these               

constitutive equations and I will point them out when we come across ok. So, these are the                 

main sets of equations that we will work with alright. 


