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Right; so, again simplifying assumption we can make is that the conductor is a very very                

good conductor, let us so assume perfect electric conductor. 



(Refer Slide Time: 00:34) 

 

That assumption we will lead to what, if you look at this geometry over here in a conductor                  

where do the currents lie? surface right; so, this implies surface currents right. So, if I were to                  

this was my one more here right this is my exaggerated of course, mu naught epsilon naught                 

over here, now I am going to have only currents on the surface right. 

So, I can draw like this. So, I am going to I can call those as pure surface current . So,                J s     J s   

then that integral will get reduce to; this three-dimensional integral will get reduce to a this                

3D integral will become 2D integral right, surface integral right. So, this will become a what                

form, so I can write down the electric field .−Ezs = Ez in  

And now in this I can write as . There is no the r part        ( G)J dz dϕ− Ez in = 1
jωε0

∮
 

 
∫
L/2

−L/2
∂z2
∂ G2

+ k2
s ′ ′        

of it has been absorbed as a delta function and it is become a pure surface that ok. So now,                    

this is a 2D integral. 

Any other assumption that I can make; by the way when we when we use this equation over                  

here we are constrained that r must belong to the conductor right otherwise this boundary               

condition is not going to be valid right. So, where can I choose my observation point to test                  

this I mean to write this question what can be a good choice? 



Student: On the surface. 

On the surface, what is the problem with the on the surface. 

Student: 0. 

So, I mean should I choose it like the, you have one choice over here, you can put on the                    

dotted line (axis of wire) or you can put on the surface itself. 

Student: Dotted line. 

Dotted line is a better choice because singularity of green functions can be avoided right, and                

the boundary condition is valid inside the conductor also field total field is 0 right. So, we                 

will choose the centre point axis so, what becomes like this again exaggerated drawing ok, so                

this is my observation point ok. 

And the R is going to be ok, and what is this, so this is my z axis over here right. So, what is                        

my value of R that I am going to write; so, R remember is the distance between r and r’. So,                     

the primed coordinates are where the current term is right its . So, is flowing all the           (r )J s ′   J s      

way up and down over here. 

So, that is primed coordinate. So, what is the location of the source point (x’,y’,z’), what is                 

the location of the observation point (0,0,z) right. This observation point I am choosing to be                

along the dash line right. And this guys points are (x’,y’,z’), but I am choosing these source                 

points to be only on the surface of the because a current is purely a surface current, so                  

.x′2 + y′2 + z′2 = a2  

In Green’s function I have the distance between r and r’, so that is what I am writing as                   

. So, if I fix my observation point where is this integral going; it is going R = √a z )2 + ( − z′ 2                 

over the entire surface and length 2D integral fine. So, totally cleared so far; can I make some                  

other simplifying assumption to because if I can reduce a 2D integral to a 1D integral, it                 

would be even nice a right hm. 

Student: (Refer Time: 06:39). 



Say again. 

Student: (Refer Time: 06:42) cylindrically. 

Cylindrically symmetric right, this problem is cylindrically symmetric; so, I need not            

consider all of these separate I can consider and equivalent I right. So, I can further do this    J s                

I can say instead of considering the pure surface current let me consider just a filamentary                

current over here right. So, I can call this to be some to use a different symbol, I will call this                     

some and my observation point to be here. So, even my value of R does not change is (z )I ′                   

this the same right. So, that will collapse this contour integral over here in to I, there are these                   

constants that will appear which you can take care right; defined over the entire surface          J s       

so, all that is there. 

Student: Sir, now we calculated value by of these enforcing. 

They calculating; we are enforcing the boundary condition along the centre point of the axis. 

Student: Finding the values of (Refer Time: 07:42). 

Finding the value of what? 

Student: I. 

No, the I continues to live on the surface of the conductor because that is where it is that is its                     

support the surface of the conductor right, I am enforcing this equation at the observation               

points which is my choice. So, I could have chosen on the surface, but that would I given me                   

a singularity in Green’s function, I choose instead the axis of the cylinder because there I will                 

always a have non-zero capital R; it is our choice and we choose it in a way that we get to                     

avoid maximum pain fine ok. 

Now so, what happens to this equation? So, this equation then becomes  

( G)I(z )dz− Ez in = 1
jωε0

∫
L/2

−L/2
∂z2
∂ G2

+ k2 ′ ′  



(z ) dϕI ′ =∮
 

 
J s ′  

We are assuming all the currents are purely z directed there is no screw component vertically                

in it. Because this was the 2D integral and this is now a 1D integral.  

Student: For d z prime. 

d z prime is still there; so, what I am saying is this over here? 

It is a pure surface correct, and it is the same for all . Now looking at this equation over              ϕ        

here you may as well I mean if I did not tell you that the configuration was like this and I told                      

you consider a symmetric situation like this where I have this; let me draw it again right this                  

was my current over here, supposing I called it like this, it’s the same right whether I put the                   

once, I have got it down to one line of observation and one line of current right this is the                    

observation and this is the source. 

Once I boil it down to two lines it does not matter where the origin is because everywhere                  

inside this over here I have capital R which is the distance between these two. So, may as                  

well (Refer Time: 10:54) and put the source here and observation over here ok, it is a                 

symmetric situation over here. No, we are not putting the source and observation on the same                

line, we have always separated by A; now. 

Student: No. 

Right; so, this going from here to here is just not physics, but math mathematically its                

equivalent ok, physically you can still think of it like this and that is your what should I say                   

that that is your I mean the integral equation that, we have got as a result over here is the final                     

form. It just helps in evaluating these integrals ok; I mean it’s not a big deal. We are not                   

going to go ahead and calculate it in closed form right now, but is just a simplification. 

Student: (Refer Time: 11:50). 

z’ goes along the origin yeah, along the z axis itself that is all and the observation point is                   

now a distance a away here, totally symmetric situations. Any way this equation that you get                

is what is called the Pocklington’s integral equation alright, so it is named after the person                



who came up with this. So now, you can appreciate what would happen if this you know, I                  

did not make the assumption of very thin conductor, then I would not get a 1D integral, I                  

would have to solve it over the  coordinate also, so it is a two-dimension integral. ϕ  

Then if I made the further assumption that it is not a perfect conductor, then I can no longer                   

make the approximation that the currents are on the surface, but there living in the volume                

right. So, then I have a full 3D volume integral which is fairly involved to solve ok. So, that                   

is why we are, I am making taking you to the simplest integral equation that we can solve                  

over here there are right ok. 

(Refer Slide Time: 13:06) 

 

Now, this equation over here we will just write it once again so, this  

(z )K(z, )dz (z)− ∫
L/2

−L/2
I ′ z′ ′ = Ez i  

This whole expression over here , I am going to call it the kernel some     ( G)1
jωε0 ∂z2

∂ G2
+ k2           

capital K so, this has become this is in short form over here. So, this is a integral equation                   

which in the module on integral equations if no we have seen how to solve this. So, what                  

would be the first step over to solve it using MoM; the Method of Movements objective is to                  

find J or I in this case. So, step 1 would be. 



Student: Discretize. 

Right discretize right, so this is my current, from -L/2 to L/2 chop it up like this right. So, I                    

can say that ; I can say it has some constant value and some kind of a   (z ) F (z )I ′ = ∑
N

n=1
In n ′          In       

pulse basis right. So, this is a pulse right, so, what I am doing I am doing pulse basis right and                     

then what do we do? next step this just this supposed to be a revision for you step 2 would be                     

testing. 

Student: Testing. 

Testing by delta function right testing by ; so, what is that mathematically how do I do in                  

mathematically. 

Student: Employed. 

Right so, both left hand and right hand side of functions of z right so, I have to take a                    

and integrate over which co-ordinates, dz right. So, that is or that is your pulse(z )δ − zm                 

basis and delta testing ok. Repeat for all m that gives me a n cross n system of equations                   

right. 

So, that is my step 3 solve or ’s ok. So, you see this part was really easy because you have        In              

already studied these integral equations over here. Now you could have done better kind of               

basis functions right, you could have done for basis functions you could have done triangular               

basis functions, you could have done entire domain basis functions for example, Fourier             

series. 

Student: Fourier series. 

Right you could have done a Fourier series basis functions in fact for a antenna problems                

Fourier series is may give you better convergence faster because in general the waves look               

like sinusoidal functions because they coming from the back side from a transmission line.              

So, they are already sinusoidals the antenna distorts is a little bit, but the deviation may not be                  

much. So, you make get faster convergence with Fourier series and so on, and for testing,                



testing its you could do delta testing or you could do Galerkins method where you use the                 

same basis function right. 

So, the field is so, MoM in general does not tell you which one to do. So, if you see you                     

know a paper or text book saying we solve it using MoM, we should ask what was the basis,                   

what was the testing it is not necessary that is always pulse basis and delta test ok. So, so far                    

we have not really spoken too much in detail about this how do we calculate this right hand                  

side, the incident field right. 


