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-Examples of going from Xs(Ω) to X(ejω)

(Refer Slide Time: 00:23)

Let us continue with sampling. So, Xs(Ω) is the impulse train sampled signal’s spectrum. Two things
happen, scaling by 1/T and periodic repetition with period Ωs. And this, if you replace Ω by ωFs, then
you get the DTFT. So, what this step does is, it takes the Ωs periodic spectrum and you scale it by Fs.

And, scaling by Fs converts the Ωs periodic spectrum to a 2π periodic spectrum which is what the
DTFT is. And, that is the connection between the sequence whose values are samples of the underlying
continuous time function. The samples are taken T apart. But, when you plot it as a sequence, you
plot them as a sequence of numbers with the independent axis being n = {0,±1,±2, . . .}.

And, that sequence of numbers has DTFT X(ejω) which is 2π periodic. And, that spectrum is intimately
associated with the impulse train sampled signal’s CTFT, which is Ωs periodic by a scale factor of Fs

which is the compression of the frequency axis. Compression if Fs is greater than 1 and expansion if Fs

is less than 1. And this is all consistent. Remember, if you are going to scale the frequency axis by Fs,
in the time domain, you will inversely scale.

If Fs is the scale factor in the frequency domain, 1/Fs will be the scale factor in the time domain.
Therefore, this is really xc(tT ) and notice that yc(0) = xc(0). And yc(1) = xc(T ), yc(−1) = xc(−T ).
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So, this compression by a scale factor of Fs in the frequency domain, when I say compression, I am
assuming it is the case where Fs is greater than 1 which is the typical case that appears in practice.
Therefore, this compression by a factor of Fs in the time domain leads to an expansion in the time
domain. And, the expansion in the time domain is such that the expansion factor causes the samples
that were originally T apart to now be 1 second apart.

So, everything falls in place and this is consistent to the fact that the sequence are placed one apart.
Because, the independent axis is n and the samples are one apart, {0,±1,±2, . . .}. Hence, you can
think of yc(t) as doing an expansion in the time domain and then taking samples one second apart. If
you did that, then your spectrum will be 2π periodic. So, all of this is consistent with what we have
seen before.

(Refer Slide Time: 04:29)

And, just to complete the picture, so this is already in my notes and recapping this point. So, you have
a bandlimited signal xc(t) whose spectrum is this. And then, when you sample this, you will get Xs(Ω).
So, you have a scale factor of 1/T and then this periodically repeats, the periodicity is Ωs.

And, now we want the spectrum of the underlying DTFT. So, this now is X(ejω), this is also periodic
only that its periodicity is 2π. Of course, the way I have drawn this, for ease of comparison, I have
made this 2π line up with Ωs. So, clearly the second of the third plots are not to the same scale.

And the other way of looking at this rather than looking at the Ω scale, you can also look at the F scale
which is nothing but Ω/2π. And this point continues to be Ωc. So, we are compressing by a factor of
Fs. Therefore, this frequency which was Ωc, now becomes Ωc/Fs.
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(Refer Slide Time: 07:08)

Note that, Ωc = 2πFc. And hence, Ωc/Fs = 2πFc/Fs. And this can be written as 2πfc, where fc = Fc/Fs.
And hence, if your independent axis is f rather than ω and ω and f are related by a scale factor of 2π
therefore, this becomes +fc.

So, this is how the analog frequency in Hertz is mapped to the digital frequency f by this normalization.
And, f sometimes is also called as the normalized Hertz. Therefore, whatever your sampling frequency
is and if you know the true frequency in Hertz, if you divide that by the sampling frequency, you will
get the normalized frequency.

Again everything is consistent, ω is dimensionless number because it is the argument to the exponential.
Therefore, f also is dimensionless because it is ratio of Fc to Fs; Fc is in units of Hertz, Fs is in units
of Hertz. Therefore, the f scale is again a dimensionless quantity. And just to illustrate this with a
sinusoid, if we had xc(t) = cos(Ωot).

This in turn is cos(2πFot), because Ω0 = 2πFo. And then, if you think of the sequence x[n] which
is obtained by taking uniform samples of the underlying continuous time signal. Remember, this x[n]
is not the impulse train sampling, it is just the sequence of numbers taken T apart therefore, this is
xc(nT ).
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(Refer Slide Time: 10:07)

And, this is nothing but cos(2πFonT ), replace t by nT . So, this is this which in turn is cos(2πF0n/Fs),
T after all is 1/Fs. And, we know that F0/Fs = f0 and 2πf0 = ω0. And hence, if you have a sinusoid
with frequency Ω0 and if you sample it at T apart, you get a sequence which is cos(ω0n).

And ω0 = 2πf0 and f0 = F0/Fs. So, you take the true frequency, normalize it by the sampling frequency
to get the normalized frequency. And, then 2π times the normalized frequency gives you the radian
frequency.

Now, we will do few examples in which, we are going to take the underlying continuous time signal and
then get its continuous time Fourier transform. Then, we will periodically repeat it and scale it by 1/T .
And, then we will replace Ω by ωFs. This should give us X(ejω) based on whatever we have developed
so far. And we will apply this to actual examples and then verify we get what was known to us before.

(Refer Slide Time: 11:59)
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So, that is a first example, we will take xc(t) = cos(Ω0t). This has continuous time Fourier transform

π
[
δ(Ω− Ω0) + δ(Ω + Ω0)

]
. This is the continuous time Fourier transform Xc(Ω).

Now we look at Xs(Ω), you need to do two things; scale it by 1/T and then periodically repeat it.

Therefore, this becomes
π

T

[
δ(Ω−Ω0) + δ(Ω + Ω0)

]
. So, this seems identical to the previous step except

for the amplitude scale factor, what else needs to be put in here? T .

Student: minus (Refer Time: 13:11).

So, this is periodic repetition. So, you have to either periodically repeat the impulse or restrict the
range. So, this is valid from −Ωs/2 < Ω < Ωs/2. So, this is the fundamental copy of the periodic
repetition of the spectrum. Now, we are going to take Xs(Ω) and then we will replace Ω by ωFs.

And, if everything were done right, we should get X(ejω). Let us look at this particular factor
π

T
δ(Ω−

Ω0), that is, Ω − Ω0. We are going to take Ω and replace Ω by ωFs. We will just concentrated on the
first factor and do the simplification.

We also know that δ(at + b) is
1

|a|
δ

(
t +

b

a

)
. So, now, let us apply this formula to this previous term.

So, now, you have
π

TFs

δ

(
ω +

Ω0

Fs

)
.

(Refer Slide Time: 15:25)

This in turn becomes π, denominator is TFs = 1. And now you have Ω − Ω0 after all is 2πF0/Fs.
F0/Fs = f0. And 2πf0 = ω0; therefore, this simplifies to πδ(ω−ω0). And this should correspond to the
samples taken T apart.

Therefore, this is cos(Ω0nT ), which in turn is cos(Ω0n/Fs), which we just earlier saw this was nothing
but cos(ω0n). Therefore, the samples of the signal taken T apart gives us the discrete time sequence
cos(ω0n). And, the first term turns out to be πδ(ω − ω0).

Similarly, the second term will turn out to be πδ(ω+ω0). And, hence we get the familiar transform pair
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DTFT pair, cos(ω0n) is nothing but π
[
δ(ω − ω0) + δ(ω + ω0)

]
. So, what the theory that was worked

out for the general case has been illustrated for this specific example.

(Refer Slide Time: 17:22)

Let us look at the second one.
sin(Ωct)

πt
is your underlined continuous time signal. This continuous time

Fourier transform is the ideal low pass filter with cutoff Ωc. So, this is really Xc(Ω). Now what we are
going to do is we are going to sample this. And, when we are done with this, we are trying to relate

this to this pair,
sin(ωcn)

πn
.

This is the samples of the continuous time ideal low pass filters impulse response. And, starting from
the earlier figure, if everything went right, we should derive this transform pair. And this is between

−ωc to +ωc and ωc is nothing but Ωc/Fs. And if you replace t by nT , this becomes
sin(ΩcnT )

πnT
.

And now, so this is the sequence. The corresponding impulse train sampled signal will be
∞∑

k=−∞

rect(Ω−

kΩs), where rect stands for this rectangular function between −Ωc to +Ωc. So, this is the transform of
the impulse train sampled sequence in continuous time. And now, when you, all you need to do is you
need to scale this by 2π to get the 2π periodic spectrum.
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(Refer Slide Time: 20:25)

And the samples are
sin(ΩcnT )

πnT
. So, now, this becomes

1

T

∞∑
k=−∞

rect(ω− k2π). So, what I have done in

this step is, going from here to here I have a scaled by 2π. And this should correspond to the discrete
time Fourier transform of this sequence.

And this sequence is obtained by taking samples of the underlying continuous time function T apart.
And notice that, these two terms get cancelled. And hence, you have sine, T after all is 1/Fs,

sin(Ωcn/Fs)

πn
. This Ωc/Fs by definition is now ωc and hence this has

sin(ωcn)

πn
←→

∞∑
k=−∞

rect(ω − k2π).

(Refer Slide Time: 22:01)

Therefore,
sin(ωcn)

πn
has DTFT that is periodically repeating with cut off ωc, ωc is nothing but Ωc/Fs.
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So, again this gives us back our familiar transform pair. We know that
sin(ωcn)

πn
is the ideal low pass

filter in the discrete time domain.

(Refer Slide Time: 22:48)

And the final example we will look at is this. So, this is xc(t) and its transform of course is sinc. So,

this is nothing but
sin(Ω/2)

Ω/2
. This is not band limited. And hence, if you sample this, you will get

aliasing. And what we are trying to do is, we are trying to relate this discrete time sequence between
−N to +N .

So, this is our discrete time sequence. And we know that this transform is
sin(2N + 1)ω/2

sin(ω/2)
. Therefore,

if you take samples of this and then form this sequence, you should get this as the spectrum starting
from this.

(Refer Slide Time: 24:32)
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So, what we need to do is, the impulse train sampled signal spectrum is Xs(Ω) and that is nothing but

1

T

∞∑
k=−∞

( )
. And then you need to repeat this

sin(Ω− kΩs)/2

(Ω− kΩs)/2
. So, this is what the sampled signal

spectrum is. And X(ejω) is scaled, replacing Ω by ωFs.

So, this is now 1/T . So, let me take care of the 1/T factor slightly differently. So, now, I have sine,
wherever Ω is there, I am going to replace it by ωFs, sin(ωFs− kΩs)/2 and then I have let me multiply
this T here. So, this becomes ωFs, I will multiply by T , (ωFsT − kΩsT )/2.

(Refer Slide Time: 26:18)

So, now this becomes k going from −∞ to +∞ sine. So, Fs after all is 1/T . Therefore, this becomes ω
times, let me multiply numerator and denominator by T . So, this becomes ω times, if you multiply Ωs×

T , you will get Ωs×T = 2π. And Fs×T = 1. So, this becomes (ω−k2π)/2T . And
∞∑

k=−∞

sin(ω − k2π)/2T

(ω − k2π)/2T

is the expression for this so, where this is between −N to N .

So, this is exactly this expression. And this expression has been obtained by taking the aperiodic sinc
repeating it periodically with period Ωs, scaling it by 1/T and then scaling the frequency axis by Fs.

So, these are the steps that were done. And they should really be equal to
sin(2N + 1)ω/2

sin(ω/2)
. So, it does

not seem to be like that at first glance, but let us get a feel for what is going on here.
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(Refer Slide Time: 28:27)

The underlying continuous time signal is this, between−1/2 to 1/2. And this is
sin(Ω/2)

Ω/2
; the continuous

time Fourier transform which is aperiodic. Now what is happening is, when you sample, you will cause
periodic repetition of this. And therefore, what is happening here is, amplitude scaling by 1/T is always
there, the other thing is periodic repetition.

So, this is the fundamental copy and then you have the repetition on the left hand side. Similarly you
have repetition like this, remember each of this is the aperiodic sinc. And this repetition is Ω1s. Later,
this will get map to 2π, when you scale by Fs. Therefore, this and this are equivalent.

So, this is the dirichlet kernel, which is 2π periodic and you can think of that as taking the underlying

analog sinc, namely
sin(Ω/2)

Ω/2
, periodically repeating it and then adding it up. If you add all these

copies, you will get the 2π periodic dirichlet kernel. So, that is the connection between the aperiodic
sinc and the dirichlet kernel. This is nothing but the aliased version of the analog sinc.

So, to really show how this is exactly this, mathematically starting from this to this, probably some
more some other technique is needed. But, we know that these two must be the same based on the
sampling theorem development. Other thing to note is that, in this form, you do not see N . So, where
is N being, I mean implicitly playing its role here?

Student: (Refer Time: 31:27) sample faster then we have to go (Refer Time: 31:33).

Yes. So, that is implicitly captured in the parameter T , all right. So, N is there implicitly by in the
parameter T . The other important assumption that is made here going from this to this is that, when
you take samples, you are taking samples like this. The next sample is here and the next sample is
here, that is, after this sample, the next sample falls on this point and similarly on this side it falls on
this point.

So, clearly, the question might arise, why not take a point here. And taking a point at the very two
ends means that you are sampling at the point of discontinuity. And, this development assumes that
you are not sampling there. Again, if you had, if you remember a statement I had made some time
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back, you realize why this is the assumption that is being made. This assumption is needed, that is,
you do not sample at the points of discontinuity is needed because?

Student: (Refer Time: 33:41) greater than (Refer Time: 33:43).

Right, you are saying it will be greater than 1, why is that?

Student: (Refer Time: 33:47).

Student: (Refer Time: 33:49).

So, you are now, you are thinking of Gibbs phenomenon.

Student: Yes sir.

So, what is the answer?

Student: (Refer Time: 34:01).Student: (Refer Time: 31:27) sample faster then we have to go (Refer
Time: 31:33).

Yes. So, that is implicitly captured in the parameter T . So, N is there implicitly by in the parameter
T . The other important assumption that is made here going from this to this is that, when you take
samples, you are taking samples like this. The next sample is here and the next sample is here, that is,
after this sample, the next sample falls on this point and similarly on this side it falls on this point.

So, clearly, the question might arise, why not take a point here. And taking a point at the very two
ends means that you are sampling at the point of discontinuity. And, this development assumes that
you are not sampling there. Again, if you had, if you remember a statement I had made some time
back, you realize why this is the assumption that is being made. This assumption is needed, that is,
you do not sample at the points of discontinuity is needed because?

Student: (Refer Time: 33:41) greater T

Ok.

Student: (Refer Time: 34:03).

All right. So, you think if I had sample there, the sample value would be larger.

Student: Quite.

Your thinking of Gibbs phenomenon is correct, but the fact that the amplitude has to be larger is
wrong. At the discontinuity, to what value will the spectrum converge to average value? Therefore, if
you recall, you are not recalling the Gibbs phenomenon exactly.
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(Refer Slide Time: 34:41)

So, this overshoot will be like this. Overshoot will be to the left of the discontinuity and undershoot
will be to the right of the discontinuity. So, this 9 percent overshoot and 9 percent undershoot will
happen to the left and to the right. At the value of the discontinuity, it will exactly go through the
average value. And hence, if you take samples, at the point of discontinuity, to be consistent with this
development, this sample value has to be, instead of this, and this the sample value to that is consistent
with this expression on the other side will have to be half.

Therefore, in this theory, we assume you do not sample at the point of discontinuity. If you want the
expressions to match, you have to make sure the sample at the value of discontinuity is really half the
value. Or rather the average value to the left and to the right of the discontinuity.
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