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Lecture 28:
Properties of the Z - transform (2)

-delay property

We have been looking at Z-transform properties and we looked at the very first property namely,
linearity. We will now look at the next one, and this is the delay property.

(Refer Slide Time: 00:27)

So, we have x[n] having Z-transform X(z) and in general its RoC is of the form r1 < |z| < r2. We want
to see how the Z-transform of a related sequence namely x[n− n0] is related to the original sequence’s
Z-transform and the property is x[n−n0]←→ z−n0X(z). And, the RoC is same except possibly for the
addition or deletion of 0 and or ∞.

And, the intuition behind this is, if you have a causal sequence and then if you delayed by some samples
to the left, so that you have no samples corresponding to negative indices, then in the earlier case, 0 is
not part of the RoC, but ∞ is. If you make it non-causal, then ∞ gets eliminated from the RoC. And,
the corresponding DTFT property is this, all you need to do is you need to replace z by ejω; therefore,
this becomes x[n− n0]←→ e−jωn0X(ejω).
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(Refer Slide Time: 03:14)

And, that is a simple application of this. Remember, when we look at the linearity property, we
had given anu[n − N ] as one of the sequences and we had mentioned that the transform of this was
aNz−N

1− az−1
, |z| > |a|. You can of course, very easily get this from first principles, but using the delay

property this becomes really easy.

By the way, the proof of the delay properties just almost one line. So, if y[n] = x[n−n0], the Z-transform

of the shifted sequence is Y (z) =
∞∑

n=−∞

x[n− n0]z
−n0 and then all you need to do is put l = n− n0 and

immediately this simplifies to z−n0X(z). Just one line proof. And to derive the transform of this, you
can write anu[n−N ] as aN .an−Nu[n−N ]. So, nothing has changed.

(Refer Slide Time: 05:39)
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So, this you can think of an−Nu[n−N ] as x[n−N ], where x[n] is anu[n] and hence you are able to see

that this is nothing, but aN and x[n−N ] has Z-transform z−N .X(z), X(z) of course, is
1

1− az−1
. So, the

delay property helps you get this transform immediately, anu[n−N ]←→ aNz−N

1− az−1
. Another example,

suppose if you had h[n] = 1,−N ≤ n ≤ N , H(z) of course is zN + zN−1 + . . .+ 1 + z−1 + . . .+ z−N and

this can be written as
a(1− rN)

1− r
, r = z−1.

(Refer Slide Time: 07:07)

And this is nothing, but
zN − z−N−1

1− z−1
. And, if you had g[n] = h[n − N ]. This of course, is 1 now for

0 ≤ n ≤ 2n. All we have done is, we have shifted this non-causal sequence by N samples, so that it
now begins at n = 0. And, G(z) is, all you need to do is you need to multiply the previous transform

by Z−N ; therefore, this is nothing, but
1− z−2N−1

1− z−1
.
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(Refer Slide Time: 08:51)

We can also look at the corresponding Fourier transforms. So, this is nothing but H(z) evaluated at
z = ejω. You can do this, because this after all is a finite duration sequence and the RoC does indeed
contain the unit circle, because the RoC is the entire z-plane except 0 and ∞. And, for this particular

example, you can write the given H(z) is
zN − z−N−1

1− z−1
.

Let me multiply the numerator and the denominator by z1/2. So, this becomes zN+(1/2) − z−N−(1/2)

and denominator if you multiply by z1/2 this becomes, z1/2 − z−1/2. And the reason for doing this
is, we want the DTFT of the given sequence, therefore, now if you replace z by ejω, this becomes
ejω(N+(1/2)) − e−jω(N+(1/2))

ejω/2 − e()
.

Student: Minus.

H(ejω) =
ejω(N+(1/2)) − e−jω(N+(1/2))

ejω/2 − e−jω/2
. And this is nothing, but

sin
(
(N + (1/2))ω

)
sin(ω/2)

. And this is also

commonly written as
sin
(
(2N + 1)ω/2

)
sin(ω/2)

.
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(Refer Slide Time: 11:40)

And, this function
sin
(
Nω/2

)
sin(ω/2)

, this is called as the Dirichlet Kernel and MATLAB, you can look up

the command diric, that evaluates this function.

(Refer Slide Time: 12:32)

And, suppose I set z to be, linspace generates points between (a, b) and you can specify the number of
points you want between a and b. And then you can plot z which is 0 to 4π and I am plotting diric(z, 7).
So, here N = 7. So, this is what this function is.

And, clearly this function is the Fourier transform of a sequence and this is 2π periodic. So, here I
have plotted from 0 to 4π, so that is why you see two periods here. So, what was happening at 0 gets
repeated at 2π. And MATLAB, if you say axis tight, it will plot the axis just limiting itself to the data

5



range. So, this is the Dirichlet Kernel. So, this is
sin
(
Nω/2

)
sin(ω/2)

. In continuous-time Fourier transform,

you have come across the sinc function
sinπt

πt
, and later when we do sampling, we will relate these two

functions.

(Refer Slide Time: 15:06)

So, from the delay property, it is easy to see that x[n − 1] ←→ z−1X(z) and this property is used in
block diagrams. Suppose, you had x[n], and if the block diagram is labeled as z−1, then this is a simple
delay. Therefore, this y[n] is nothing but x[n − 1]. Instead of z−1, if you had z−N , then the delay will
be by N samples.

So, if in block diagrams, if you see things like z−1 or z−k and so on, then that stands for a delay by
so many samples. And, if in x[n − n0], if n0 were negative, then this advances the input rather than
delaying it. So, n0 can either be positive or negative.

Now, this delay property also can be used to point out one important consequence of systems described
by linear constant coefficient difference equations. Therefore, suppose you had y[n] = −

∑N
k=1 aky[n −

k] +
∑M

k=0 bkx[n − k]]; similar to what was happening in the continuous-time case where you took a
system with LCCDE. But in this case, its differential equations, then you transformed it using the
Laplace transform. So, here we will do something similar. We will transform this into the z domain.
This after all is the input-output relationship.
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(Refer Slide Time: 17:38)

So, now if you transform it to the z-domain, this becomes, y[n− k] is nothing but z−kY (z) i.e., Y (z) =

−
N∑
k=1

akz
−kY (z) +

M∑
k=0

bkz
−kX(z). Now, you can collect all terms involving Y (z). So, this becomes

Y (z)
[
1 +

N∑
k=1

akz
−k
]

= X(z)
M∑
k=0

bkz
−k.

And, when I had introduced this difference equation, one of the questions raised was, why do you have
a minus sign here? Right. And the only reason why a minus sign is used is, so that when you take it
to the other side, this becomes plus. Otherwise, if this were a minus, you have to carry the minus sign
throughout all the terms, that is only reason. It is just a cosmetic a notation.

And, this of course, can be written as
Y (z)

X(z)
=

∑M
k=0 bkz

−k

1 +
∑N

k=1 akz
−k

and this is of the form
B(z)

A(z)
. And, just

as in the continuous-time case, where you called
Y (s)

X(s)
as H(s) which was the system transfer function.

Here, H(z) =
Y (z)

X(z)
is the discrete-time system transfer function in the z-domain. And, the important

consequence of this is, this is now a rational transfer function.

So, systems described by linear constant coefficient difference equations give rise to transfer function
that are rational and you can actually work these steps backwards. Given a system with rational trans-
fer function, there is always a corresponding LCCDE associated with it in the time domain. Therefore,
LCCDE in the time domain gives rise to systems with rational transfer function, systems with rational
transfer functions have a corresponding time domain implementation that involves linear constant co-
efficient difference equations, which is the exact counter part of LCCDE in continuous-time, where D
stands for differential there giving rise to systems with rational transfer function in the Laplace domain.

So, now we are ready to answer the question as to why we are enamored by this class. This question
has been raised more than once. The reason why this class is of so much importance to us is, this is the
only class that can be realized in practice. In continuous-time case, if you had a system with rational
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transfer function H(s) which is of the form
B(s)

A(s)
.

Suppose, the transfer function is something that you want, say for example, it is a low pass filter, you

need to actually realize this in practice. And, any
B(s)

A(s)
can always be realized in practice using R, L

and C. Given an RLC circuit, what do you have been doing in that course is, you would replace R by
R, L by sL and C by 1/sC and then you will write equations and then you will be able to come up
with the system transfer function.

The converse also is true. Given an arbitrary transfer function of the form
B(s)

A(s)
, there exists an RLC

realization of this. So, there is no use in having a nice transfer function that in terms of design does
what you want it to do, but if you cannot realize it this is absolutely useless. But, if you did a course
on network synthesis, you can always realize this in practice.

Similarly, here given a rational transfer function in the z-domain, it corresponds to a linear constant
coefficient difference equation. And, in terms of realization, all you need are multiplier coefficients and
delay elements. Once you have multiplier coefficients and delay elements, you can realize this difference
equation in practice, all right. And this is the reason why this class is so important.

The other icing on the cake is it is not only just merely realizable, but it also gives rise to transfer
functions that are extremely useful in practice. There is no point if this is realizable, but does not
produce too many useful transfer functions. It does provide a large variety of transfer function that
are extremely useful in practice and it can also be realized. And somebody made a remark when I had
talked about y(t) = x(t− τ), right. I think you made the remark about this one.

Now, let us see the differences between this continuous-time and discrete-time. You had x(t)←→ X(s).
And, if you look at x(t − τ), this is e−sτX(s). So, the delay element in continuous-time, that transfer
function is e−sτ .

(Refer Slide Time: 25:14)

On the other hand, if you had x[n] ←→ X(z), x[n − n0] ←→ z−n0X(z). Here the delay element has
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transfer function z−n0 , ok. So, if you compare these two, is there any point that kind of jumps out at
you? Suppose, your original system had, if this X(s) were rational, what about e−sτX(s) thing? Is it
still rational or takes it out of that class? It is no longer a rational Laplace transform, whereas, here if

X(z) were rational of the form
P (z)

Q(z)
, this continues to be rational.

Student: Ok.

All right. So, a delay element in discrete-time which is z−n0 is indeed a rational transfer function
whereas, the corresponding counterpart in continuous-time is not. So, this is very important to keep in
mind that the only class that can be realized in practice are the class of rational transfer functions. In
continuous-time, you realize them using R, L and C, in discrete-time for realization, you need multiplier
and delay elements. You can realize systems with rational transfer function.

Now, continue with the a delay property, let us look at this for the DTFT. So, this was x[n− n0]←→
e−jωn0X(ejω). One thing about the DTFT that is different from the Z-transform is, the Z-transform is
a complex function of a complex variable. So, really you need four-dimensions to plot it, so we cannot
visualize it.

On the other hand, the DTFT, the independent variable is omega which is real valued quantity. And,
ω you need to let it vary only from 0 to 2π or between −π and π because this is periodic. Therefore,
the DTFT is a complex function of a real variable therefore, you can actually plot it in 3D; you need
one-dimension for ω for the independent variable and two-dimensions for the dependent variable, real
part and imaginary part.

Typically, what you have been using when you plot the Fourier transform in the continuous-time case
is, you have been plotting magnitude versus frequency, and phase versus frequency. There also, the
continuous-time Fourier transform is a complex function of a real variable. They are the real variable
Ω went from −∞ to ∞, ok.

Now, if you look at this. So, you have some original transform X(ejω) and then when you shift this, it
is getting multiplied by e−jωn0 . So, if you want to view this geometrically, what is happening here? So,
what does this do? This is a complex number and it is being multiplied by e−jωn0 . So, what does it do
in the complex plane?

Student: Phase (Refer Time: 29:41).

Phase modulation not quite, geometrically what is happening?

Student: Rotate.

Very good, it rotates, right. So, the geometric interpretation of multiplication of two complex numbers
is the magnitudes get multiplied and the phase angles get added, right. In this case, if one of the
complex numbers is ejω. All it does is, it cannot alter the magnitude, but merely rotate the complex
number that it is multiplying, all right. So, now we can get a feel for what is happening here.
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(Refer Slide Time: 30:23)

So, let us now plot the Fourier transform. Sequence we are interested in is this, later we will be looking
at cos(ω0n), we will formally derive the Fourier transform of this, but it in terms of equation this appears

similar to what we had seen in continuous-time. So, this is cos(ω0n)←→ π
[
δ(ω − ω0) + δ(ω + ω0)

]
.

(Refer Slide Time: 31:01)

And, sin(ω0n)←→ π

j

[
δ(ω−ω0)− δ(ω+ω0)

]
. So, this looks frighteningly similar to its continuous-time

counterpart expression. The only difference of course, here is?

Student: (Refer Time: 31:27).

Very good. So, in the continuous-time case, you had an impulse at +Ω0 and −Ω0 and there you must
have used the Ω notation. You may have also used the ω notation. But since here we want to compare
and contrast CTFT and the DTFT, for the CTFT, we will use the Ω notation and ω for the DTFT.
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But, in the CTFT case, you had only one impulse at +Ω0 and another impulse at −Ω0. In the DTFT,
because by definition it is periodic, when you write something like this the periodicity is clearly not
explicit. In fact, it is not periodic the way it is written. Therefore, what do you need to qualify this
with to make sure that it is the DTFT?

Student: (Refer Time: 32:19).

You have to specify the range over which this is valid. So, this is between this.

Student: (Refer Time: 32:29).

Note that, in the case like anu[n], its DTFT is
1

1− ae−jω
. All you needed to do there was, you replace

z by ejω, therefore,
1

1− az−1
became

1

1− ae−jω
. There you do not need to specify the range because

by the very nature of the expression, if you replace ω by ω + 2π, the periodicity is there in the form
that it is written.

Now, coming back to this. So, let us call this as the ω axis and this is the real part and this is the
imaginary part, ok. Or, the let me make this as the real part and this the imaginary part and this is
omega. Now, for cos(ω0n), this is the DTFT. So, it has an impulse at ω0 and at −ω0. Therefore, at ω0,
I have an impulse; at −ω0, I have an impulse.

Now, what I am going to do is, I am, cosine; and remember this transform is purely real valued, so that
is why the transform lies completely in the real part plane. And now, when I take cosine and shift it,
then I start to add phase and remember the geometric interpretation is a rotation, all right. And hence,
when I am rotating the this 3D plane, this impulse starts to rotate like this. So, now, this comes like
this; so now, this is rotated by an angle like this. This impulse starts to rotate in this direction, right.

So, if these are the two impulses, then when I start to shift, this rotates like this, this rotates like this,
ok. And now I keep shifting, I shift it enough, so that cosine has now become sine. So, now, what will
happen is this impulse will be like this; this impulse will be like this, all right. So, the two impulses
that were like this, they are now completely real. 90 degree shift, this will become like this, this will
become like this. They are now completely lying in the imaginary plane, right. So, that again you see
from this expression.

Therefore, the transform that you are used to seeing. So, the transform is, for cosine, you would have
seen impulses like this. And for sine, you would have seen impulses like this, correct. So, this is nothing,
but the view of this 3D picture as viewed in this direction. After phase shifting enough, so that it may
it has become sine. The picture that you see here is nothing, but this 3D picture viewed from the top.

Now, if you keep shifting further, this sin will become −cosine. Therefore, what will happen is, this
keeps further rotating and the impulses will be completely pointing downwards. Again, you shift further,
−cosine will become −sine. Again, you keep shifting further, −sine will again, it will become cosine.
So, when you have shifted by enough sample, so that cosine comes back to cosine, these two impulses
would have rotated one complete rotation, all right. So, this is the geometric picture associated with
the shift, all right. So, this kind of adds inside to the algebraic expressions.

So, any multiplication by a factor that is e−jωn0 , merely twists the transform in the 3D complex plane.
And clearly, the magnitude does not change because its mere rotation, magnitude is related to the
length, length does not change if you rotate, ok.
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x[n− n0]←→ e−jωn0X(ejω). Then, extending this, somebody had this idea in mind, instead of n0, the
person used α and now this became n−α. So, the point about this is, it is not mere change of notation,
no α can be any quantity not necessarily an integer, all right. So, once you have this delay property, it
suggests that you can delay a sequence by fractional amount.

Now, what is the interpretation of this? The interpretation of this is as follows. So, we have a sequence
like this, associated with this sequence, an underlying envelope continuous-time signal. So, you can
think of something like this. And, because the underlying signal is continuous, suppose you take this
and then delay the underlying continuous-time envelop by some amount, ok. Suppose you delay this by
some amount, the point is the underlying continuous-time envelope can be delayed by any amount, not
necessarily integer number of samples.

Now, suppose you resample the shifted continuous-times signal, but the point at which you sample
remain the same, you sample exactly the same points. Therefore, now you will sample it here, here,
here, here and so on. You can think of now the new samples, which are exactly the same locations
the as the old, except now this in your mind, you can think of this as taking the original underlying
continuous-time signal shifting it by not necessarily an amount that is integer multiple of the sampling
period. You are shifting it by say 2.5 samples and then you are resampling it. So, you will get the newly
marked samples.

So, you can interpret these new samples as taking the old ones and shifting it by fractional amount.
So, this delay property helps you to bring in the notion of fractional shift because ejωn0 ; n0 need not
necessarily be an integer. So, what we will do is.

Student: Sir.

Yes.

Student: Continuous part of the (Refer Time: 42:58) need not be the (Refer Time: 42:59).

Yes. So, the assumption is you have sampled it adequately, so that these samples represent an underlying
continuous-time signal. So, that is the assumption that you are making. Through a discrete set of points,
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an arbitrary number of curves can pass through, but if you assumed that the signals band limited which
is what you have studied in sampling in signals and systems, the so unique correspondence between
samples and the underlying signal, continuous-time signal. So, that is the assumption here. So, what we

will do is, remember we had cos
(nπ

5

)
and then we also looked at cos

(nπ
5
− π

2

)
and this was x[n−2.5].

So, now what we will do is we will take cos
(nπ

5

)
, apply this property and then obtain this signal by

letting α to be −2.5, and we will do this in MATLAB. And, the only thing that at this point you do not
know is, right now ω is continuous whereas, on a computer implementation you have to implement it as
samples. That is the transform cannot exist on a continuum of values from 0 to 2π, it has to necessarily
be sampled. And, that we will come back to towards the last part of the course.

So, only that step may not be clear to you, other than that, all I am going to do is I am going to
implement this and transform again cannot be a continuum of values. So, transform also has to be
machine implementable. This multiplication also has to be machine implementable. So, the connection
between what is being done in MATLAB and the DTFT, this is exactly what I am going to implement,
ok.

(Refer Slide Time: 45:11)

So, I have N points from 0 to 19. So, I have taken 20 samples and then this is my signal cos
(nπ

5

)
.
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(Refer Slide Time: 45:35)

And, I am going to compute the transform. I need X(ejω), that is obtained by this operation fft(x).
So, we later, we will talk about the DFT and we will talk about the FFT. So, this the machine
implementation of the DTFT, ok. So, this is the transform, ok.

Now, I need to take the transform and multiply by e−j2.5ω, all right. And remember, we will see symmetry
properties later. Similar to the continuous-time case, if the signal were real valued, the transform is
symmetric in the CTFT. So, if you know the transforms from 0 to ∞, you know the transforms from 0
to −∞. Similarly, here if you know the transform from 0 to π, you can recreate the transform from π
to 2π, so that property will also exploit. We will formally state that property later. I am using that in
advance now. So, now, I have this; so this is what I am doing here.

I have taken the first 11 samples. Remember, the sequence is 20 points, 0 to 19 contains 20 points.
Later, we will see that the transform also contains 20 points. I am only taking the first half so, I am
taking the transform from 1 to 11. That is, this is 0 to N/2, N = 20 therefore, N/2 = 10, 0 to 10.
MATLAB is one based index therefore, I am taking 1 to 11. And e−j(), here I have 2.5 and ω, I have
discretized. So, this is what the discretization of the ω is; 2π ∗ (0 : 10)/20. This corresponds to the
discretization of the ω variable. Details will become clearer, when you do the DFT and the FFT.

So, I have now created e−jαωX(ejω). This is what I have created in this step. But, I have created this
only from 0 to π because I have taken only one half of these spectrum. Now, the second half of the
spectrum is nothing, but the complex conjugate of the first part. And time reversed, again we will see
this later.

So, here, the X1 vector that was created earlier is there as it is. So, here what I have done is, the flip
up down time reverses the vector, you will see the need for time reversal later and complex conjugation,
conjugate does the complex conjugate part. And I am taking the first half, I am complex conjugating
it and time reversing it.

But in the first part, I have this sample value at ω = 0 and at ω = π, those need not be repeated,
because they are common. Therefore, that is why I am taking only samples from 2 to end−1. Sampled
number 1 would correspond to ω = 0 which need not be repeated. Sampled number end, which is the
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last vector corresponds to π again which need not be repeated. So, this is the reason why I am taking
only samples from 2 to end− 1, ok. And then I need to compute the inverse transform.

So, the X1 vector that was created earlier, I am now doing the inverse transform. Earlier I had used
fft that was the counterpart for the DTFT in terms of machine implementation. The inverse DTFT is
accomplished by ifft. And if things were ideal, because of the symmetry of the transform, the inverse
transform would be real. But due to machine precision effects, the transform is not expected to be real,
but the real part will have some very small machine ε values. To get rid of the small imaginary part, I
am taking the real part.

And now I need to plot. So, here what I have plotted is, n from 0 to 19 and this is y; y was obtained

by taking cos
(nπ

5

)
and then shifting it by 2.5 samples. So, if we have fractionally shifted the original

sequence and we are now comparing it to the ground truth. Ground truth is really cos
(nπ

5
− π

2

)
.

Remember, cos
(nπ

5
− π

2

)
is x[n − 2.5], whatever that means. So, this is the ground truth, and y is

taking cos
(nπ

5

)
and shifting it in the frequency domain by applying a phase factor of 2.5. There you

go, so one curve is right on top of each other.

(Refer Slide Time: 50:54)

So, the two curves here, one was y which has been obtained by shifting by 2.5 samples of x = cos
(nπ

5

)
.

I have shifted by 2.5 samples using this procedure, using the delay property. The other reference is

really cos
(nπ

5
− π

2

)
, those lie right on top of each other. So, you can actually fractionally shift using

the delay property.
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