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Lecture 69:
Sampling (2)

-Relationship between Xs(Ω) and Xc(Ω)
-Aliasing

-Relationship between Xs(Ω) and X(ejω)

So, we got started with Sampling and the idea of sampling we started with impulse train sampling that
is a theoretical construct.

(Refer Slide Time: 00:36)

Therefore, given xc(t), we multiply by p(t) which is an impulse train and this gives us the sampled
signal and then we were looking at the continuous time Fourier transform of the impulse train sampled

signal. Therefore, this is

∫ ∞
−∞

xs(t)e
−jΩtdt, and p(t) of course is the impulse train.

So, this is
∞∑

k=−∞

δ(t − kT ) is the impulse train; T is a sampling period, 1/T is called as Fs and this

is the sampling frequency. And this we saw was nothing but,
∞∑

k=−∞

xc(kT )e−jk(Ω/Fs). So, this was the

expression that was derived towards the end of the last lecture.
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Remember, our goal is to relate the continuous time Fourier transform of xc(t). xc(t) has continuous
time Fourier transform Xc(Ω), and the other sequence that we are interested in is x[n], which has
discrete time Fourier transform X(ejω). And x[n] is nothing but xc(nT ). These are the values of the
signal at the sampling instance. And our ultimate goal is to relate Xc(Ω) and X(ejω).

So, we have come this far, but as you can see from this expression, on the right hand side, you have
xc(kT ) so, we do not have anything that relates or that brings in Xc(Ω). So, for this, we look at exactly
the same spectrum, but from a slightly different view point.

(Refer Slide Time: 03:56)

And the viewpoint we are going to look at is this, so we have xs(t) and this as before is xc(t)p(t) which
is the impulse train. And, we also know that if you multiply in the time domain, you convolve in the
frequency domain. Therefore, from the multiplication in the time domain relating to convolution in the
frequency domain, the expression now becomes Xc(Ω) ∗ P (Ω).

So, Xc(Ω) is the Fourier transform of xc(t) and P (Ω) is the Fourier transform of the impulse train and
if you recall the Fourier transform of an impulse train is also an impulse train. The main difference
is the spacing. If the spacing is T in the time domain, the spacing will be inversely proportional in

the frequency domain. Therefore, the Fourier transform of this is
2π

T

∞∑
k=−∞

δ(Ω − kΩs), where T is a

sampling interval. Delta, it is again going to be an impulse train, but it is going to be spaced Ωs apart

in the frequency domain, where Ωs =
2π

T
.

So, this is all from what you have learnt in the previous course and hence Xs(Ω) =
1

2π
Xc(Ω) ∗

2π

T

∞∑
k=−∞

δ(Ω − kΩs). All I have done is, have just replaced the corresponding expressions for Xc(Ω)

and P (Ω). So, the 2π cancels, so this becomes 1/T and then when you convolve something with an
impulse train, it periodically replicates whatever you are convolving with. Therefore, this becomes

Xs(Ω) =
1

T

∞∑
k=−∞

Xc(Ω − kΩs).
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So, this is the formula we will focus on for now, draw some inferences before moving on to connecting
Xc(Ω) and X(ejω). Therefore, what this tells you is, this tells you that the impulse train sampled signal
spectrum is a periodic repetition of the original signal spectrum. The original signal is xc(t) its spectrum
is Xc(Ω) and now this is getting periodically repeated and the periodicity in the frequency domain is
Ωs.

(Refer Slide Time: 07:35)

So, periodic repetition is one thing, the other important thing to note is not only is there periodic
repetition, but there is also amplitude scaling and this amplitude scaling is 1/T . And hence you have
amplitude scaling and the scale factor is 1/T . The other thing you have is periodic repetition, and the
period of course, is Ωs where Ωs = 2π/T . And remember, this can also be written as 2πFs because
1/T = Fs and Fs has units of Hertz.

So, again this is all recap, this is all going over what you have learnt in sampling earlier and the picture
that is normally associated with this is along these lines. So, you have Xc(Ω) and this is Ω and you
have function something like this and this is between −Ωc to +Ωc so, this is the Fourier transform of
the given xc(t).
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(Refer Slide Time: 08:58)

And, then what you have is Xs(Ω) which is the periodic repetition of Xc(Ω), the periodic repetition
being Ωs. So, I am just showing a couple of copies, the fundamental and the copy to the left and copy
to the right. So, this is Ωc, this is −Ωc.

The other important thing that you have to also keep in mind is the scale factor of 1/T . And hence,
if you now have another sampling frequency and suppose this sampling frequency is Ωs1 . And Ωs1 ,
suppose if it is larger than Ωs, then the periodic repetition will occur later. So, this will be minus Ωs1

and this of course, will be 1/T1.

So, the amplitude scale factor goes up, the repetitions occur later. Again these are not to scale I have
shown them by the same height, but what this really meant is the heights are also different. And just
to complete the picture for one more case. So, this is Ωs1 > Ωs and immediately, you can also guess
that if you now have a sampling frequency that is smaller say Ωs2 , then the repetitions will occur sooner
and this will be scaled by 1/T2.

So, all these Xc are, Ω which is in radians per second. So, you have this signal, its sampled version,
periodic repetition will be there, amplitude scale factor will be there and the two plots below show
the behavior for two different sampling frequencies; one that is larger than the first, the other that is
smaller.
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(Refer Slide Time: 11:52)

And hence, immediately this brings about this picture. So, the repetitions will occur earlier or later
depending upon whether the sampling frequency is lower or higher. And, immediately you can see that
if the sampling frequency is just about what is considered minimum, the repetitions will just abut each
other. So, this is Ωc, this is −Ωc. So, this is when the sampling frequency is what is called critical
sampling frequency, that is, they just touch each other. And the other case of course is under sampling.
So, you have −Ωc to +Ωc, you have not sampled it enough. So, that the repetitions occur so much
sooner that the overlap and this is what is called under sampling.

Again, in these last two plots, I have not shown the corresponding scale factor, scale factor is implied,
here I am focusing on the overlap part. So, from this picture, you see that this point would be Ωs − Ωc

and you want this point to be at best equal to Ωc or greater, only then will this repetition occur later.
Therefore, if you do not want to overlap, then it is easy to see that you need Ωs−Ωc to be greater than
or equal to Ωc. So, this implies that Ωs ≥ 2Ωc.

And the other thing that is implied from the picture that we have drawn is, clearly we have assumed the
signal to me band limited, that is why this frequency response is between −Ωc and +Ωc and there are
no other components beyond this frequency range. So, assuming you have a band limited signal and as
I mentioned earlier this signal is low pass, so what we are actually discussing is the low pass sampling
theorem. You should be aware that there is also a corresponding band pass sampling theorem which
you are not going to look at. So, for the low pass case, signals assumed to be band limited and in such
cases, if you do not want overlap, this is what has to be satisfied. And,

Student: Sir.

Yes, question.

Student: So, I think we care about low pass band limited (Refer Time: 15:40) band limited add some
and also higher frequency, (Refer Time: 15:45) repetition (Refer Time: 15:47).

Yes.

Student: So.
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So, what will happen in when the signal is band pass, there also as you rightly say, there will be
repetitions and then you can come up with a version of sampling theorem such that the sampling
frequency required is not twice the highest frequency; that is the point. The point is here what you
are inferring is, you are inferring that the, for distortion to not happen, you need to sample at least at
twice the highest frequency.

Even the signal where band pass, if you treat it as a low pass signal with the highest frequency being
whatever the frequency is there is a spectrum, then you would end up sampling it at a far higher
frequency than needed. Whereas, if you look at the band pass sampling theorem, you will infer that you
do not need to sample it at twice the highest frequency but something much lower, that is the inference
that will be drawn. And this critical sampling frequency is called the Nyquist frequency.

(Refer Slide Time: 17:02)

Therefore, this is critical sampling, and when you satisfy that theorem such that it just about these two
repetitions abut each other but do not overlap, that particular sampling frequency is called the Nyquist
sampling rate. And then this also you must have heard. So, these two overlap and it should be clear
that whenever you have something that is periodic, then you need to consider the information only in
the range 0 to the period or between minus half the period to plus half the period, anything outside
this is the same.

And hence, since this is periodic with period Ωs, either you need to consider the information in the
interval 0 to Ωs or between −Ωs/2 to +Ωs/2. Because everything else outside this is the same, you do
not get any new information. And hence, if Ωs were the sampling interval, all you need to do is you
need to consider the information between −Ωs/2 to +Ωs/2, that is all.

And that is this dashed line and when these two things overlap, you produce distortion and this is
what is called as aliasing. And hence, the spectrum that you have is really this. So, this is the aliased
spectrum, you cause distortion and this is the distortion that is caused is called aliasing. And just to
focus on what aliasing is, I am just drawing the positive part of the spectrum.
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(Refer Slide Time: 19:32)

Remember, this is Ωs/2 and only the information between −Ωs/2 to +Ωs/2 needs to be considered.
And because of this, what is happening here is, this portion folds over and appear as a low frequency.
So, this is actually a higher frequency component in the signal originally, because you under sampled, it
appears as a lower frequency component in the under sampled signal. So, a high frequency component
masquerading as low frequency one is called aliasing.

And we will see a simple sinusoidal example where this is brought out. So, this is for the general case
where I have assumed the signal spectrum to be like this and showing how high frequency component
folds over and acts like a low frequency one. And this, because you can think of this as being folded
over and appearing in this, this also is called as the folding frequency. Another name that you will find
in the literature is, this Ωs/2 is also called as the folding frequency.

So, this can easily be illustrated, this aliasing which is really a higher frequency component appearing
as if it is a low frequency component because of under sampling easily can be seen when you consider
a sinusoid.
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(Refer Slide Time: 21:23)

So, let us consider a pure infinite duration sinusoid. Therefore, its frequency is, transform is two
impulses. So, I am assuming that F0 = 8 kilo Hertz. So, this is the frequency of the sinusoid. If I did
not want aliasing, I need to sample at least at twice the highest frequency. Therefore, I need to sample
it at 16 kilo Hertz are beyond if I did not want aliasing therefore, this is −8 and +8 so, this is F and
this is now in kilo Hertz.

So, now in this example, I am showing the frequency axis in terms of Hertz which is nothing but Ω/2π
for ease of calculation and reference. So, this is my underlying sinusoid. Now, what I am going to do
is, I am going to sample it at 10 kilo Hertz which means everything in the spectrum will be periodic
and the periodicity will be Fs. In the Ω domain, it will be periodic with Ωs, in the Fs domain, it will
be periodic in Fs. Therefore, everything will repeat after 10 kilo Hertz.

Therefore, what will happen is, if I now look at periodic repetition, −8 will occur at −8 + 10, right
therefore, −8 will now occur at 2, because −8 + 10 = 2. Then, 8 also will repeat later with a periodicity
of 10 kilo Hertz therefore, 8 + 10 = 18 and hence let me draw this with a different color so, I will have
18 here.

So, this is two repetitions on the right so, things will saw also will repeat on the left. Therefore, 8 will
appear at 8− 10; you saw 8 + 10 here, 8− 10 will be −2. And, −8 will also occur at −18, but also note
that, 2 will again repeat with a period of 10 therefore, 2 + 10 = 12, right. Therefore, so these are some
of the repetitions here, remember what will happen at 0 will also happen at 10.

Therefore, so this is 10 kilo Hertz; so, what will happen at 0 will also happen at 10 therefore, you
have this picture. And remember, whenever the sampling frequency is Fs, you need to worry about the
spectrum only between −Fs/2 to +Fs/2 therefore, you need to only worry about the spectrum between
−5 and +5, this clearly not to scale.

And whatever is happening around 0 will happen at multiples of 10 and −10. Therefore, now you have,
when you concentrate between −5 kilo Hertz and +5 kilo Hertz, the original signal which was 8 kilo
Hertz because you are now under sampled has now become 2 kilo Hertz signal.

And what is happening around 0 is happening around 10 therefore, around 0 you have +2 and −2,
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similarly around 10 you have 8 and 12 so, these are the other copies. And similarly, what is happening
around 10 will happen around 20 and hence you will have 18 and 22. So, these are the further copies
that are present and hence you will have something like this, you will have −8 and −12 which is centered
around −10, and similarly you will have −18 and −22.

Therefore, a 2 kilo Hertz signal is now is what appears in the spectrum, and this is a result of at 8 kilo
Hertz signal being sampled at 10 which is inadequate, and hence the underlying spectrum corresponds
to the spectrum of a 2 kilo Hertz signal. And hence, a high frequency signal namely 8 kilo Hertz
masquerading as a low frequency signal, namely 2 kilo Hertz happens because of under sampling,
sampling it at 10 kilo Hertz rather than the required minimum of 16 or beyond. So, this is all the
spectrum is.

So, when you have on a given underlying spectrum Xc(Ω), if you want to sample it at Ωs or Fs, all you
need to do is you need to repeat that spectrum with a periodicity of Ωs or Fss, equivalently Fs. And
then focus on the interval between −Fs/2 to +Fs/2, that is all. And here is an example of aliasing, 8
kilo Hertz behaves as if it were a 2 kilo Hertz signal.

The other thing to remember in this context is, all practical signals are time limited. If a signal is
time limited, what can you say about, in the frequency domain will be band unlimited. Therefore,
nor time limited signal can be band limited, no band limited signal can be time limited. Now, the
implication of this is that, since all practical signals are time limited, their frequency content in the
Fourier representation will be infinite duration.

And hence you cannot sample them without causing aliasing, no matter what sampling frequency use
because it is a band unlimited signal, you will always cause aliasing. One way to avoid aliasing is to use
what is called an anti-aliasing filter. So this, what it does is it band limits the input signal. Once your
band limited this input signal and if you know sampled, it will not cause aliasing.

But, if you look at this, because you have put this band limiting or aliasing filter at the front end, you
are now going to lose some high frequency component, because you have band limited the signal before
sampling. So, you have lost high frequency component, so this is on one side. Now, you have to compare
this with a signal, if you do not do this band limiting filter, if you do not introduce this and band limit
the signal, if you sample, you are going to cause aliasing because the signal is band unlimited to begin
with.

So, no matter what you do, you are going to distort the given signal. The question is, which is better?
And the answer to this is this, anti-aliasing filter at the front end is better, because in that case, you
only lose the high frequency component; whereas, if you cause aliasing, not only are you going to lose
the high frequency information beyond Fs/2, but that high frequency information is going to come back
as lower frequency component in the signal and cause distortion.

And in practice, it has been found that this aliasing is perceptually very annoying, and hence all
practically ADC’s have a band limiting filter in the front end. So, any ADC chip that you use will
always have a front end anti-aliasing filter. And, it has been found that this is less objectionable than
aliasing occurring, because the high frequency component falls back and appears as a low frequency
component.

Fortunately, all practical signals have a spectrum that falls off with increasing frequency, and hence if
you put this band limiting filter and remove beyond a certain point, the information lost will not be
too much of an issue. Perceptually, it may not matter much, you choose the band limiting filter high
enough so that all the relevant information is captured. For example, in telephony, in the first days of
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digital telephony, your voice signal was band limited to, you know what the sampling frequency was,
and hence what the?

Student: (Refer Time: 31:52).

No, I am talking about early days of digital telephony. So, what you are talking about 44.1 is what you
use, it is one of the standards for music and other things. But telephony for voice, do you know what
the numbers were, what the sampling frequency was?

Student: (Refer Time: 32:15).

Not clear (Refer Time: 32:17).

Student: (Refer Time: 32:18).

No, this is too high.

Student: (Refer Time: 32:21) 31, (Refer Time: 32:22).

32, no.

Student: (Refer Time: 32:25).

No; so, 8 kilo Hertz was the sampling frequency.

(Refer Slide Time: 32:35)

And, so in, the sampling frequency was 8 kilo Hertz and the front end filter was actually between 300
Hertz to 3400 Hertz. So, this was the front end filter that was used and then they were using 8 bits per
sample, and this gave rise to 64 kilo bits per second telephony rate, sampling rate.

Again, 8 bits per sample is actually not adequate, you really need something like 12 bits; 12 or 13 bits.
But they got around using 8 bits and still not sounding too bad, because they used what is called A-
Law and µ-Law compression. Non-uniform quantization, that is, lower amplitude signals were quantized
finer and higher amplitude signals were quantized coarser. Therefore, the 12 bits per second which is
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what was needed, if you used uniform quantization, that was overcome using just 8 bits by non-linear
quantization. And µ-Law and A-Law are the compression standards used in the US and the other one
is in Europe.

Therefore, you just needed 8 bits per sample and this gave 64 kilobits per second and the anti-aliasing
filter was 300 to 3.4 kilo Hertz. And this is the reason why you will have trouble listening or distin-
guishing between s and F , because the distinguishing features of these sounds lay mainly in the higher
frequency part of the spectrum. Because of this anti-aliasing filter that got knocked off, that is why
people will say s as a son, F as a father. When you try to say some letters as abbreviations, you will
have trouble at the other end unless you clarify what it is and that is why s as a son, F as a father
is needed, because those zones cannot be distinguished clearly at the other end, and that is because of
this anti-aliasing filter that is cutting out high frequency components.

Because now, what we do is, we do not use just plain sampling, we use speech coding. You sample it
at a certain rate, we take 30 milliseconds of speech, sample it and then use a source filter model and
then transmit those parameters. So, the advantages you get, higher quality speech or you get a lower
bit rate speech, but the price paid is more processing power; all this involves DSP processing. Anyway
coming back to sampling.

So, anti aliasing filter is an integral part of all ADCs, that is because, you want to avoid distortion
due to aliasing. And as I had mentioned all practical signals the spectrum decays fast enough, so that
you can put a reasonable band limiting filter and still not perceptually feel the difference between the
filtered and the unfiltered signal. Because the energy is so little beyond a certain frequency putting,
this band limiting filter is not a big deal.

Now, let us come back, so, this was a digression for aliasing and what it does and how to mitigate the
effects of this aliasing by putting this anti aliasing filter. Now, let us come back to the problem at hand.
Remember, our goal is to connect samples of this signal. So, this is k and this is x[n]δ[n− k], so, this is
your discrete time sequence. So, this is 0, 1, 2, 3 and so on, and this in turn really becomes x[k]δ[n− k]
because of the sifting property. And, what we really want is we are trying to relate the DTFT of this
sequence and the spectrum of the impulse train sampled signal.

(Refer Slide Time: 37:43)
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So, this is xs(t), this of course is xc(t) and the impulse train is the impulse train corresponding to xs(t).

Now, we want to relate these two, that is, we have X(ejω). So, this is nothing, but
∞∑

n=−∞

x[n]e−jωn, and

this is nothing but
∞∑

n=−∞

xc(nT )e−jωn.

So, this is one part of the problem, the other thing that we have just now derived is this Xs(Ω), and

Xs(Ω) we showed that this was nothing but
∞∑

n=−∞

xc(nT )e−jn(Ω/Fs), this is what we derived first. And

what we had derived using this approach was to show the periodic repetition, that amplitude scaling
by 1/T and then effects of aliasing. We will come back to this, this periodic repetition picture is very
important. So, the periodic repetition picture was not present in this expression, but if you look at
these two, you can now start to see the connection here.

Let us take Xs(Ω), this is actually, this is Ωs periodic. We got the picture about the periodicity of Xs by
the second approach; we know that this is Ωs periodic. Now, let us consider Ys(Ω), and Ys(Ω) = Xs(FsΩ).
So, what we are doing is, we are forming a new function Ys(Ω) which is a scaled version of Xs(Ω), that
is what we are doing here. And typically, Fs is greater than 1. Therefore, one interpretation of this is
Ys(Ω) is a compressed version of Xs(Ω), because x(2t) is a compressed version by a factor of 2. And,
hence to start to understand this, since typically Fs is greater than 1, you can think of Ys(Ω) as Xs(FsΩ).

So, this is compression by a factor of Fs, that is what is happening here. what about Ys(2π)? Ys(2π)
is Xs of; wherever Ω is, you replace Ω/2π. Therefore, this becomes 2πFs. And this is nothing, but
Xs(Ωs). Therefore, what can you say about the periodicity of Ys(Ω)? Ys(Ω) is 2π periodic. So, Ys(Ω) is
2π periodic.

Now, what we will do is, we will replace Ω by ω, that is, in Ys(Ω) which is 2π periodic, we will relabel
the independent axis Ω by ω and remember, now we have relabeled the independent axis from Ω to ω
and then write Ys(Ω) as X(ejω). So, basically, what is happening is, let us go back to this picture. So,
Xs(Ω) is the impulse train sample signal spectrum. It is periodic with period Ωs, that is one thing, of
course the other thing is the amplitude scale factor.

So, all you need to do to relate this to the underlying sequences DTFT is, scale the frequency axis by
Fs, that is all. And why does that make sense? That makes sense, because this is 2πFs. If you now
scale this by Fs, this point will now get mapped to 2π, and the DTFT is nothing but 2π periodic. That
is all, as simple as that.

And, hence to get X(ejω), all you need to do is, you need to take Xs(Ω) and then replace Ω by ωFs. Go
back here, take this Ω and replace Ω by ωFs. So, now, take Ω and then replace Ω by ωtimesFs, if you
did that, this Fs will get cancelled. So, −jn(Ω/Fs) will become −jωn which is exactly this and xc(nT )
is nothing but x[n], that is all as simple as that.

So, basically you are taking the impulse train sampled signal which is Ωs periodic and compressing the
frequency axis by Fs, so that the Ωs periodic function becomes 2π periodic which is what the DTFT is.
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So, now what we will do is, we will start off with xc(t), then we know what its Fourier transform is
which is Xc(Ω), then what we will do is, we will form Xs(Ω). So, two things will happen when you go
from Xc(Ω) to Xs(Ω); first thing is periodic repetition with period Ωs, the second thing is amplitude
scaling. Then, what we will do is, we will take Xs(Ω) and then replace Ω by ωFs and then we will see
that this will give us X(ejω).

And we will do this by taking specific examples for which we know the CTFT, and the corresponding
sequence’s DTFT also will be known. What we do is, we will start off from the CTFT and derive the
DTFT going through these steps for well known functions. And then, we will see that, we will get back
the same expression that was derived when we encountered the sequence’s DTFT. So, now you will be
able to see the connection much closer.
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