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So, now, let us instead of doing a 1D formulation, we will jump to a 2D formulation. It                  

conveys the idea a little bit better ok. 

(Refer Slide Time: 00:24) 

 

So, when we look at 2D, again this is common to what we did in the integral equation                  

methods and finite element methods also, how many polarizations are there independent that             

we can talk about? 2 polarizations right. So, there are 2 polarizations TE and TM Transverse                

Electric Transverse Magnetic and any problem any arbitrary problem can be written as a              

linear superposition of both of these. So, I can deal with each of these two separately and then                  

worry about superposition later right. So, TE as we have said it consists of which variables? 

Student:  (Refer Time: 01:07)., E , HEx  y  z  

. So, far and TM was ., E , HEx  y  z , H , EHx  y  z  

Student: ., H , EHx  y  z  

So, let us take the TE polarization ok. So, we will just write down our Maxwell’s equations                 

once over here . So, given our previous experience with Maxwell’s   −  dH/dt∇ × E
→

= μ
→

        

equations is tempting to always replace the by a , but we should remember not to do       /dtd    ωj         

that. That is the whole point of FDTD. .dE/dt∇ × H
→

= ε
→

+ J
→

 



To keep matters simple for now we will just we will assume that there is no current, but we                   

will add it in later in the module ok. Now in TE polarization I can use these two Maxwell’s                   

equations to give me few scalar equations right because the unknowns are only             

. So, the first equation will become and let us further just take vacuum ok., E  and HEx  y z  

So, right. So, I am taking the second Maxwell’s equation and looking at the x component ε0                

and assuming current 0 ok. So, this is and on the right hand side I will get spatial        dE /dtε0 x            

derivative of the H-field and what will that be? You can work it out right. It will be .                  H /∂y∂ x  

Then I get the y part of this equation again time derivative, I will get a . ok. So, I                H /∂x− ∂ z     

have used the first Maxwell’s equation and finally, what is left is the first Maxwell’s               

equation; In that, how many components are there which are non-zero in this equation? 

Student: One. 

Only one because vector is only so, I only have to take the z component. So, I will get   H
→

    Hz               

the spatial derivatives of now right. So, in terms of time derivative, I will have    E
→

            

.∂H /∂t E /∂y E /∂xμ0 z = ∂ x − ∂ y  

Student: This is an extra minus (Refer Time: 04:28). 

This is an extra minus sign where? 

Student: Sir whatever you wrote at the right hand side. 

Yeah. 

It is correct right ok. This is just a simple working out the curl. Here you should not make                   

minus sign mistake otherwise all your computation is gone. So, now, we want to before I sort                 

of late out for you let us try to design this. My variables are that and they have              E , , )( x Ey Hz      

to be discretized in space and time ok. I have seen that the discretization scheme needs me to                  

know E at different points in space different points in time. 

So, what you I mean the way to do this is, you have to make a grid; obviously, it is a 2                      

dimensional problem, the unknowns are on a grid right. So, I make a grid. So, it is a repeating                   

grid I am just showing one unit cell ok. And what I can do is I can call this . So, at the                   Ey     



centre of this and this over here at the centre of this I can call , and here is where I will do               Ex         

.Hz  

So, it will as we work more with this it will become clear why I did not define all of these                     

unknowns all at the centre of the cell or at the corner of the cell; I have staggered them out in                     

space, later on we will also stagger them in time, but will come to time first right now we are                    

just dealing with the space grid. So, this grid was what was proposed by Yee in 1966.  

So, it is also called a Yee cell. Now these it is like a lattice right. So, these points are given                     

some shorthand numbers. So, I will call this point and therefore, this point over here is         i, )( j        

. So, people also called this a stencil, various names for the same thing, which Ii , )( + 1 j + 1                 

repeated everywhere in space as well as it is called stencil. 

Student: The grid will end by. 

The grid ends at some point I mean it let us say it ends on a straight line. 

Student: Yeah. 

Right. So, then. 

Student:  will be there.Ey  

Only will be there. So, I mean it ends where it ends where. So, the convention is the Ey                  

electric field is being discretized along the along the grid boundaries and at the center.            H
→

    

Can you think of a practical reason for doing this? I could have done at the other way also. 

Student: (Refer Time: 08:01). 

Student: Continuity equation. 

Continuity equation. So, most materials that we work with are electric I mean they are not                

magnetic materials the electric material. So, we have to many times worry about tangential              

continuity of electric fields. So, by choosing a variable to be at the grid line, it is easier to                   

work with boundary conditions. So, it is not a golden rule you can have it the other way, you                   

can define you electric fields to be at the centre of the domain and magnetic fields on the                  



boundary. So, this is just one choice ok. So, this is the convention. Now we also need a                  

notation. So, let us write that out. 

I will show you what will do with TM polarization. 

Student: You can have .(Refer Time: 08:47).Hz  

At the corners, we can have at the corners also. In fact, that is what we do in the case of      Hz                

the TM polarization. So, let us just write down some notation over here. So, for example,              Ex    

at i plus half if I write something like this you know; that means, right. It means          (i /2, )Ex + 1 j         

that I am actually evaluating .(x /2Δx, y y)Ex = x0 + i  0 + Δ  

So, instead of writing this very long right hand side, I just use this shorthand for the left hand                   

side I just mention which are the points. So, E x for example, is not evaluated at integer x is,                    

but it is evaluated at integer y. So, that is why is ; similarly what will where are we            /2i + 1   Ey       

discretizing ?Ey  

Student: .(i /2, )Ey + 1 j  

 and it's clear what I mean by this. Similarly, when I talk about ?(i /2, )Ey + 1 j Hz  

Student: ./2i + 1  

(i /2, /2)Hz + 1 j + 1  

Student: (Refer Time: 10:27). 

What about ?Ex  

Student: I did not get how do you get ./2,i + 1 j  

./2,i + 1 j  

Student: x = x0  

Yeah  is some origin is the discretization right.x0 Δx   



Student: Discretization. 

So, will bring me to the corner plus will bring me to where this electric field is Δxi        /2Δx1           

being discretized. It is being discretized in the middle right; middle of the line so that is why                  

the plus half is necessary. Similarly in the case of  it is in the y part its  not .Ey /2j + 1 j  

Student: But where in going the expression their why will be constant (Refer Time: 11:07). 

When we go in the. 

Student: Expression, but the phi coordinates will not change. 

Yeah they will not change. So, that is why it is just j yeah. I am just trying to discretise a 2D                      

grid in terms of node locations as well ok. One thing we are missing so far is time. Time has                    

not been indicated over here and we should discretize time also right. So, again the notation                

that will have for time is, we will put it in the superscript right. If you see this it means at                     Ex  

some point in space and ok. So, we will use these very compact notation is to     Δtt = t0 + n             

describe where we are talking about space and time.  

So now, that we have done this let us try to convert equations 1 2 3 using our central                   

difference idea. So, the first equation what we write for our first equation? So, it is spatial,                 

sorry time derivative of . So, for now we will just write. So, equation 1 it becomes. So, we    Ex                

will just write this as we will put a dot on top to indicate time derivative, what     Ėx              

coordinates in terms of i and j? 

Student: (Refer Time: 13:00) i plus half. 

is equal to. Now we come to the part. So, partial derivative of with respecti /2, )( + 1 j          H
→

       Hz   

to which coordinate? y coordinate ok. So, what should I write on the right hand side? So, this                  

is let us. So, what should I write this as? Hz  

Student: Epsilon (Refer Time: 13:25) delta x by 2 minus. 

Yeah. 

Student: y plus delta. 



Yeah y. So,  evaluated at in terms of  let us try to write it down.Hz i, )( j  

(i /2, /2) (i /2, /2)]/Δyε E (i /2, ) H0
˙ x + 1 j = [ z + 1 j + 1 − Hz + 1 j − 1  

Right the difference between these 2 points. Do not thing that these I mean only the notation                 

is does not mean that everything is separated by you not distance right the separation is i, )( j                

their you can see  and  is the discretization.xΔ yΔ  

Student: So, we are not (Refer Time: 14:25). 

I have mentioned it this has a dot on top we will work it open it up later. First I want to get                       

the space parts done correctly second equation again simple. So, it is the time derivative of               

, but evaluated where coordinates areEy i, /2).( j + 1  

Now I have partial derivative of with respect to x with the minus sign never mind the      Hz             

minus sign  first term. Actually, let us just absorb the minus sign. So,Hz  

(i /2, /2) (i /2, /2)]/Δxε E (i, /2) H0
˙ y j + 1 = [ z − 1 j + 1 − Hz + 1 j + 1  

So, there is a sort of trick short hand trick you can use to remember this derivative can be                Ex     

thought of as top minus bottom, right the top value minus the bottom value. So, I write this as                   

top minus bottom right and this over here can be thought of as. 

Student: Bottom. 

Second. 

Student: Left minus. 

Left minus right ok. So, just to show you what we have done, we have considered which                 

points so far? We have considered this point and these are the points that have been involved                 

in these finite differences right at these points. So, this blue and this red are involved     Hz             

together in giving me , this red and this blue over here they are involved in giving me E x    Ey                 

information right look at the first one. Time derivative of , I am talking about this guy          Ex        

over here and what are the values being subtracted?  



, that is this guy over here and that is this guy over(i /2, /2)Hz + 1 j + 1         (i /2, /2)Hz + 1 j − 1       

here right. So, it is very neat that when I am taking the difference and approximating the                 

value at a grid point in between. That is why I choose my to be discretized over there and             Ex        

not somewhere else. Similarly second equation you see it started on the left and        E ∂tĖy = ∂ y        

right and their differences giving me this. 

Student: Sir, you are taking both of these medium. 

Yeah, I am taking vacuum. 

Student: Vacuum. 

 is here. So, it is a vacuum then what is left?ε0  

Student: Equation. 

Equation 3. What becomes of equation 3; So, equation 3 alright. So, left hand side is simple                 

. What are the coordinates?Hμ0
˙ z  

Student:  (Refer Time: 18:24) i /2, /2)( + 1 j + 1  

. No problem now I have to write this in terms of.i /2, /2)( + 1 j + 1  

Student: Space. 

Space derivatives of and ; so, the first term, this is the first term and this is the second   Ex   Ey                

term. First term is /∂y.∂Ex  

Student: E x (Refer Time: 18:46). 

So, look over here I am trying to find out approximate derivative over here. So, first term           Hz        

is  derivative in space. So, what will the first term be?Ex  

Student: E x. 

(i /2, ) (i /2, )]/Δxμ H (i /2, /2) E0
˙ z + 1 j + 1 = [ x + 1 j + 1 − Ex + 1 j  



(i , /2) (i, /2)]/Δx− [Ey + 1 j + 1 − Ey j + 1  

 

 

So, once you keep this grid in mind it is very geometric you can just see what minus what and                    

so on right. So, now you can appreciate why we have staggered in such a way            E , , )( x Ey Hz     

because all the three equations are giving me an approximation at the correct point; when I                

take for example, if you look back here look at this expression over here. When I take and                  

look at the right hand side, the right hand side is This is an accurate           (z z/2) (z z/2)f 0 + Δ − f − Δ     

estimate of  at which point?f ′  

Student: z naught. 

that means, the average of the 2 points right. So, that is the reason why this staggeredz = z0                   

grid is chosen. So, when I take the spatial the spatial derivative of right; when I take the             Ey      

special derivative of with respect to x, the approximation is valid at the midpoint of those   Ey              

2 places which is where I have chosen to be. So, everything is at the midpoint of the        Hz            

other when I start taking finite differences right. So, this is the use of this Yee cell alright. 

Student: (Refer Time: 21:46). 

are not at the midpoint of the grid, but at the midpoint of the grid line not in theE  and Ex y                     

middle of the cell. 

Student: (Refer Time: 21:51). 

Yeah. 

Student: What about the. 

Correct. So, so, remember we have Maxwell’s equations which are continuously varying  Ex            

everywhere, we want to solve it numerically. So, we are forced to discretized it. So, you are                 

saying that I know  only.Ex  



Student: (Refer Time: 22:04). 

is only known at . What about ? add for example, you can ask whatEx      i /2, )( + 1 j    Ex   i, )( j        

would you do? 

Student: Discretized average. 

You could discretize it. 

Student: Average (Refer Time: 22:17). 

There are two ways. So, if I want , I can discretize it at half the grid size. So, I will get at that                        

point also or the smart away would be average, I know on the left hand side I know on           Ex         Ex  

the other side right. So, if I take the average of those two I will get an approximate value of                    

the electric field at . So, and remember these they are in your hands you    i, )( j      x and ΔyΔ        

chose how find you want to discretize it. 

Student: What would be their (Refer Time: 22:52). 

Direction of. 

Student: The E x and E y (Refer Time: 22:54). 

These are. 

Student: (Refer Time: 22:56) direction. 

There is no direction I mean I am assuming E I mean it is along a line. So, whatever                  Ex  

supposing (Refer Time: 23:03) value of 5, then I say along the plus x axis a value of 5; if you                     

get minus then pointing in the opposite direction. So, it is a scalar, it is not a vector because                   

the already because is a scalar right. So, x component of it is a scalar can either point   Ex          E
→

        

in the plus x or the minus x there actually. 

Student: (Refer Time: 23:22) something was. So, if I want to tell (Refer Time: 23:24) here the                 

point. 

Yes. 



Student: So, you should look it  and that (Refer Time: 23:29).and EEx y  

Yes. So, supposing we want to find out. So, good question I want to find out what is the value                    

of the electric field at vector now what will you do?i, ) ( j  

Student: Average. 

Average the x components average that is the and that is the x part of your electric field,                  

average the y components that is the y part (Refer Time: 23:50) net you have got a vector. 

Student: Average (Refer Time: 23:51) because the points (Refer Time: 23:53) right. 

Yeah. So, for example, let us say that here, I want what I am asking what is electric field over                    

here that is the question. 

Student: Somewhere in the grid (Refer Time: 24:05). 

Somewhere. 

Student: In the grid. 

You want somewhere inside the grid yeah. So, if I want to find the electric field at this vector                   

over here. So, I will take the x component to be the average of this and this right. So,               Ex   Ex    

that will give me the x part. 

Student: Sir then there will be points where we cannot do anything. 

Yeah, they will be point. So, let us come to it step by step. So, at this grid point what do I do?                       

I take the average of this in this there is also here and here I take the average of this           Ey    Ey         

and that pops in over here in to the second component right. So, this goes into the first                  

component now what are the vector E? I can repeat this at, I can repeat this at every grid                   

point easiest thing. So, basically what I have done is on a square grid on rectangular grid I                  

have got at every node location I have got the electric field; now you want even finer than                  

that then there are two things you could do. 

Student: Sir, but not (Refer Time: 25:03). 



Yeah you want somewhere inside the cell right. 

Student: In the middle also we can (Refer Time: 25:08). 

Yeah, you want to know now what is electric field let us at the location exactly you want to. 

Student: That also we can average. 

That also we can average. 

Student: But any other points (Refer Time: 25:15). 

Add any other point. So, what would you do? So, what is that mathematically procedure               

called? You all know it. 

Student: (Refer Time: 25:25). 

All of you know what. So, you want to find out the question is to find out the electric field at                     

some random point inside here like this. 

Student: (Refer Time: 25:34). 

What is that word, technical word? You all know it interpolation right. Once you know               

values on the grid, if you want finer then that interpolate ok. Now, typically this turns out to                  

not be a real issue, I mean because you are seeing it for the first time this question comes up                    

the discretizations typically they are so small, there on the order of lambda by 10  x and ΔyΔ               

lambda by 20, where the wavelength is lambda right. So, for example, if I have a 1 gigahertz                  

your mobile phone works at 1 gigahertz 30 centimeters. So, your discretization is 30              

centimeters say by 10 3 centimeters or even smaller than that let us say a 1 centimeter. 

So, every 1 centimeter you are anyway calculating the electric field. It does not vary so much                 

that you want to know at some very minute location. This is also it will turn out to be quite a                     

disadvantage of these finite difference time domain methods because you have to discretized             

everything so finely. So, that is why these are called brute force method; so, you just brute                 

force in space and time calculate everything even though you know do not need it finally, you                 

do not need it right.  



The radar cross section example finally, what do I want to know? I want to know the                 

tangential currents. So, that I can apply Huygen’s principle to find out the field everywhere,               

but when you do FDTD I have to find out the fields everywhere in space, from that only take                   

out what is along the edges. So, there is a lot of work that needs to be done to just get one                      

small thing. 

Student: (Refer Time: 27:05) time. 

What about the time derivative yeah; so, that is what we will talk about in the next slide how                   

do you deal with the time derivative alright. So, hopefully everyone is got this stencil very                

clearly in their mind set right. So, the main point is staggered by half a grid. 

Student: (Refer Time: 27:24) delta x (Refer Time: 27:25). 

Yeah (Refer Time: 27: 25) right. So, top minus bottom left minus right these are the                

keywords alright. 


