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Lecture 09:
Elementary Signals (3) - Is ejω0n always periodic?

(Refer Slide Time: 00:16)

Let us continue from the last lecture. So, we were looking at discrete-time sinusoids and the difference
that we saw was, ej(ω0+2π)n = ejω0n. Therefore, ω1 = ω0 + 2π > ω0 yields exactly the same signal. Even
though the frequency is different as far as the signal is concerned, you get the identical signal back and
we saw that ω0 = 0 and ω0 = 2π both yield the DC sequence.

But as ω0 increases, you expect the rapidity of the oscillations to increase, but looks like it is going to
slow down at some point and come back to the DC sequence and this is easily seen in this example.

(Refer Slide Time: 01:26)
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So, this is from Oppenheim’s book. So, we are looking at the cosine signal here. So, this is ω0 being

0 and then the frequency is increasing, as we go along. This is cos
(π

8
n
)

, this is cos
(π

4
n
)

, this is

cos
(π

2
n
)

and so on and this is cos(πn), cos(πn) is (−1)n. So, this is 1, −1, 1, −1 and so on.

And now, ω0 keeps on increasing beyond π and this is cos
(3

2
πn

)
and this is further increase in ω0

numerically. So, this is cos
(7

4
πn

)
, this is cos

(16

8
πn

)
. And clearly you see beyond π, the sequence,

the rapidity of the oscillations slows down and when you hit 2π you are back to where you started off,
namely ω0 equal to 0.

So, this is a simple example that illustrates the fact that, as you increase ω0 the rapidity does indeed
increase, but unlike in the continuous-time case, looks like it reaches highest frequency of oscillation
and then the signal starts to slow down and then comes back to the DC sequence on ω0 = 2π.

So, this can be kind of captured in this. So, this is ω0; ω0 belongs to the interval −∞ to ∞; however,
as far as the signal is concerned, because ω0 and ω0 + 2π are the same frequency in terms of the signal
that is being produced, you can replace ω0 by ω0 + 2π. And if you plot 〈ω0〉2π,this is what you get.

So, this is 〈ω0〉2π and this is the behavior of the modulus function with respect to 2π. And moment you
take mod, it is clear that you need to consider values of ω0 only between 0 and 2π because any value
outside this interval can be mapped to within this range.

The other way of looking at this is rather than restricting it from 0 to 2π, you can go between −π and
π. So, the other graph that shows this, is this. So, this point is pi, this also is π, this value is −π. As
ω0 becomes greater than π, you wrap it and then it maps a point here, maps to a point here.

Let me call this as ω1 and ω1 belongs to the interval −π to π. And looking at ω in this range between
−π to π, get a feel for why the signal frequency slows down. If you know plot mod ω1 then of course,
from 0 to pi it is the same curve nothing changes because it is positive, but if you look at the value of
ω1 beyond π, then if you look at the modulus then the curve looks like this.

So, this also gives you a feel as to why the frequency decreases. So, from 0 to π, the rapidity of the
oscillations increases. At π, you reach the highest frequency and then beyond π, the frequency actually
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decreases, as you can see from the modulus function that is taking the absolute value of ω1.

(Refer Slide Time: 06:40)

So, because ω is going to be restricted in the interval 0 to 2π, it is good to plot that on a circle rather
than on a line. So, this is ω0 = 0. Here, ω0 is increasing, the oscillations are also increasing.

So, this happens till ω0 reaches π. So, this is ω0 = π, π is also the same point as −π. Now, beyond π,
ω0 is still increasing; however, the rapidity of the oscillations decreases and it keeps on decreasing till
you hit 2π when you now reach the DC sequence.

So, this is another way of looking at how things are as ω0 changes from the interval 0 to 2π and typically
we will be focusing on ω0 in the range −π to π. So, this is one distinct difference between discrete-time
and continuous-time. Recall that in continuous-time, ejΩ0t and ej(Ω0+2π)t; these two are two distinct
exponentials, they are not the same.

So, this is the first difference. The other difference again, this is a review for you. Is ejω0n always

periodic? Remember ejΩ0t is always periodic with period T =
2π

|Ω0|
. Now, let us consider the discrete-

time sequence, we want x[n] = ejω0n, under what conditions is x[n+N ] = x[n]?

(Refer Slide Time: 09:45)
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All you need to do is you need to see under what conditions, ejω0(n+N) = ejω0n . So, clearly you require

ejω0N should be ej2πk. Therefore, you require ω0 must be the same as 2πk or
ω0

2π
=

k

N
.

And
ω0

2π
, the commonly used notation is to denote this as f0. So, if and only if f0 =

k

N
. So, this means

this is a rational number. Only in these conditions, x[n] = ejω0n is periodic with period N . Now, the
further inferences can be drawn from this development.

(Refer Slide Time: 11:43)

Recall that ω0 is really 〈ω0〉2π, which means that f0 which is nothing but
ω0

2π
is really 〈f〉 what?

Student: 1.

mod 1, right; because, if ω0 is mod 2π since f0 =
ω0

2π
, f0 has to be in the range 0 to 1 or between?
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Student: −1

2
.

−1

2
to

1

2
. So, this means that f0 which is 〈f0〉1, remember, f0 for the exponential to be periodic has to

be of the form
k

N
and k takes on the values 0,±1,±2, and so on, but because f0 is the same as 〈f0〉1,

then you need to restrict yourself as far as k is concerned to the range, what is the value of k that you
need to consider?

Student: (Refer Time: 13:22) −N
2

(Refer Time: 13:24).

−N
2

to
N

2
that opens up for N odd, N even and so on. An easier way of stating that would be 0 to

N − 1. So, this must be in the range 0, 1, . . . , N − 1 because, if k were equal to N then that is same as
k taking the value 0. So, this implies that k is really 〈k〉, k mod?

Studemt: N .

N , all right. For example, if you take N = 4.

(Refer Slide Time: 14:20)

Remember, we are now looking at complex exponentials that are periodic. So, if you consider N = 4, I
am now plotting the various frequencies that are possible assuming that the periodicity is 4. So, which
means k needs to take the value 0, 1, 2 and 3.

Therefore, if k takes on the value 0, you will have ω0 here. So, this is k = 0 and this is k = 1, 2 and
3. Therefore, you have ejω0n. Now this is, in this particular case, we have N to be 4. Therefore, let us
look at all the possibilities. So, this can be written as ej

2π
N
kn.

So, these are the various complex exponentials that are possible for period N and in this particular case,
we are going to let N = 4. Therefore, we have ej

2π
N
.0.n. So, this gives you the first complex exponential.

Then, ej
2π
N
.1.n, ej

2π
N
.2.n, ej

2π
N
.3.n.
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(Refer Slide Time: 16:42)

So, these are the four distinct exponentials that are possible here. Note that when k =
N

2
when N is

even, then the frequency corresponding to that particular value of k is; when k is
N

2
remember, we are

looking at the set of complex exponentials ej
2π
N
.k.n.

So, let me call this as xk[n] and k itself will take on the value 0, 1, 2, . . . N − 1. Here I am considering
the case as a specific example, when N is 4. So, I get these four distinct exponentials, whatever distinct

means we will make it more precise. So, when N is even, when k =
N

2
, what will be the signal that is

produced?

Student: (Refer Time: 18:07).

So, in this particular case, you get ejπn. Because, in this if you put k =
N

2
where N is even, you will

get ejπn. So, remember this also corresponds to the highest frequency π which is also the same as −π.
Because k is the same as 〈k〉N , the index k = 3 also corresponds to the index k equal to, what is one
other k that you can immediately think of in the place of 3?

Student: 7.

7.

Student: Minus 1.

7 also is correct. −1 also is the right answer. So, this also corresponds to k = −1, this corresponds to
k = 2,−2 and this corresponds to k = −3. And these are called a set of harmonic sinusoids. These

sinusoids are set of sinusoids that are harmonically related. And when N is even, when k hits
N

2
, you

will reach the highest frequency, namely π.

On the other hand, suppose N = 3, then xk[n] = ej
2π
3
kn. And here, k takes on the values 0, 1, 2 and if

you plot these points on the circle k = 0 will correspond to this frequency, k = 1 and k = 2.
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So, these are the three values of k and these are the values of k.ω0 that I have plotted on the circle here.
Notice that in this particular case, you do not hit the highest value of π.

(Refer Slide Time: 21:16)

So, remember when N is odd, what is the closest integer that gets you to π? What value of k gets you
a frequency that is closest to π?

Student: (Refer Time: 21:28)

N − 1

2
. So, k =

N − 1

2
produces a signal whose frequency is closest to π. The other value of k that will

also produce something that this closest to π will be?

Student: N + 1.

N + 1

2
and what will be the actual frequency? So,

2π

N
k =

2π

N

(N − 1

2

)
and here you have

2π

N
k =

2π

N

(N + 1

2

)
. So, the actual frequencies are π

(
1− 1

N

)
and π

(
1 +

1

N

)
. So, these are the two sinusoids

whose frequencies are closest to π. You do not actually hit the π frequency because N is odd.

Therefore, if in general if x[n] = x[n + N ], then we produce sinusoids of the form xk[n] = ej
2π
N
kn for

k = 0, 1 . . . N − 1. And then, we have each of these sinusoids is periodic with period N and we have N
distinct sinusoids.

Now, let us kind of understand this a little more. So, we need to restrict ourselves only in the range
0 to 2π. So, we start off with ω0 = 0 and then we keep on increasing ω0. For every value of ω0, you
produce a sinusoid and ω0 varies continuously from 0 to 2π.

So, as ω0 varies continuously from 0 to 2π, you produce uncountably infinite different sinusoids. In this
range, among these uncountably infinite number of sinusoids, there is one finite set of sinusoids, namely
ej

2π
N
kn, among these uncountably infinite set of sinusoids, this set of sinusoids is the only one that is

periodic with period N .
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Whereas in the continuous-time case, you have ejkΩ0t, this is the counterpart there and then you let
k in the range −∞ to ∞. So, these are harmonic sinusoids in the continuous-time case, you have a
countably infinite set and all of them are periodic.

The general case is you have ejΩ0t and now you can let Ω0 in the range −∞ to∞, Ω0 varies continuously
in this range. Again you get an uncountably infinite number of sinusoids.

Here, every single sinusoid is periodic. In the continuous-time case, every single sinusoid is periodic.
Whereas in the discrete-time case, as you let ω0 vary from 0 to 2π continuously, you get an uncountably
infinite number of sinusoids, but among them only this finite set of sinusoids, namely N in number are
periodic. So, this kind of, reinforces the similarities and differences. We made the statement, we have
N distinct sinusoids. So, this is a rather descriptive term we will make this term more precise and see
what distinct really means.
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