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-Absolute convergence criterion for the Z-transform

(Refer Slide Time: 00:17)

Now, let us talk about convergence. Because, you have some going from −∞ to ∞, you need to worry
about whether this quantity exists or not. There are many criteria for convergence, we will use a
criterion that was used in the Laplace transform case. So, convergence actually depends on the criterion
used, and we will use exactly the same criterion that was used in the Laplace case and the convergence
criterion that was used in the Laplace transform case was; what was the criterion that you were using
for the existence of the Laplace transform?

The criterion that I hope at least now it rings a bell and what is then some other convergence criterion
that this terminology triggers, that you may have heard of?

Student: (Refer Time: 02:01).

In terms of integrals. Remember, this I am talking, I am recalling what you may have learnt in Laplace.
The other criterion that could have been used is uniform convergence whereas, in the Laplace case,
we used absolute convergence as the criterion. We will use absolute convergence criterion for the Z-
transform case. There, the absolute convergence meant absolute integrability whereas, here absolute
convergence would mean absolute summability.
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Therefore, X(z) is defined as X(z) =
∞∑

n=−∞

x[n]z−n. The absolute convergence criterion demands that

|X(z)| <∞. So, this is the criterion for absolute convergence.

(Refer Slide Time: 03:33)

So, let us examine |X(z)|. So, this is the absolute value of the summation over all n, |X(z)| =∣∣∣ ∞∑
n=−∞

x[n]z−n
∣∣∣ and then, since absolute value of this sum is always less than or equal to sum of the

absolute values, you have |X(z)| ≤
∞∑

n=−∞

∣∣x[n]
∣∣.|z−n|. You will now let z = rejω and hence, this sum-

mation becomes
∞∑

n=−∞

∣∣x[n]
∣∣.r−n, r being a non-negative quantity. All I have done is, I have replaced z

by rejω and this of course is; |e−jωn| = 1 and does not play any further role. So, now we need to look
this up.
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(Refer Slide Time: 05:11)

We will break this into two parts. So, this can be written as
∞∑
n=0

∣∣x[n]
∣∣r−n +

−1∑
n=−∞

∣∣x[n]
∣∣r−n. First term

remains as it is and in the second term, we will replace n by −l and then we will relabel l as n once

more. Therefore, this is nothing but
∞∑
n=1

∣∣x[−n]
∣∣rn. And if you look at the way the summation has

been split, what we have done is we have broken the sequence into two parts, this is the causal part
namely the sequence with indices ranging from 0 to ∞, and this is the anti-causal part of the sequence,
where recall we are using the term causality. Let us introduce in terms of systems, you are applying to
a signal, signal is called causal if it is 0 for n < 0, an anti-causal if it is 0 for n ≥ 0.

Now, let us look at each of these terms. So, let us look at causal part to see what that behaviour is.
Suppose, let us assume that there exists a certain r0 for which the first part exists, right. So, suppose
there exists r0, such that the first term converges. Let us assume this. Then, we want to ask the
question what about values of r greater than r0. If you know that the first term converges for a certain
r0, what can you say about the convergence for all values of r that are greater than r0.

The sum will converge because if you consider a value, say r > r0, then this term, the weight that
you apply to the sequence decays more rapidly, right. Because, if you have r > r0, then r−n < r−n0 .
Therefore, the terms are weighted down more and more heavily. Therefore, if the series converges for
r0, then for all values of r that are greater than r0 the series necessarily will converge. And the theorem
that is used to establish this is, intuitively you see that this is true, but the precise theorem that is used
is the comparison test. So, series comparison test is used to establish the result.

So, we can see then the series converges for all r, r > r0, because r−n < r−n0 . Therefore, if a certain
radius exists for which the series converges, then for all radii that are greater than this, the series is
definitely bound to converge.

Now, very similar arguments can be made for the anti-causal part. Again, let us assume there exists
an r0 such that the second term converges. Then, what can you say about the convergence for all radii
that are smaller than this r0? The series will definitely converge because remember, now we are looking
at rn. Therefore, any radius that is smaller than r0 will decay faster and hence by the comparison test,
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if the series converges for r0, series will necessarily converge for all values of r that are less than r0 for
the second term. So, the series converges for all r < r0, because rn will be less than rn0 .

(Refer Slide Time: 11:23)

Now, let us assume, let r1 be the smallest radius for which the first term converges. Similarly, let r2 be
the largest radius for which the second term converges. So, if there exist an r1 for which the first term
converges and if there exists an r2 for which the second term converges, then the complete series which
involves both the first term and the second term will converge when you have r1 < |z| < r2.

So, hence, X(z) exists if you have r1 < |z| < r2. So, clearly this supposes that r2 is larger than r1,
because you are looking at the intersection of two regions of convergence. For the first part, you require
|z| > r1, and for the second part you require |z| < r2, therefore, these two regions must overlap which
means r1 < r2. So, this implies that the region of convergence is an annular region and r1 can be as
small as 0, r2 can be as large as ∞.

(Refer Slide Time: 13:59)
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Therefore, the region of convergence as far as Z-transform is concerned is in general an annular region
with radii r1 and r2 and this is the region where in general the transform exists. And the reason why
you have the region of convergence to be an annular region is because the convergence criterion that
we have used is the absolute convergence criterion, and the absolute convergence criterion boils down
to the parameter r. This is the reason why the region of convergence is an annular region.

(Refer Slide Time: 15:05)

So, if you recall your Laplace transform case, there you had X(s). So, this was integral X(s) =∫ ∞
−∞

x(t)e−stdt. Again, there you used absolute convergence. Therefore, you required this. So, |X(s)| ≤∫ ∞
−∞
|x(t)|e−σt.

∣∣e−jΩt∣∣dt. You had to take mod,
∣∣e−jΩt∣∣ goes off, therefore, the convergence of the integral

was dictated by the parameter σ and σ is the real part of s.

That is why, there the convergence happened between vertical lines, because the parameter governing
convergence was the real part of s whereas, here the parameter influencing convergence is the radius
r, that is why what is happening in the Z-transform case is between two circles. What was happening
between two vertical lines earlier is now happening between two concentric circles.

And we saw this example, x[n] = anu[n]. So, this was X(z) =
1

1− az−1
. So, this was |z| > |a|. In this

case, r1 happens to be not a, but |a|. Remember, a in general is a complex number, whereas r2 is ∞.

Similarly, if you had x[n] = −anu[−n− 1], again you had X(z) =
1

1− az−1
, same algebraic expression.

But in this case, it is |z| < |a| and here r1 = 0, r2 = |a|. So, just to illustrate the fact that r1 can be as
small as 0 and r2 can be as large as ∞, we have already seen examples.
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(Refer Slide Time: 18:19)

Just to give some more insight into this RoC, for rational X(z), recall that rational means X(z) is of

the form
B(z)

A(z)
, ratio of polynomials. For rational X(z), the RoC will be of the form, r1 < |z| < r2. For

rational transfer functions, this is how the RoC will be, and the RoC will be bounded by poles.

So, this is exactly the same as what was happening the Laplace transform case. In the Laplace transform
case also, you would have had σ1 < Real{S} < σ2. There also you had the RoC bounded by poles.

And suppose, x[n] =
1

|n|+ 1
. So, this we just note the fact that, if you want to take a guess about the

Z-transform of this, what would be your guess? Yeah, very good, it does not exist and the reason why
it does not exist is?

Student: (Refer Time: 20:25).

Ok. Suppose, I had x[n] =
1

|n|+ 1
for n ≥ 0. Remember, now this exists for all n from −∞ to ∞.

This is a two sided sequence. Your answer is correct, but I am trying to understand more as to what

made you conclude that. Suppose, I had x[n] =
1

|n|+ 1
for n ≥ 0, then if I had asked you about the

Z-transform, what would be the answer? Ok. We will look at similar examples later very soon and
maybe you will see the reasoning that we are going to make in those cases will apply here also.

Student: (Refer Time: 21:36).

No, that is not right. So, here, the Z-transform does not exist. We will not, we will make a remark later

about sequences like this. And, suppose you had a sequence like this x[n] =
1

n2 + 1
, the RoC is |z| = 1.

So, this exists only on the unit circle.

So, we will not further get into details of sequences like these. Just want to make you aware that

there are cases like x[n] =
1

|n|+ 1
for which Z-transform does not exist, and there are sequences like

x[n] =
1

n2 + 1
in which the annular region has degenerated into a circle where r1 = r2, that is all. And,
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if you ask the mathematicians to define r1, they will define r1 like r1 = limn→∞
∣∣x[n]

∣∣(1/n)
and lim stands

for?

Student: lim sup.

lim sup. So, this stands for lim sup and r2 will be r1 = limn→∞
∣∣x[−n]

∣∣(−1/n)
. So, these are the definitions

of the two radii and this is the Cauchy-Hadamard result.

Again, we will not use any of this. If you did not know what lim sup and lim inf were, you need not be
concerned whether you will be asked to drop on that knowledge to solve problems. We are considering
only the class of rational transfer functions, and they are the simplest class and moment you evaluate
the poles and zeros, you can always be guaranteed that the RoC will be bounded by poles.

tudent: (Refer Time: 24:22).

Question; yes.

Student: (Refer Time: 24:24).

Very good; yeah; yes; whereas for rational transform functions, the two radii will be distinct. So, I just
want you to be aware of these formula but our problems are much simpler that we will not have to use
any of these.
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