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 (Refer Slide Time: 00:14) 

 

Right. So, we will continue our discussion of this Hertz Dipole. The only sort of a thing to                  

remember about this hertz dipole it was a very very small current element and because it is                 

very small, you can assume current is approximately constant thing right. 



(Refer Slide Time: 00:32) 

 

So, what are the steps that we did? Given the given the current we could calculate the                 A
→

 

vector using this relation over here, convolution of unknown current with Green’s function I              

got I got I calculated little bit cleverly making use of both Cartesian and polar A
→

   H
→

             

coordinates right you are something like .r̂ × ẑ   

So, I have mixed up these coordinate systems and I have got a very nice expression over here.                  

And we noticed that far away the fields go as ok. Then we said that the electric field is          /r1           

simple to obtain once I get the magnetic field just by taking the curl right. So, if I now go to                     

take the curl of this expression, you can sort of see what coordinate system will I use?                 

Spherical right because it has r theta phi everything is there inside it. 

So, spherical is a best thing do you think it will be a very beautiful expression right it's going                   

to have everything in it right. So, I am not going to write down that curl operator and derive                   

it, but this is the whole expression over here. 



(Refer Slide Time: 01:32) 

 

So, this is the magnetic field which we already saw first expression and the second is                

obtained a sort of when I take the curl of this I get two components. So, there is a this was in                      

the phi hat direction then I have a and an ok. So, just to remind you that this is my        θ̂    r̂           r̂  

direction right. Which way is? This is my and this is my . So, is pointing downwards        θ̂       ϕ̂   θ̂     

over here and   is which way? ϕ̂  

Student: (Refer Time: 02:15). 

Into the board right. So, this is my phi hat that is what this coordinate system looks like that. 

Student: (Refer Time: 02:26) we want to ask that (Refer Time: 02:27). 

 was written.r̂ · ẑ  

Student: Dot. 

Sorry cross  was written as.r̂ × ẑ  

Student: Sin theta. 

. ϕ  sin θ ˆ  



Student: (Refer Time: 02:42).  

Right direction between the I mean the perpendicular direction is and the angle between           ϕ      

them is . So, right the unit vector some is one fine. So, this is the especially you  θ   sin θ       r| |z||           

get you notice that the expression for the electric field is fairly scary looking, but this is the                  

exact expression that is there are apart from the fact that the length of the dipole is small there                   

is no other approximation here right.  

So, looking at this the first thing to do is let us take a simple simplified version of this, when                    

we say that we are going to look at what are called far fields ok. In this problem very naively                    

I am going to say far field is when ok. There are more refined definition of this we         r >k > 1           

will come to them later. Under this approximation, what happens to the magnetic field? I               

have two terms right in this bracket.  

Student: (Refer Time: 03:44). 

I will just keep the first term because right. So, in net case the magnetic field        r >k > 1          

magnitude becomes  

 Δz/(4π) jk e /r  ϕ  H
→

= I −jkr sin θ ˆ  

What happens to the electric field? From how many terms are there? 5 terms right. So, I get                  

to keep I should keep that most leading term will be just one of them which is the one term                    

right. So, this will become  

Δz/(4π) jωμ e /r  θE
→

= I −jkr sin θ ˆ  

So, that is why we say that in the far field, the fields are going right in amplitude at least               /r 1      

has a function of r is going is ok. So, we have already made one comment about how this        /r1             

is different from your Coulomb's law right ok. Anything else that you can notice from here?                

Besides, there is a lot of interesting physics happening over here. So, what is its saying? And                 

when I score stands far away from the source what do the fields look like? 

So, which way will the Poynting vector be? So, Poynting vector 



  /2 ES
→

= 1
→

× H
→

 

So, which way is my Poynting vector? So, my Poynting vector is along and my electric             r̂     

field is along my magnetic field is along . What kind of a configuration is this what does   θ̂        ϕ̂           

it remind you off? 

Student: TEM. 

TEM its a Transverse Electromagnetic wave because the electric field and magnetic field are              

perpendicular to each other and they are perpendicular to the direction of power transfer. Isn’t               

that also the case in a plane wave? 

Student: Yes. 

Yes right. So, this is your TEM wave. No component of electric or magnetic field in the                 

direction of propagation. So, this is the simplest kind of wave that we have studied right. In                 

fact, it looks identical to the 1D plane waves you have studied, the only difference is that this                  

a  in the denominator and so, we call this as a 3D plane wave right./r1  

So, what do you expect will happen to this Poynting vector? You already noted that it's going                 

to be in a direction in the direction I mean in the direction what will be the magnitude?        r̂      r̂        

So, this is going to be a half of this whole thing is going to be there , is                 Δz/(4π)I  − j × j   

going to give me a . So, I am going to have a  right. So,  what else?+ 1 ωμk ωμk  

Student: (Refer Time: 07:25). 

Pardon me. 

Student: (Refer Time: 07:26). 

 that is why  becomes .H
→ * j − j  

Student: (Refer Time: 07:31). 

Whole square correct and in what direction? direction right I think I have got all    θ /rsin2 2     r̂          

these terms right now. So, I have got a power that is going as ok. So, you should keep              /r1 2       



this in mind this have derived for hertz dipole, but this is true for any antenna structure in                  

general far away from the antenna. Even if you take the base station I mean in the mobile                  

base station and you go far away from you will find the fields coming from it are of this form.  

So, if I integrate if I want to find out how much is the total power leaving this right. So, what                     

would I do? I would integrate supposing I wanted the total power I would integrate this                

Poynting vector over what? A sphere of radius some right. So, if I did for example, ds over         r           

here. So, you can do this calculation right this is not a very difficult calculation find the                 

surface element on a sphere and integrate this is going to be what is your  over here?sd  

Student: (Refer Time: 08:49). 

I mean a little bit more generally. 

Student: . drr  

. So, when you integrate this for constant I mean over you will get dr r  dθ dϕ  r sin θ               πr4 2  

which is a surface area right. 

Student: (Refer Time: 09:14). 

Sorry there is no dr. So, it's going to be . So, when I integrate this over the           dθ dϕ  r2 sin θ         

surface what will happen to the  square term?r  

Student: Cancels out. 

Cancels out. So, the answer I mean we can do this integration, but it's not very interesting                 

right the answer is independent of . So, what does that tell you?r  

Student: (Refer Time: 09:44). 

No matter where what I mean this is also mixed physical sense no matter where I integrate                 

from, the power leaving this sphere should not change right. So, that is what I get this is just                   

confirming our intuition. Because a sphere encompasses the entire studied in, so, the         π4      

power if I calculate because it encloses the dipole. So, I whether I integrate here or here the                  



power that is leaving the surface going to be the same. Power density on this wave will be                  

different that is captured by S. 

And you can see as you get closer at smaller r power density increases because its right.                /r1 2  

The other thing to note over here is this S expressional over here its purely real. Even though                  

there was a good chance that something could have something could become imaginary over              

here because they are all is and so, all in the field expression this is purely real right. So,      j               

this is its what circuit element has purely real power dissipated in a? 

Student: Resistor. 

Resistor right. So, this is like if you want to make a circuit equivalent of its like power that is                    

going through a resistor once its goes its goes. no need to recover. So, this is also called . So,                    

these are called radiation fields and this is called radiated power.  

Student: (Refer Time: 11:08). 

No, I think these are very simple sort of confusion over here. This is the power Poynting                 

vector. This is the power density right. So, this is total power I am calling it total power                  

integrated over sphere if I go very, very far away the power is still there it's going as                  /r1 2  

right even though it becomes very very small, I am also integrating over a large area if you                  

want being over that way right. So, it's going to be there. 

Student: One point (Refer Time: 00:40).  

Pardon me. 

Student: (Refer Time: 11:42). 

Yeah. 

Student: (Refer Time: 11:45). 

So, if I this is my antenna over here there is some power over here, if I go further over here                     

right. So, the power is this I mean let us say a Poynting vector the Poynting vector is going as                    

right. So, it's going to drop. So, its low over here it's even low over here the power is/r1 2                    



dropping that is ok, but now if I integrate over this whole thing over here I get the same                   

number that is what you expect right you go far away from this source the field intensity                 

drops. So, this is your near field consideration now not surprisingly that the other thing that                

we should look at is. 

Student: (Refer Time: 12:24). 

(Refer Slide Time: 12:26) 

 

Also this is far field the other thing we should look at is what happens in the near field right.                    

So, if the near field what we can say is that, . So, I am looking at regions very close           r <k < 1          

to the antenna right. So, what happens to these expressions? So, for an example which           H
→

     

term will I keep? 

Student: Second term. 

The second term right. So, right. So, I will get , j and j cancels off. So, I     /kr >1 > 1       Δz/4πI         

get a sorry there is no k it will become the and cancels off. So, I get a  /rk           j  k        

. So, magnetic field anyway is in the same direction. Electric field let us see/r   ϕ  e−jkr 2 sin θ ˆ                

what happens electric field which term should I keep? 

Student: Only the. 



Only the right. So, I am going to get when I have and  /(jkr)1 2        Δz/4π jωμI     /(jkr)  θ1 2 sin θ ˆ   

then I have a ./re−jkr   

Student: (Refer Time: 14:05) ok. 

And one more term is there this is . So, I have a , then I have a and I have a        μ      ωμj      /(jkr)1 2     

along direction ok. So, in contrast to the far field case the magnetic fields are goingcos θ   r̂                 

as  the electric fields are going as  right reminds us of what from electrostatics?/r1 2 /r1 3 /r1 3  

Student: Dipole. 

The electric field due to dipole right. So, this is acting like it seems like a dipole right. So,                   

now, if I calculate the Poynting vector in the near field same thing I will do .                /2 E1
→

× H
→ *  

What do you expect? 

Student: (Refer Time: 15:04). 

For a lot of terms right, but I mean what are the essential features over here I should get a                    

What directions will I expect? So, there is a is going to give me a? right. So, I/r .1 5            θ̂ × ϕ̂        r̂     

am going to have and then I have a which is going to give me something along    θ rsin2 ˆ        r̂ × ϕ̂          

, it was along and a bunch of constants which are not so important.θ̂  θsin 2    cos θ × sin θ   θ̂            

Well what is important about these constants are let me just write it over here you said this as                   

a j into something ok. You can see that because both the terms of they have a ,          E
→

× H
→ *      E     j  

has no right. So, the one j term is going to remain over here right. So, what are the keyH    j                    

features is  then it is purely imaginary right./r1 5  

So, this is different from your previous case. So, these are called your reactive fields, now if I                  

ask you if I integrate over some sphere over here what should you get, will it be dependent                 r   

or not? So, it should be 0 why should be 0 that will not be 0. 

Student: (Refer Time: 17:12). 

So, one answer is that it will be the integral will be r dependent it should not be dependent                  r   

what is the catch? 



Student: (Refer Time: 17:18). 

No I am not integrating over the source the source is there and some small distance away                 

from a time integrating. 

Student: (Refer Time: 17:26) we have this. 

No. So, actually the thing is that when we wrote down these electric and magnetic fields we                 

made the approximation . Now if I want to find out the total power leaving the sphere   r <k < 1               

I should include all the terms right, if I do that I will find out that the power is independent of                     

and that makes the physical sense the I want power leaving at right should we will notr                   

change. But here I am taking only out of these 5 terms I am only keeping 2 terms. 

So, there will be some sort of mismatch over here that is ok, but we are not I mean the main                     

point is we are not going to integrate this term over the whole sphere this is just telling us                   

what is the dominant part of the Poynting vector what is the main contribution to Poynting                

vector in the near field. So, then this fact that it is purely imaginarily and reactive reminds us                  

of which circuit element? 

Student: Inductor. 

Inductor or capacitor right. So, what happens in the near field of any antenna is that the                 

energy keeps shuffling between the electric field to magnetic field like in LC circuit, energy               

goes from an inductor to capacitor and back and forth same thing happens over here. So, this                 

I mean back and forth keeps happening and there are you heard of these wireless power                

transfer applications right those work best when you do it in the near field because you are                 

able to access this energy by the time you come to the far field its becomes purely real. So,                   

it's only a resistor drop, but here this energy can be exploited. So, for example, these you                 

know toothbrush chargers and all, you would block it over there. So, it is the stuff is                 

happening in the near field we are able to transform more power. 

Student: (Refer Time: 19:13).  

There is one more. 



Student: (Refer Time: 19:15). 

Negative signs may be there I mean this is once you have consensus over here. 

Student: (Refer Time: 19:19). 

.θ̂  

Student: (Refer Time: 19:23) r square (Refer Time: 19:24). 

Its . So,  that is  right. r̂ × ϕ̂  r̂ × ϕ̂ − θ̂  

Student: (Refer Time: 19:41). 

Where do you see a ?j2  

Student: (Refer Time: 19:50). 

Well that the expression is correct because in the other case what term do you get ? ϕ̂ ×  

Student: (Refer Time: 20:01). 

No again what is ? . But also minus term there know. θ̂ × ϕ̂ r̂   

Student: Full minus sign. 

That is the full. So, all those consensus are inside this bracket we do not care about it relative                   

to these two there is a minus sign ok. So, reactive fields and energy is transferred between the                  

E and H fields. 

Student: (Refer Time: 20:37) power is another side. 

Yeah. 

Student: (Refer Time: 20:40). 

The total power what we conserve. 

Student: (Refer Time: 20:44). 



The Poynting actual Poynting vector will be conserved regardless of what you choose to               

integrate ok. So, in a course on the antenna theory we would spend a lot more time deriving                  

this and understanding all the features, we want to sort of get to the CEM Computational                

ElectroMagnetics part of it. So, this is just by means of giving some introduction to it. 


