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Let us now focus on the operations on the independent variable. The most common operation that you
encounter when it comes to operations on the independent variable is what is called the affine transform.
It consists of both time shifting as well as time scaling. So,

y(t) = x(at + b),

is called the affine transform of the independent variable where, you are not only scale but you also
shift.

And there are other possibilities of transforming the independent variable other than the affine. There
is what is called the Mellin transform and you can compute this by replacing t by et. And if you did
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this, you are non-linearly compressing the independent axis and then if you take the Laplace transform
of the non-linearly modified signal, that will be the Mellin transform.

So, this is not the only thing kind of transform that exists, but as far as this course is concerned these are
the typical kind of operations that we look at. And if a > 1, then this corresponds to time compression.
And if a < 1, this would correspond to time expansion and if a were negative in addition to it either be
in compression or expansion you have reflection.

Now, given y(t) which is the compressed or expanded maybe in reflection is thrown in depending on the
value of a. Suppose you want to get x(t) from y(t); y(t) is the affine transformed signal and you want
to get back your original signals, so this would correspond to what?

x(t) = y

(
t− b

a

)
.

Because, wherever t is there if you replace t by
t− b

a
, you will get back x(t).

So, if y(t) is x(2t), then x(t) = y

(
t

2

)
. So, given the compressed or expanded with a possible reflection

and also shift, you can undo the operation of the affine transform and get back your original signal.
The corresponding counterpart for this in the discrete-time case is

y[n] = x[Mn + N ].

So, this is the discrete-time counterpart of the affine transform and working on a similar analogy if
y[n] = x[2n], that seems like the counterpart of y(t) = x(2t).

So, in this context suppose I have something like this, so this is n and this is x[n] and now I have y[n]
which is x[2n]. Therefore, y(0) = x(0), y[1] = x[2], y[2] = x[4], y(−1) = x(−2), and so on. So, you see
the picture that emerges. This is what the time compressed signal is compressed by a factor of 2. Now,
suppose I have w[n] which has these values.
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Now, let us look at z[n] = w[2n]. Again, what is happening here is all the even indices are picked up.
And it is very easy to see that the picture that you get for set of n is this. And the immediate thing
that strikes you is that z[n] = y[n]. So, the consequence of this is that suppose a given z[n] which is
the same as y[n], you cannot tell whether the sequence that it came from was x[n] or w[n].

So, in sharp contrast with respect to the continuous-time case where given y(t) as x(2t), you can go
back to x of t by expansion by a factor of 2 whereas here you cannot. The reason why this is happening
is when you pick up all the even indices, you are simply discarding the odd indices. Once you have
discarded the odd indices, there is no going back.

Therefore, although this appears similar to compression in the continuous-time case, there are important
differences. And the reason why this appears similar to the continuous-time compression is suppose you
had a waveform like this and then if you picked up all the even indices, so this has an envelope something
like this. So, this seems to remind you that this is compression by a factor of 2. So, in that sense this
seems similar to that.

(Refer Slide Time: 10:19)

Now, let us carry this comparison further and then look at the other counterpart that is y[n] = x[n/2].
Immediately, you see that y[0] = x[0], y[±2] = x[±1] i.e., y[2] = x[1], y[−2] = x[−1] and so on. So,
there are no issues here, but then the moment you talk about y[1], this is x[1/2] and this value is?
Student: Undefined.

Undefined. Similarly all the odd indices are undefined, they are not 0. Given this definition, purely if
we go by this, all the odd indices are undefined. Therefore, if you look at this particular example that
we saw and for this sequence given here,
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If you look at the n/2 sequence i.e., y[n] = x[n/2], if you just focus on this, it does indeed look like an
expanded version. But as it is, all the odd indices are undefined but you can go ahead and then define

y[n] =

{
x[n/2], n even

0, n odd,
in which case the picture now becomes like this. But the point is it is not

quite the expansion by a factor of 2 that you thought has to be there. And later, we will see that more
processing is needed to go from this picture to the picture where all these samples are filled in.

To have a picture that this is expanded by a factor of 2, similar to what was happening in the continuous-
time case, more processing is needed. Right now, all you can do is you can only fill in 0s provided you
define it like this. And then to go from the 0 filled sequence to a sequence that looks similar to an
expanded version, more processing is needed. Therefore, right here you see when it comes to the affine
transformation, there are important differences between continuous-time and discrete-time case.
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