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- Inverse DTFT
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Now, let us further make use of the inversion integral and derive something else that is related. Suppose,
the unit circle is part of the region of convergence. So, this means that z = ejω must belong to the RoC
and hence we will make use of this fact in the inversion integral. Therefore, dz = jejωdω.
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And, this after all is z and hence
dz

jz
= dω. Now, let us look at the inversion integral. Since, the

unit circle is part of the region of convergence and we need to take a closed contour in the region of
convergence, let us take this closed contour to be the unit circle itself. Let us take the unit circle itself

to be the specific closed counter. Therefore,
1

2πj

∮
C

X(z)zn−1dz.

Now, the closed contour C is the unit circle and hence this becomes
1

2π
. Remember, we are after all

evaluating this along the unit circle therefore, this now becomes X(ejω). zn can be replaced by ejω and

now you can actually write this as
dz

jz
;
dz

jz
is nothing but dω. Therefore, this becomes dω.

Therefore, the contour integral really becomes an integral over ω and integral over ω if you want a
closed path, the ω variable has to take the range either 0 to 2π or between −π and π. Therefore, let
us assume that this is between −π and π. Therefore, this should give you, this after all is the inversion
integral therefore, this should give you back x[n].
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So, now recall that the DTFT was defined like this X(ejω) =
∞∑

n=−∞

x[n]e−jωn and this was called as the

Discrete Time Fourier Transform.

Now, we have just now seen x[n] =
1

2π

∫ π

−π
X(ejω)ejωndω and this is nothing but the inverse DTFT.

So, these are very important relationships. So, this is the DTFT formula and this is the inverse DTFT
formula. So, in terms of Fourier analysis what you have seen in the previous course, you had seen the
Continuous Time Fourier Series (CTFS) and then you saw the continuous time Fourier transform.

Now, we have the discrete time Fourier transform. This seems to be the third Fourier analysis tool that
we have learnt so far and this has interpretations similar to the interpretation of the spectrum for the
continuous-time case. Given a signal in continuous-time, if you want to know its frequency content,
what you will do is you take the continuous time Fourier transform.

Similarly, given a sequence in discrete-time, to know it is frequency content, you will take the discrete
time Fourier transform and you will get a spectrum which is a complex function of a real variable exactly
similar to the continuous time Fourier transform being a complex function of a real variable. The only
difference is there the real variable went from −∞ to ∞, whereas here the real variable goes from 0 to
2π or −π and π.

Given the spectrum, you can get back your time domain sequence and you can either plot this as one
3D plot or you can plot this as magnitude versus frequency and phase versus frequency, two separate
2D plots. So, exactly the same as what was happening in the continuous time Fourier transform case.
There also you could have plotted the CTFT as one 3D plot, typically you will plot it as two 2D plots;
the magnitude versus frequency, phase versus frequency.

If you look at this, these set of equations that we call this as the discrete time Fourier transform and
this is the inverse discrete time Fourier transform and we have labelled this as our third Fourier analysis
tool right, but have you seen this before? Very good, somebody said Fourier series that is exactly the
right answer. So, what we call as the DTFT and IDTFT, I mean this is not really something new; if you
look at the discrete time Fourier transform, the independent variable is continuous and it is a periodic
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function. If you have a function whose independent variable is continuous and it is periodic, then it can
be expanded as a Fourier series expansion.

Therefore, what you have been calling as the discrete time Fourier transform is really this 2π periodic
function being expanded in terms of Fourier series, where the Fourier series coefficients are given by
x[n]. Just to see the connection, if x(t+T ) = x(t), then x(t) can be expanded in terms of Fourier series,
∞∑

k=−∞

ake
jkΩ0t, where Ω0 is nothing but

2π

T
and the Fourier series coefficients ak =

1

T

∫ T/2

−T/2
x(t)e−jkΩotdt.

These are exactly the CTFS equations and this is the expansion and this is the coefficient.

Now, let us look at what is happening in the DTFT case. So, these are the coefficients and remember if
you have a function that is periodic with period T in the continuous-time case, then the Fourier series
coefficients in the frequency domain, they are spaced how much apart?

Student: (Refer Time: 10:32).

No, the spacing is?

Student: (Refer Time: 10:37).

And, omega naught is 2π/T . So, if your function is periodic with period T in the time domain, then the
spacing of the coefficients in the other domain is 2π/T , right. Now, if here in the DTFT case, you have
a periodic function, the periodicity is 2π. Therefore, in the other domain, the spacing has to be 2π/2π,
the spacing has to be 1 which is exactly what the time domain sequence is spaced apart; it is spaced
1 apart. Therefore, x[n] is really spaced 1 apart consistent with the fact that in the other domain you
have periodicity of period 2π.

The only minor difference compared to the Fourier series the way that you are used to versus what is
appearing here. So, here x[n] is playing the role of ak. So, and Ω0 is actually 1, all right. So, this is of
the form x[n]ej( ), Ω0 is 1, all right. So, the variable t is playing the role of variable ω here and Ω0 is 1.
So, the only minor difference is the way you are used to seeing the Fourier series is you have ake

jkΩ0t

whereas, in this Fourier series expansion we have e−jωn. So, this is a very minor difference.

If you had you to the −jωn here, you will have jωn here. Similarly, in the Fourier series expansion, you
can also have the definition as ake

−jkΩ0t in which case in the Fourier series integral ak for the coefficients;
instead of −j here you will have +j. So, here plus here, you will have a minus whereas, if a minus here,
you will have a plus and both these definitions are valid, it is just a minor modification. Therefore, if
you are used to the Fourier series definition having minus here and plus here, this is exactly the Fourier
series expansion of this 2π periodic function.

Therefore, this DTFT and the inverse DTFT, they are not really a new set of transforms. They are
nothing but the Fourier series expansion of the 2π periodic function except that this function happens
to be 2π periodic in the frequency domain and the time domain sequence can be viewed as the Fourier
series coefficients of the 2π periodic function in the other domain, that is all. So, this is not a really
new transform. And, moment you have the inversion integral, we can talk about certain sequences for
which it is easier to compute the transform pair starting from the other domain.
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Therefore, suppose now we have X(ejω) = 2πδ(ω). Again, we have to qualify this using this. Therefore,
1

2π

∫ π

−π
X(ejω)ejωndω which is now

1

2π

∫ π

−π
2πδ(ω)ejωndω and then if you use the shifting property this

now becomes 1. Therefore, x[n] = 1 for all n has now transformed 2πδ(ω) and you have to qualify this
with this as we have seen before.

So, this is the picture associated with this is. So, you now have an impulse at the origin. So, this is
2πδ(ω). So, this is between −π and π and really this repeats periodically because this after all is the
DTFT of a time domain sequence. Here, x[n] = 1 for all n is our DC sequence; we are used to calling
this as the DC sequence. Therefore, you have periodic repetition. So, this occurs at 2π, this occurs at
−2π, this occurred at ω = 0.

(Refer Slide Time: 16:19)
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Therefore, x[n] = 1 has transform that is an impulse but this impulse is periodic and if you want to not
use the restriction between −π and π, you have to replace the impulse by its periodic version. Therefore,

you have to replace some δ(ω) by
∞∑

k=−∞

δ(ω − 2πk). So, it is a train of impulses because it is periodic

and this is non-standard notation you may not find it in too many textbooks instead of writing delta
so, this is 2π.

So, instead of writing it like this as an impulse train or if you write it as a single impulse and then give
this restriction, you can instead use the tilde notation whereby the tilde we mean that this is actually
periodic; for sequences, some textbooks use x̃[n] to denote periodic sequences. So, we are borrowing
that notation and if you write δ̃(ω), then you know that it is periodic. Now, you need not specify it
this is between −π and +π.

So, this is one sequence which is an example of a sequence having DTFT but this sequence is not
absolutely summable, x[n] is not absolutely summable. So, this is an example of sequence that has
DTFT, but not absolutely summable. Therefore, absolute summability is a sufficient, but not necessary
condition for the existence of the DTFT. If the Z-transform contains the unit circle of the region of
convergence, we saw that those sequences are absolutely summable that they belong to the class of l1.

Therefore, if the sequence is absolutely summable, for sure the DTFT exists but absolute summability is
sufficient but not necessary condition for existence of the DTFT and this is the first of several examples
that we will see that have DTFT that are not absolutely summable. Again, x[n] = 1 for all n does not
possess Z-transform.

So, this is the analog of x(t) = 1 having CTFT 2πδ(Ω) but x(t) = 1 for all t does not have bilateral
Laplace. So, you are now seeing the counterparts here in the discrete-time case.
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