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This bring us towards the last aspect of today’s module some Corollaries of these theorems               

ok. So, the hard part is done; now let us make use of these theorems ok. 
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One very important part particularly in finite element methods is integration by parts ok. So,               

we will start with again something which you do in class 10 hopefully which was integration                

by parts for a scalar function. So, let us take two functions over here and ; two              (x)f   (x)g   

simple functions of one variable ok. You apply the product rule over here             dx
d(fg) = f dx

dg + g dfdx  

right two terms, everyone knows this. Now if I want to integrate this so what I am going to do                    

is let us say I do an integral from a to b and just rearrange the terms ok. So, this term over                      

here  ok.dx dx gdx∫
b

a
f dx
dg = ∫

b

a
dx
d(fg) − ∫

b

a

df
dx  

So, this is actually very familiar to you right. This is your integration by paths               

that is how you had seen it in high school ok. Minus integral abg dx g| gdx∫
b

a
f ′ = f a 

b − ∫
b

a
f ′                

derivative of first function, integral of second function dx right this everyone had seen in               

simple high school. In this course, we are going to upgrade this integration by parts to                

multiple dimensions. 

When I go to multiple dimensions, I can no longer use a ; I will upgrade to a gradient            d
dx        

operator right. I will no longer integrate just along the line, I may integrate a longer a volume                  

or a surface or whatever right. So, now the first step to do is I am going to take a scalar                     

function f of and a vector function A ok. Let us find out what the product rule says for the                    



case of the vector calculus over here. So, this is a product rule. So, I have its like the dot                    

product of two things over here right; this is a vector, this is a vector. 

So, I can take a dot product it is a legal thing to do, it may be a slightly complicated looking                     

expression and this does happen during computational electromagnetics which is why I have             

taken this example. So, product rule says first function derivative a second function; second              

function, derivative of first function straightforward. You can verify this by simply by taking              

components and doing it by the definition of derivative you will get the same , ,Ax Ay Az               

thing, but just to recap take the first function put it outside derivative of second function. 

Second function and derivative of first function, slight complication is I have to take care of                

products right. So, when I took f over here it is a scalar I am multiplying it by a scalar right.                     

So, this is a scalar A dot something this is again going to be a scalar, left hand side is dot                     

product of two vectors going to be a scalar right. So, it is a legal thing to do; that is one quick                      

way of checking whether you have done a correct product rule. Now what I am going to do is                   

I am going to take this whole left hand side and integrat it over some closed volume ok. 

So, this is a closed surface V and outside the closed surface is S. So, we have already seen                   

what to do with an integral of this kind right. So, its integration over a volume of the                  

divergence of something; divergence of something being integrated we just saw by which             

theorem? Gauss’s theorem or divergence theorem, it will become the outward flux of that              

vector. What is that vector? right. So, that is my right that I use the divergence     Af
→

      A.dSf
→ →

       

theorem ok. 

But that was only applied to the left hand side; I can also substitute the right hand side and                   

see what happens. So, if I substitute the right hand side what happens is the surface term over                  

here is as before ok, this term over here the first so the first term over here , this is as                 (∇.A)f
→

    

is integrated over the volume ok. Second term that has come on the right hand side,        .(∇f )A
→ →

         

both of these are volume integrals and this is a surface integral ok. I have written this term                  

number 1 and this term number 2, I have written term number 1, on the left and term number                   

2 on the right you could write it the other way. Term 2 here and term 1 there depends on the                     

problem that you are trying to solve. 



Why is this convenient? You will notice is for this surface and the volume that is being                 

enclosed in it this term over here talks about the values of f and A only on the surface right,                    

there is no volume integral over here. So, this term actually becomes a very important way of                 

imposing any boundary conditions in electromagnetic, because boundary conditions as the           

word suggested applies to the boundary of the problem. 

So, this is where boundary conditions can be applied and this remains a volume integral,               

another convenient thing here you have . So, it is I have to take the vector field and      .A∇
→

           A
→

  

then take its derivative. Here what has happened is I have changed it to I have taken I do not                    

have to take any derivative of ; is by itself. So, that can help in the case supposing is      A
→

 A
→

            A
→

  

a very complicated function, I do not want to take this derivative. So, I have transferred one                 

derivative from to f you can think of it that way integration by parts has given me a surface  A
→

                  

term and transferred one derivative. So, this is something that we will use when we talk about                 

the finite element method later on in the course. 

(Refer Slide Time: 06:08) 

 

There are a few identities of a vector calculus for example, there is for any             f∇ × ∇ = 0    

scalar function f ok; again there is a very simple way of proving this. How would you do it?                   

Well so we have is going to be in terms of components I can write it like this right and I    f∇                   

am going to take. So, I am going to take the vector triple product vector cross product. 



So, it is going to be that is what we write down first and first term over here. I will      x, , )(ˆ ŷ ẑ                

write down its corresponding to this guy. So, partial derivatives y and here is going to be ok.                  

So, let us just look at the x component first ok. So, what is this over here? So,                  )x( ∂
∂y

∂f
∂z − ∂

∂z
∂f
∂y ˆ

. So, these are the two terms I am going to do right. now there is a. 

Student: (Refer Time: 07:41).  

Student: (Refer Time: 07:43).  

It will be done I have only. 

Student: (Refer Time: 07:47).  

So, when we write this expression out over here, you can see that there are double                 

derivatives second order derivatives. But it is of the same type, there is a theorem from                

calculus which says that for a well behaved function; the order of differentiation does not               

matter. So, the in these in mixed derivatives as they are called this order does not matter. So,                  

these two terms are actually one and the same when you get a 0 ok.  

So, now, this same this was for the x component, you can apply to the y to the z you will get                      

0 0 0; you will get actually I should write this as the 0 vector. So, this is it says that the curl of                        

the gradient is 0 right; the next theorem is the divergence of the curl is 0 ( ).                .(∇ )∇ × A
→

= 0  

Same kind of a argument, you can apply calculate each term one by one take the divergence,                 

you will get it to be 0. Again this proof depends on the mixed derivatives being independent                 

of the order in which they are applied ok. 

So, this will also go to 0 and then there is the analog of a vector triple product; vector triple                    

product earlier I mean in high school, you have seen something like that right that          A
→

× B
→

× C
→

      

same thing is generalized over here. And some amount of algebra will give you this               

expression over here. This term we will encounter a few times; this is called the Laplacian                

operator right. So, del squared is the Laplacian operator. It occurs throughout engineering             

wherever there are partial differential equations ok. 

The final theorem that we will use is that a vector field is completely specified up to a            A
→

       

constant; if the curl and the divergence are specified ok. So, if you tell me the curl and                  



divergence of a vector field, the vector field is fully specified ok up to a constant because                 

these are all derivative operations. If I add any constant, it will not survive right. And so, this                  

is something that is used quite a bit in electromagnetics and we will use it further ok. 
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And that brings us to the final miscellaneous use of what we have learned so far which is to                   

get the normal to a curve ok. So, this is a useful trick to learn when we want to apply                    

boundary conditions, we want to get an equation for the normal right. So, I am going to take a                   

simple function y, x. So, this is ; it can be any kind of a function and what I want is I       (x)f                

want to get the normal ok. So, normal to this curve over here is what I want to get ok. So, it                      

does not seem very straightforward how gradient is going to help me in this. 

So, what I will do is I will introduce a new function and I will write it as ok.            (x, )g y        (x)y − f   

So, far I have not done anything new. So, this curve over here is given by is equal                (x, ) ?g y =    

to what should I set it equal to get this curve? Supposing I set it to 0, then or                  (x)y − f = 0   

. So, I have captured this curve in a now a function of two variables which is g. Now(x)y = f                    

you can supposing I talk about where k is some constant, what will happen to this      (x, )g y = k            

curve? It will just get shifted right. So, it will get like this right.  

So, these are contours or level functions level sets of this function over here. Now if I asked                  

you at this point over here, I want to find out the vector corresponding to the tangent at this                   



point ok. So, I have a function over here we all know that the slope along a curve is given by                     

the derivative right. So, this vector V over here is going to be given by this quantity over here                   

right, you can see that if I take the ratio of the y component to the x component what do I get?                      

 right that is the slope of this function over here.f /dxd  

So, this is there can be some alpha which multiplies over here. I just want a vector along the                   

tangent over here ok. So, this is something that we will keep. Now that I have got this                  g∇  

this sorry, now that I have got this . Supposing I want to calculate in what direction        (x, )g y          

does this function change the most perpendicular to this level curves right. So, it is going to                 

change the maximum over here so let us try to just find out. What is ? Look a little               g∇     

mysterious, why we are doing it, but we will soon see and I calculate this. Now ; g is a                g∇     

scalar so  will give me a.g∇  

Student: Vector. 

Vector right that vectors the components will be. So, let us take the derivative of this with                 

respect to x what will I get? because y does not depend on x if I take derivative       f (x)/dx− d             

with respect to y, what do I get? 

Student: 1. 

1; with respect to z, 0 ok. So, we can as well remove this 0, because we are just working in                     

two dimensions ok. So, this is my and this is my v. Now find out what is this?       g∇             .∇gv→  

what will I get?  equal to..(− f /dx) (df /dx)1 d + 1  

Student: 0. 

0. So, what we have found is that this quantity is actually normal to the tangent over         g∇          

here ok. So, given the curve over here, I constructed a two dimensional function g; I found                 

out its gradient and this gives me the direction of n right. So, this is a physical   g∇    g∇              

interpretation of gradient, it points in the direction of the maximum change of the function               

ok. So, this is again very useful for imposing boundary conditions in electromagnetics. 
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That brings us to an end of this module as reference; I will suggest that you read Chapter 1 of                    

a Griffiths excellent book Introduction to Electrodynamics alright. 

Thank you. 


