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Geometric interpretation of the frequency response

All right let us continue our discussion on frequency response. We just got started with the definition of
frequency response. We made the statement that if the region of convergence contains the unit circle,
you can evaluate the Z-transform along the unit circle. And we also made the observation that if the
region of convergence contains the unit circle, then the impulse response is absolutely summable and
we are interested in the class of causal and stable systems.

(Refer Slide Time: 00:51)

And further. we will focus our discussion on the class of systems whose input-output relationship is
given by linear constant coefficient difference equation. We are focusing on this class, because that is

the only class that can be realized in practice. So, y[n] = −
N∑
k=1

aky[n− k] +
M∑
k=0

bkx[n− k].

So, this is the basic input-output relationship that belongs to the class of LCCDE and now what
we will do is, we will look at the system’s transfer function. We have already looked at the system
transfer function for this class, we will just go through the steps quickly and recall the result. So,

this is Y (z) = −
N∑
k=1

akz
−kY (z) +

M∑
k=0

bkz
−kX(z) and hence

Y (z)

X(z)
, this we denote as H(z) which is the
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system transfer function and this turns out to be, 1 +
N∑
k=1

akz
−k is the denominator polynomial and the

numerator of course, is
M∑
k=0

bkz
−k and then we have seen that this is written in the form

B(z)

A(z)
.

(Refer Slide Time: 03:10)

So, this is the transfer function corresponding to this class and as we have made this point before this
is the class of rational transfer function and the frequency response is H(z) evaluated at z = ejω. And
then you are going to look the frequency response of the above system, it is advantageous to write this
in terms of the products of its poles and zeros.

That is we will factor the numerator polynomial and the denominator polynomial. Therefore, the

denominator becomes
N∏
k=1

(
1 − pkz−1

)
. All I have done this I have now expressed A(z) in terms of its

roots and the numerator is
M∏
k=1

(
1− zkz−1

)
, where zk are the zeroes and pk are the poles.

This is not quite complete. To complete it, something more is needed which is all I have done, this I
have written the numerator polynomial B(z) in its product of its roots. I am sorry, this should be the∏

product, ok. Now what is missing here? This is not quite what the previous expression is. To make
it exactly equal, what is needed is b0, very good. b0 is needed, because without b0 this if you look at
this the z0 term, the coefficient will be 1. Whereas, the constant term for this polynomial is b0.

So, to make this equal, you need to have b0 here. And now we are going to evaluate this along the
unit circle. Before we do that, let us do some further simplifications here. So, this is b0. So, this is

the
M∏
k=1

(
z − zk
z

)
. Similarly, in the denominator, you have

N∏
k=1

(
z − pk
z

)
of course, you are going to

evaluate this along the unit circle.

Now if you look at this
∏

product, each term in the
∏

product has a denominator z. So, when you
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multiply this out, when you are done with, you will have zM in the denominator. Similarly, here,
you have zN in the denominator of the denominator. Therefore, if you simplify, this will give rise to

b0z
N−M

∏M
k=1(z − zk)∏N
k=1(z − pk)

, all of this being evaluated along the unit circle.

(Refer Slide Time: 07:13)

So, this is b0, now we will substitute z = ejω. So, this becomes ejω(N−M) and this of course, is

b0e
jω(N−M)

∏M
k=1

(
ejω − zk

)∏N
k=1

(
ejω − pk

) . So, this is the frequency transfer function and the frequency transfer func-

tion, it is useful to think of it being expressed in this form. So, this is |H(ejω)|ej 6 H(ejω) and no different
from what you had seen in the continuous-time case.

So, this is the magnitude response and this of course is the phase response and we will study each of
these parts separately. We will first focus on magnitude response and then on phase response and hence
if you look at the magnitude response, this now becomes |b0||ejω(N−M)|( ). Magnitude of the product

is product of the magnitude so, this becomes
M∏
k=1

|ejω − zk| and in the denominator, you have a similar

term
N∏
k=1

|ejω − pk| and |ejω(N−M)| of course, is 1 and if you look at this term whose magnitude is 1.

That factor is coming from zN−M and depending on the values of N − M , zN−M will be either a
trivial pole or a trivial zero. If N > M , this will be a trivial zero, otherwise will be a trivial pole of
order magnitude of N −M . And hence you see that, this factor which is contributed either by trivial
poles or trivial zeros as the case may be, they do not contribute to the magnitude response and this is
precisely the reason why also zeros at the origin are called trivial poles are trivial zeros, because they
do not contribute to the magnitude frequency response. However, later we will see that they will indeed
contribute to the phase response.

You cannot have a term like zN−M and not contribute to both magnitude and phase. So, it does not
contribute to the magnitude, but it will certainly contribute to the phase. And this is just the overall
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gain term and when we plot the magnitude frequency response, will either plot, you can look at this as
either being the magnitude transfer function or the magnitude square transfer function.

But typically, when you are looking at frequency response, how do you plot them? You plot versus
frequency. Do you plot the magnitude or magnitude squared or do you plot something else? You plot
the log magnitude and log magnitude, typically the scale is what is called as the dB scale. So, why is it
that you are going to plot the frequency response and log magnitude, why do not you see this plotted
on the linear scale?

So, typically you are, you are told that if you have a large range to cover, to see that you will use a
log scale. But for example, if this were a filter and if this were a passive filter, then the maximum
magnitude gain will be? For a passive filter, the magnitude gain maximum will be 1 and the minimum
gain will be 0 and 0 to 1 is not a large range and yet you will find frequency response being plotted on
a log scale.

No, I think when you are saying it approximated straight and you think of bode plot and that is log log.
Here I am talking about the x-axis frequency being still linear, but the y-axis being log magnitude and
typically it will be 20 log10 or 10 log10 magnitude squared. But, given that you have 0 to 1 not being a
large range, why is it that you still want to plot this on a log scale?

(Refer Slide Time: 13:15)

Sorry, so this is typically plotted on a log scale and you have you either plot 20 log10 |H(ejω)| or
10 log10 |H(ejω)|2, same thing. Yes, somebody was saying something.

Student: (Refer Time: 13:45).

So, in the discrete-time case, your frequency response goes from π to π and if the frequency response
if the impulse response is real valued, you need to restrict yourself only to the range 0 to π, that also
is a finite interval. So, that is not a large range, ok. So, you are now looking at a later stage, but if I
did not want to do any of that, if I just wanted to plot the spectrum, why would I plot it on a log scale
rather than the usual linear scale?

So, all of this is coming later. So, if we want to look at this in terms of its contribution to each pole or
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zero, things like that. The reason why you are going to plot this on a log scale is if you are going to look
at say the low pass filter and if you are looking at the stop band and if filter A has attenuation of say 30
dB and filter B has attenuation of say 60 dB, on a linear scale if you plot these two frequency responses,
assume that both these filters have roughly the same pass band characteristics and the transition band
let us say they are similar, but in the stop band is where the main difference is.

So, one is say 30 dB rejection, the other is 60 dB. And we plot this on a linear scale, in the pass band,
the gain will roughly be 1 and in the stop band, you will not be able to see the difference between these
two responses if you plot it on a linear scale. If you plot this on a linear scale, if the pass band gain is 1
and the stop band will look roughly 0, but you will not be able to see the difference between these two
filters. These are three orders of magnitude difference and you will not be able to see this; 10 to the −3
versus 10 to the −6. You will not be able to see the difference, if you plot this on a linear scale.

Difference in the stop band of two filters that have rejections of 30 and 60, no way will you be able to
see this on a linear scale. To see the difference, you need to see this plotted on a log scale for you to
make out the difference. And just to give you a feel for what typical rejection is needed for a filter that
is practical if you want to implement this filter and you want to get rejections that are meaningful, you
have a sense of how much of rejection you should have in the stop band for it to be considered adequate
or at least minimum acceptable.

So, if I have a low pass filter, pass band gain is 1 which translates to 0 dB. Stop band gain, what kind
of attenuation do you think might be needed in terms of dB for it to be acceptable? 60, no this is a
reasonable guess, it is really large. So, you need at least 40 dB. Any filter that does not even give you
40 dB of rejection in most cases is not adequate. So, you need at least 40 dB rejection in the stop band
for you to get adequate performance.

So, now, let us go back to this and focus on terms like this. So, this magnitude of b0 once you consider
the log plot, all this is going to do is its going to curve up or down, because this is going to jump out as
a an added term and any change in magnitude of b naught will merely will shift the curve up or down.
So, we will focus on this and we have already seen what this can be interpreted as geometrically.

So, magnitude of ejω−zk, geometrically when you look at the magnitude of 2 numbers, complex numbers
a and b, magnitude of a− b is the is the distance between the two points. So, in this case, it is now the
distance between a point on the unit circle, because ejω is magnitude is 1 and as you vary ω, you are
moving along the unit circle.

Therefore, one of the points is on the unit circle, the other point is zk which is zero. So, distance between
point on the unit circle and zk, zk happens to be the zero here. Similarly, ejω − pk is similar, except
here it is now pk.
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Let us explore this more. So, I have here zk and then I may have another pole here and there could also
be a trivial pole or a trivial zero. Here I am shown so, zk should be marked with a filled circle because
that is a zero, a cross is a symbol used for the pole and this is right now, I have shown a trivial pole,
this could as well have been a trivial zero. Now here is a point on the unit circle.

So, this is the point on the unit circle therefore, what is happening here is ejω − zk, its magnitude is
nothing but this line segment. Similarly, ejω−pk is this therefore, this is |ejω−zk|. This is the |ejω−pk|
and this is nothing, but |ejω − 0| and hence as ω varies, the frequency response will vary.

So, you will start up with ω = 0, which means you are on this point on the unit circle and then you are
going to move along the unit circle, you will hit π and from π again you will hit 2π. If this were the
pole-zero plot of a system with real valued impulse response, the poles and zeros will occur in complex
conjugate pairs and the magnitude response will be even and hence you can limit yourself to looking at
the magnitude response from 0 to π.

So, this is one part. The other part is the geometric interpretation of this frequency response. Therefore,
you see that this frequency response can be interpreted as wherever you are on the unit circle, you find
the distance from that point on the unit circle to each and every zero and then you take the product of
all such distances. Similarly for the same point on the unit circle, find the distances to each and every
pole and you take the product of all such distances and the ratio of these two numbers is the magnitude
frequency response at that particular frequency and this point on the unit circle will vary from 0 to 2π.

Once you have this geometric interpretation in place; for example, when you are here on the unit circle,
you are closest to this zero which means this distance will be very small. Therefore, the numerator
which is the product of all such distances, the overall product will get pulled down, because it is going
to get multiplied by this distance which is very small and hence the overall numerator will come down
in value and therefore, you can expect that the frequency response will exhibit a dip when you are near
a zero.

Similarly, suppose you are near a pole which means say you are here on the unit circle, then this
particular distance will be very small. So, what is happening is the numerator is now going to happen
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to the denominator and hence the product of all the distances will get pulled down, because it is getting
multiplied by this small factor and hence the denominator will get small and the overall transfer function
will have a large value.

Therefore, this interpretation gives you a feel that zeros produce dips in the frequency response whereas,
poles provide peaks in the frequency response. Therefore, zeros provide attenuation, poles provide gain.
So, this is an intuition that you can develop from the geometric interpretation of this algebraic formula.
Carrying this further, suppose this zero were on the unit circle, then you have this kind of situation;
algebraically you have ejω, here this ω denotes a general point on the unit circle and since the zero is
on the unit circle, it can be represented as ejω0 .

And now as ω varies, when ω = ω0, this equals 0. Geometrically also this can be inferred. So, when
you when a zero is on the unit circle, as you approach the zero, then you reach a point where you are
sitting on top of the zero, because you are on the unit circle; the zero is on the unit circle. Therefore,
that particular distance is 0 at that particular frequency.

And hence the whole product goes to 0 and hence the frequency response goes to 0 at ω = ω0. Note
that because we are looking at causal and stable systems, a pole cannot be on the unit circle. If the pole
is on the unit circle, the region of convergence does not include the unit circle and hence you cannot
quite evaluate the frequency response.

Therefore, while the zero can be on the unit circle and provide you 0 gain, you cannot have a pole on
the unit circle to provide infinite gain. But pole can be as close to the unit circle as possible and it can
provide very large gain. So, these are the general geometric intuition you can draw from this algebraic
expression and the point about poles are zeros at the origin is, wherever you are on the unit circle, you
are at a constant distance of 1 and hence they do not contribute to the magnitude response.

Actually, what we have seen is absolutely no different from what is happening in the continuous-time

case. In the continuous-time case, you had H(s) and this was of the form
B(s)

A(s)
and your frequency

response was H(jΩ) and what you did was, you evaluated the Laplace transform by replacing s by jΩ.

(Refer Slide Time: 27:24)
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So, this is nothing, but
B(jΩ)

A(jΩ)
and this in turn can be written as some general gain by b0

∏M
k=1(s− zk)∏N
k=1(s− pk)

.

And you can think of your magnitude response exactly similar to what was done in the discrete-time

case. So, this is now, you are going to replace s by jΩ therefore, this is |b0|
∏M

k=1 |jΩ− zk|∏N
k=1 |jΩ− pk|

.

And this has exactly similar geometric interpretation as what we had just now discussed, only that
rather than moving along the unit circle, you are moving along the jΩ axis. Therefore, if you have a
pole here and say a zero here and a zero here and a zero here, if this way the frequency response, you
are somewhere along the jΩ axis and the interpretation of the magnitude response is wherever you are
on the jΩ axis, find out the distances to all the zeros, take the product and you will get one number.

Similarly, for the same point, find the distances to all the poles, take the product and you will get one
number. The ratio of these two gives the magnitude frequency response except for this gain factor. If you
ignore this gain factor, the shape of the frequency response is governed by the behavior in relationship
to the poles and zeros. Exactly similar to what was happening in the earlier case; if there was zero
on the jΩ axis, when you are going along the jΩ axis and you land on top of this zero, the frequency
response will go to 0. If the zero were not on the jΩ axis, but close to it when you go past that zero,
the frequency response will take a dip.

Similarly, if the pole were close to the jΩ axis, when you go past that pole on the jΩ axis, you will
get a gain; you will get a peak. Therefore, poles and zeros shape the frequency response, be it in the
continuous-time case, Laplace H(s) or be it in the discrete-time case H(z). So, this is the general
intuition. Is there a counterpart to the trivial pole in the continuous-time case, finite s plane, this is a
good guess by the way.

The answer is there is no counterpart to the trivial pole case. There it was at trivial pole or a trivial
zero which was at a constant distance when you moved along the unit circle. The origin always was at
a constant distance, is there a point here which is always at a constant distance as you move along the j
omega axis? No therefore, there is no counterpart to the trivial pole or trivial zero case that was there
in the discrete-time system. Such a concept does not exist in the continuous-time case. Now let us get
further feel for this.
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Once you have this geometric interpretation intuition with you, you can kind of guess the shape of the
frequency response, rough plot. Suppose I had a pole here and here and suppose I had zeros like this.
So, this is the pole-zero plot of a system, now what I want to do is I want to get a feel for the frequency
response. So, what I am going to do is I am going to start off at this point, at ω = 0. I will have a
certain frequency response, then what is happening is, I am going to go along the unit circle like this.

When I am here and then I move away from ω = 0, what I am doing is I am moving away from this pole.
If I move away from the pole, the gain should, will it increase or decrease? It will decrease therefore;
the gain will start to decrease and keep going along. When I keep going along, I encounter this pole
which means when I approach this pole the gain should again start to increase.

Therefore, the gain which is at this point started to decrease and then again it starts to increase when I
am roughly in this neighborhood. And then what I do is I keep going along the unit circle which means
I am going away from this pole, when I am going away from this pole the gain will start to become
smaller, because I am going away from this pole. Therefore, what is going to happen is the gain starts
to fall and then when I keep going along, I am now going to approach this 0.

This zero happens to be on the unit circle, therefore, what is going to happen here is response keeps
falling down and when I am exactly on top of this zero, I hit a 0 in the frequency response. Then I go
past this zero. When I go past this zero, the gain will increase and I keep going and when I hit ω = π,
the gain will again have to go to 0.

Therefore, the response will be like this and you can complete the frequency response. So, this is π so,
I can you can complete the frequency response for the −π to π part also. Let me so, this is −π and
π. One thing that I have assumed here is each pole is close enough such that when you are near that
pole, it causes an individual bump in the frequency response. If you did not have this information, you
cannot draw this plot.

The other thing that I am implicitly assumed in is all the heights are exactly the same. Since this is
drawn by hand, it is not precisely the same, but the intent is all these peaks are exactly the same point
even the dips, they have exactly the same dip value. So, this is what an equiripple response and there
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are filters that have this kind of frequency response that is equiripple, that is these ripples have the
same height. Unless I mentioned that to you, you cannot draw this kind of plot. This is what is called
an elliptic filter, all right.

(Refer Slide Time: 37:04)

There is another kind of filter which is called as the Butterworth and let me draw the pole-zero plot
of a third order Butterworth filter. And the point to note here is, these poles if you look at this plot
compared to this these are clearly further inside and it so happens that if you plot the frequency response
of this filter, the response will be something like this.

The placing of the poles is such that, when you start from here, the point at which you have the
maximum gain, when you go along the unit circle you are going to move away from this, but this pole
is further inside such that even when you approach it, it is not close enough to cause individual bump
in the frequency response. So, the response monotonically decreases and falls down to π.

Therefore, this intuitive sketch based on this geometric interpretation this rough sketch, implicitly I
have assumed that the poles are close enough to cause an individual bump and to know whether the
pole-zero plot corresponds to something like this, that is the frequency response corresponding to this
is this or is it this, you will not know unless you feed these numbers into say MATLAB and get the
frequency response, all right.

But if I tell you that this is the pole-zero plot and if I also tell you each pole is close enough to cause
individual bump and further if I tell you that the response is equiripple, then you should be able to
come up with a plot like this. And this is a low pass filter, right this is a low pass filter, because it
passes frequencies up to a certain point and then beyond a certain point it causes attenuation, all right.

10



(Refer Slide Time: 39:33)

And just to quickly continue on that low pass filter example, suppose I had a pole-zero plot something
like this. Suppose I had something like this, then I had zeros wherever, then if I also tell you that this
is the poles are close enough to cause an individual bump and if I also tell you that the response is
equiripple, then you can easily come up with a response something like this.

So, clearly when you are at zero, the response is 0 and then when you move along, the response begins
to rise and then when you hit this zero, the response will be precisely 0 and then when you go past this
zero when you are in this region where the poles are, the response will begin to rise. And then when
you are near this pole, you will have a bump and then you will go past this pole, the response will dip
and then we are going to be close to this. So, this pole will cause this bump.

Similarly, the third pole will cause this bump and then when you go past this pole here, then the response
will start to come down. And when you hit this zero so, this zero on the unit circle corresponds to this
and then the next zero corresponds to this and this is a band pass filter. So, from the pole zero plot
given information such as each pole is close enough to cause a bump and the response is equiripple given
this pole-zero plot, you can easily come up with this. And there are 6 poles and there are 6 bumps;
three from 0 to pi and similarly.

So, you have 1, 2, 3, 4, 5, 6; 6 poles, 6 bumps. And there are 6 zeros right; 1, 2, 3, 4, 5, 6, you do not
want to count this twice, because this point is the same as this. So, this kind of gives you a very quick
intuitive feel for the frequency response based on the pole-zero positions.
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