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(Refer Slide Time: 00:13) 

 

So, now let us take a, this is a dielectric material; dielectric material has finite conductivity                

right. So, for dielectric material. So a special case that often arises that in your simulation                

domain you have metal perfect metal: metallic waveguide, metallic aircraft, whatever right.            

So, that is a what conductivity will be associate with it infinity right. 

So, this is a dielectric material now PEC: Perfect Electric Conductor sigma tends to infinity               

right. Putting numerically something has infinity is a problem, so we need to work out the                

limit before we put it into the code right. So, what happens to this expression? 

Student: (Refer Time: 01:07). 

Divide by sigma I mean you will divide the numerator and denominator by sigma and take                

the limit correct, what will you get update equation? 



Student: (Refer Time: 01:16). 

Is equal to. 

Student: (Refer Time: 01:21). 

Student: (Refer Time: 01:22). 

That is I have, so at the position of the metal the electric field should be 0 as per the boundary                     

conditions, but our update equation should also give me that. It should not be that the update                 

equations are taking in some different directions. So, let us have a look at, so supposing I at                  

some time instant time I put the electric field equal to 0 let us say at . I start my                t = 0     

simulation, I put . It had better remain 0, right, to respect physics. Let us see if that is   t = 0                 

happening over here. So, what is the first term simply to? 

Student: Minus (Refer Time: 02:00). 

Minus. 

Student: Minus. 

Minus yeah right, so I will get and that is it the term goes to 0 alright and so that I       −En = En−1               

mean that is very helpful for me because if I initialize it at 0 on a PEC which is what it should                      

be it continuous to be 0. 

Student: So. 

I do not need to explicitly. 

Student: (Refer Time: 02:25). 

Yeah, the update equation is automatically doing it for me right. So, in some sense what I am                  

saying is that I do not need to explicitly keep running the update equations on the PEC                 

locations, I can set it to 0 either I can set it to 0 at each step explicitly or I let the update                       

equations run they will keep it at 0 ok. So, if we initialize E to be 0 on the PEC boundary it                      

stays that way right. 



So, PEC the PEC boundary condition is very trivially being satisfied. So, what we have               

looked at is two very very simple cases dielectric material plane I mean without loss and with                 

loss. You know what to do we get an update equation and PEC also very simple to do ok. 

(Refer Slide Time: 03:44) 

 

So, now let us let us actually ask I mean what I was hinting and that was at this equation over                     

here that is something wrong with it ok. So now let us go a little bit deeper into that. 

(Refer Slide Time: 03:49) 

 



So, we all know that most natural materials are dispersive right. So, there is a part of this                  

which I am not going to be able to derive over here its I will give you a reference for it. So,                      

chapter 9 of Griffiths book on electrodynamics right, everyone has seen that, the blue color               

book right. 

So, here he describes very properly what how do you model the dispersive medium using a                

simple spring and mass attached to it models. So, what is the spring and what is the mass? It                   

is for example, an atom and the nucleus and the electrons or model has the mass right. So,                  

there is a positively charged nucleus is an electron right there is some spring constant               

between them when an electromagnetic field falls on it there is a polarization there was slight                

going to as a force that is exerted on this mass. 

So, when you put all the force equations together and work through it is a very elegant                 

derivation which shows you that frequency, the frequency dependence of the refractive index             

it comes out over there. So, I will recommend that you read through it is just a few pages of a                     

simple derivation, we will start with the conclusion of that the conclusion of this modeling               

the, so what is the spring model? Spring models resonances a spring is the most simplest                

model for a resonance we have all studied this for. For example, if a spring has no damping                  

coefficient and if I excited once, so what happens? It keeps going on forever right, so the                 

resonance. 

So, the interaction of an electromagnetic wave with the material is also. There are various               

resonances, for example, in a microwave oven, what is the principle and there is water               

molecule it has a certain resonance I send an EM wave at that frequency and that resonance                 

condition being met it excites that resonance and heats up the whatever material is there. 

So, after having done all of that what you get? So the convention is, so far we have been                   

using symbols like we will say that this is the time domain picture and if I want to talk   D                  

about its Fourier transform that is a spectral component I will write it as ok, so this is the              D̃      

frequency domain ok. So, as a conclusion of this discussion in Griffiths what you get is that                 

, so it has to be as a function of  is going is actually  is vacuum right.D̃ ω εε0 r  

So, this relation that we have been blindly writing every time the strictly speaking is             ED = ε    

true, but in the frequency domain not in the time domain ok. So, that is I mean because I am                    



not showing you the derivation from Griffiths it seems like where did this come from, but I                 

mean we will assume it for now the moment you said dealing with realistic materials this                

relation is incorrect to write in the time domain, the correct relation is only in the  ED = ε                

frequency domain ok. 

(ω) (ω) ε E(ω)D̃ = εr̃ 0
˜  

So, this is just a fact that we will have to take it and go back and read this part. So, now, these                       

are all so this is in the frequency domain. So, as a result of this what is actually our time                    

domain relation then? 

Student: Convolution. 

Convolution right this is a product in frequency domain, so in time domain it is convolution.                

If I go over here to time domain this will become  

(t) (t )ε (τ )dτD = ε0 ∫
t

−∞
E − τ r  

Convolution will go from to some right same over here, I have , the    − ∞    t    t      (t )ε (τ )dτE − τ r   

simple signal and systems. 

Student: (Refer Time: 08:22). 

Well we will keep it . So, for example, what about the fact that our material is causal? This     t               

causality has to be respected right, the at a certain time should not depend on at future       D          E    

time instance obviously. So, will any of these limits change? 

Student: 0. 

Right so, due to causality this will becomes 0 due to causality and for the same reason we are                   

going to limit our upper limit to t right otherwise this will like at future time instance will             E       

also come over here right. So, this is; so this is the true picture. So, when we have been                   

writing that in time domain what does it imply, what kind of satisfies  (t) ε E(t)D = εr 0             εr  

that? 



So, if , what is this value of is it, under what condition will I get this  (t) ε E(t)D = εr 0       (t)εr           

very simple relation? Look at the convolution relation, rather we are just writing it like this                

right we have been writing it like this. 

Student: Delta. 

Delta function right. So, 

(t) δ(t)εr = εr  

then this convolution gives me the simple relation right. So, in other words, this is a material                  

that reacts instantaneously to the incident radiation because the response is. So, you can look               

at this convolution has also you know the convolution of an impulse response with the input                

right and so if the impulse response is a delta function; that means, the response is                

instantaneous right which is unrealistic. 

Student: (Refer Time: 11:06). 

No material can respond instantaneously to even a springs supposing you apply some force to               

it does not in one I mean there is no instantly start oscillating it take some time. Similarly,                  

when you remove the forcing function it does not instantaneously stop it goes for a while and                 

then stops right, so nothing is instantaneous in nature right. So, so this is what we have been                  

using all along and we will now build a theory of what happens in realistic materials, this was                  

not an issue for our case of yours integral equations because there I was dealing with single                 

frequency. 

So, I was anyway assuming . So, I was implicitly working in the frequency domain and     ejωt            

at I was using this relation without really realizing it and putting the value of epsilon at that                  

frequency, so there was no problem there. The problem comes in now when I am explicitly in                 

time domain I have to worry about what is the relation of and in time because our            D  E     

Maxwell’s equations the way in the differential form they need time yeah. 

So, this is let us assume that this is the main equation that we have to work with. So, let us try                      

to just think of what are the challenges that will come when we are trying to implement this                  



equation in FDTD. So, you remember your Yee cell there is an update in time, there is an                  

update in space right. 

So, there is Yee cell time and space update. So, for example, in this previous here this                  

equation over here to calculate , how many passed values of do I need to store only     En       Ei        

one previous time instant and only one previous time instant of magnetic field, you do not see                 

 over here in this relation., E , R , EE0  1  2  3  

So, what does that tell you in terms of the memory requirements of my computation? I do not                  

need to store the history of fields I just need even if I wanted to for some plotting or                   

something then yes, but I do not need it to calculate future time instance right; however, does                 

this now tell you something else? 

So, if I were to just discretize this equation over here is going from 0 to t, so if I want at           τ           D   

a certain time I need electric field not only at that time instant, but I need the entire history   t                  

otherwise how will I calculate at that time instant right. So, now, I need full time history of     D              

electric field to get displacement field. 

Student: (Refer Time: 14:00). 

I need everything before otherwise how will I calculate this integral right. So, is that a                

problem? That is a huge problem because this is needed not just I mean this is needed at                  

every point on the Yee grid not just at one point you need it in all points has space you need                     

to store the entire electric field history for all time right, so that is that is impractical. So, just                   

looking at this you would just give up on FDTD because it is not possible to store so much,                   

you will only be able to run your simulation for so much time and then you will run out of                    

time right. 

So, so what you do in you have faced with such a situation? As an engineer, what would you                   

do? 

Student: Reduce the number (Refer Time: 23:00). 

Reduce the number of time history. 



Student: The time. 

That is one way of dealing with it. So, you will face some approximation error, anything else                 

that you can do deal with? 

Student: (Refer Time: 15:38). 

It looks like a numerical. 

Student: (Refer Time: 15:42). 

Numerical quadrature is a way of implementing this integral, but that is not gone help you                

this integration is not challenging. 

Student: (Refer Time: 15:409). 

Yeah. 

Student: (Refer Time: 15:54). 

So you can think of applying quadrature rule over here. 

Student: (Refer Time: 16:00). 

Yeah, but then that works quadrature rule works when the polynomial or function that you               

are trying to integrate is well behaved right, it should be it will be accurate up to polynomial                  

degree of so much depending on how many points and you do not know you do not know                  

how jumpy this electric field is going to be. 

Student: The error increase. 

The error will keep increasing right. For example, if an electric field is a sine wave how many                  

polynomials you need to represent a sine wave right a very large amount and finally, it does                 

not converge. So, what we will do is we will assume a simplistic model rather than                

compromising on the calculation we will assume a simplistic model of this frequency             

dependence of permittivity and see if we can if that saves us from saving the entire time                 

history. So, our objective is to model a dispersive material realistically at the same time not                



have to store the entire field history, if we can achieve these then I can apply FDTD to                  

dispersive materials. 

So, the entire field of things like plasmonics and all where then they critically depends on                

frequency dependence of permittivity needs us to be able to model it right. So, general a very                 

general model of this epsilon r as a function of frequency is what is discussed in this chapter                  

9 as a summation of various resonances. So, after this class please go back and have a look at                   

it what we will do is we will assume a simple version of that and it is something which you                    

will all have studied. If you put epsilon r of tau equal to 0, but I mean. 

Student: (Refer Time: 17:44). 

The material the electric field is always there. is telling you the response of the material to        εr           

that field you cannot. 

Student: So if its non zero and only are expressed by. 

It will be not be non zero anywhere because as long as there is a field this response is always                    

going to be there. So, it is not going to be 0 its not in your hand its physical, its nature                     

property, so on my hand. So, the simplest model is actually something that you have seen you                 

have heard of Drude model. 

Student: Lorentzian 

You have heard of Lorentzian models, you heard of Debye models. 


