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Properties of LMIs and Delay LMIs

Hi, everyone. Welcome to this lecture number 2 of week 12 of the course on Linear
Systems Theory. In lecture number 1, we or the aim was to introduce you to some
computational tools that would help you solve some basic matrix inequality starting from

the Lyapunov inequality in continuous time to discrete time, stabilizability and so on.

So, today what I will teach you is some computational tools that you would, that would be
helpful in solving this kind of LMIs. I will also run you through few examples or through
tests or few test cases of formulating problems as LMIs. I will briefly touch upon the linear
matrix inequalities related to time delay systems. We will derive or we will see how
stability of time delay systems can be formulated as equivalent LMI problems and see if

the systems are independent of delay depending on delay and so on.

Similarly, with another concept called passivity of linear systems. Of course, a delay
systems by itself is a vast course it has a bunch of books, bunch of literature on that. So,
this is not a comprehensive or even a small introduction to delay systems. Neither is it a
good introduction to passivity related concepts, but we will just learn little things that we

may need and how we actually attempt to solve problems from different domains.

Neither is this weeks lectures and an extensive introduction to LMIs, right. There are also
a bunch of books that are available lot of literature, lot of research work still going on, but
it just to expose you to certain tools which might be useful for you if you are pursuing your
research activity or reading some other papers or just if you want to look at some areas

which are related to what we learnt in the course.

So, also the aim of the course or aim of this week’s lectures is not really to do is to give
you a comprehensive introduction on LMIs, is neither to do with delay systems, nor to do
with passivity or the other things that we are; that we are about to talk in this lecture. So,

we just to give you a brief idea on how to use tools of this form, ok.
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So, before we start, so just a little properties of LMIs that I would like to list out is the

following.
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\

l. General properties of LMIs

1. Hx) = 0 is equivalent to —F(x) < 0

2. F(x) < G(x) is equivalent 1o F(x) - G(x) < 0
1

3. Fy(x) < 0, F:(x) < 05 equivalent to diag(Fi(x), F;(x)) < 0

& F(x) < 0 and Gly) < 0 1s equivalent to diag(F(x). G(y)) < 0

D |
s If [ - 0is a feasible LMI, then |- | < 015 also feasible
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So, if I say that F(x)> 0 this is equivalent to saying -F(x) < 0. Similarly, F(x) < G(x) is
equivalent to saying F(x) - G(x)< 0. If F;(x) <0, F,(x) <0 this is equivalent to saying that
the diag(F;(x), F5(x)) < 0. Similarly, if I have LMIs in two different variables F(x)< 0,
G(y) <0 then I can say that the diag(F(x), G(y)) <0.



Similarly, if this LMI is feasible that this LMI is also feasible. If you just check by pre and

(I) (I)] that is this like. So, these two matrices

this matrix and this matrix would have some kind of a equivalence relation as we talked

post multiplying in this way A, B, C, D with [

about in lecture 1, while we were deriving Schur complements, ok.
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The feasible set for the LMI, F(x) > 0, is the

interior of the unit disc [ N 1']

Figure 1; Feasible Region

Linear Systems Theory Module 12 Lecture 2 Ramkrishma P.

So, again start with the example that we did in the in lecture 1 using Schur complement of
this block, ok. So, I am about to solve this LMI where I want to find what is the region for
which F(x) >0, ok. So, based on 2 different methods that we learnt in lecture 1, we will see
that the feasible region is just the interior of this unit disk and will look something like this

and this is straight forward to check.
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In addition, if I impose a constraint that, in addition to just F(x) being 0, I impose another
condition that x; + 0.5 > 0, right. So, the LMI would change now to something like this,

ok. So, it is easy to check right that I am only looking at regions where x; > -0.5, right.

So, this the region to the left of this will no longer be the feasible region and so, solving
for this LMI now would give me an appropriate feasible region which in addition to this

constraint also takes care of this particular constraint that x; + 0.5 > 0, ok.
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Regional or Dy Stability

J0C0 BEBE BS0N¢

ni & .TE..




So, LMIs can also be used to solve more you know kind of interesting problems. Much of
the design problems that we looked upon were, first stability was important and second
was design in terms of pole placement, right. So, what we will do here is, again this is not
really a comprehensive introduction to what is called in literature as D stability or even D

R stability.
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So, suppose, let us let us work in the discrete time case for the moment, that so I have x(k+
1) = Ax(k) + Bu(k). The standard stabilization problem would be find control law u(k) =
kx(k) such that the eigenvalues of A + BK are the eigenvalues are in the unit disk, right.
And then we know now, how to first formulate this as an LMI that is what we learned in

lecture number 1.

Again, though I am just dropping the case the -K here which we would usually use, but
nothing really changes, ok. So, suppose now so my usually I am not really looking at
perform as stability, in addition to stability I am also interested in performance and
performance usually translates to placing poles of my closed loop systems at appropriate

locations.

So, let us say can [ say maybe [ want my poles to lie within this region here or maybe some
region like this or maybe like this or this several possibilities or say I just want my poles
to lie within a circle of say radius 0.1 instead of 1, right. So, this these problems are called

D stability regions.



Well, in the continuous time it could just translate to say your closed loop poles being say
to the left of say -K for example. It could also translate to poles being say within this region
where you put certain restrictions on the damping. If you put certain restrictions on omega

n then you will have another region and so on, right.

So, equivalently like you learn concepts also exist LMI in the continuous time domain. So,
let us look at for example, this particular thing in the discrete time case of how do I solve

for my poles to be in one predefined region of the stable region, ok.
(Refer Slide Time: 08:17)
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[§ D; Stability
Consider the linear discrete time autonomous system

e+ 1= A

Defintion 1

A Dy, region in the z-plane is given by

with Ry; € R*? gnd Ry € R%”
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So, let us look at the autonomous system to begin with and ok. So, a D R region is defined

R R
by this following relation, right. So, in the z plane, so [ have matrices [ Rll R12] ok. The
12 R

D R region is now represented by this particular LMI, right, where, ok. So, R;; and R,
are of these dimensions and overall I can write R as a partition matrix of this from Ry,

R;,, its symmetric and you have R,, here right, ok.
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Defintion 2
The matrix A € R™" js said to be Dg-stable if and only if all its eigen values lie in the D

region defined by (1)

Remark

The Dy regions are symmetric wirt the real axis as is the case with the LMI regions,
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So, what is the definition of that? The matrix A is said to be D R stable if and only if all
its eigenvalues lie in the D R region defined by 1. And how what defines these regions?
Are this choice of matrices Ry, Ry, and R,5; I will show you, I will shortly show you
some examples. So, if [ say well this my D R region looks something like this, so this is

my D R region, ok.

So, my system would be stable or my system I would call it D R stable if in addition to
stability all eigen values are within this shaded region here. So, [ am restricting my closed
loop poles to certain sub regions of the stable region in this in the unit disk and the stable
region is the unit circle, ok good. Some properties the D R regions are symmetric with

respect to the real axis as this case within any general LMI regions.



(Refer Slide Time: 10:07)

15

TR

= =1, Ry =0and Ry; =1, The

inequality (1) represents a unit circle as
shown in Figure 3. i b
? ol "
o "

o ¥

Figure 3: Feasible Region

Linear Systems Theory Module 12 Lecture Ramkrishma P. 7/1

5 G205 D BOE

So, a few examples of what are these D R regions. If I take a very simple example of say
Ry1 =-1, Ry =0, Ry, = -1, this will give me the standard unit disk or they just is the

general stable region, ok.
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Some other example, so if I just add a constraint saying that the real part of z >0.6 then, if
you just add it into in addition to the constraints here then I get that this is my new D R

region, right the region in blue here.
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Similarly, I can restrict to several other regions of the z plane or of the unit disk, right. So,
all these constitute D R regions. So, now, how to check; so ok. There are there are a bunch

of results that you can obtain by choosing this appropriate Rs.

So, you could also say well can [ have my D R region as a say as a circle centered at 0.1
with a radius of 0.1 and so on. So, the literature that is at the end of the; end of the slides
will guide you through little more exposure to these kind of D R regions. But it just to give

you an idea of what is what kind of problems then we can solve by formulating them as

LMIs, ok.
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The matrix A & B™" (s Dr-stable if and only if there exists a positive definite matrix
PeR™ suchthat ~ I

Ry @ P+ Ry & (PA) + Ry 2 (AP) + Ry @ (AP) < 0
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So, what is the LMI here? How do I check given a A matrix and given a certain D R region
if that particular system represented by an A matrix is D R stable or not. So, one result that
says, ok, this from a reference that is mentioned towards the end of the slides is that a
matrix A is D R stable and this D R stable these regions are defined by this choice of

matrices Rq1, Ri,, and R,,.

So, it is D R stable, if and only if there exists a positive definite matrix P also symmetric
such that any relation like this and this is usually the Kronecker product, Kronecker

product between two matrices, right. So, in general if I say A is a two-dimensional matrix

5V)

a1
ofthe formall,a12,a21,a22 [a21 Uy

]and say B is also a two-dimensional matrix A

a1B a;B

a,,B azzB] ok.

(x) B would be something like this that you have [

So, this is the LMI that we would be; we would be interested in solving. We can also
formulate the problem of what if well what if this LMI if the answer to this LMI is no. So,
for example, I ask a question, so given an A ok, is it D R stable. D R stable, say that [ am

only looking at not the unit disk, but say disk of radius 0.1 centered at 0.1, right.

So, I am not interested in the stability region, but say some region like this, ok. So, if the
answer is no, then I will look at an alternate problem, right. So, I will look at say I have
x(k+1) = Ax(k) + Bu(k). Now, can I find a u = k x such that A + B k is now D R stable?

And these problems are called D R stabilization problems, ok.



So, I will not go into the details of that it is again an exercise which is similar to what we
did for stability of stabilization of discrete and systems using Schur complements and so
on, but [ will again you can just refer to the literature at the which is mentioned at the end
of the slides, ok.
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So, now, how do we solve this via using MATLAB?
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Bl Solving LMIs via Matlab

1. YALMIP (https://yalmip github.io/R20190425)

2. Sedumi (https://github.com/SQLP{SeDuMi)
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So, a couple of tools that would be useful, ok, there also this LMI toolbox in MATLARB,

but I would prefer using these two you could you may just want to download these two



software packages called YALMIP and Sedumi. Just add those folders, we have MATLAB
file your MATLAB path and then things will be good, right, ok. So, the first thing, ok. Let
us start by solving a very simple problem of stabilization or not stabilization, but even say

stability problem.
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'] a1 - Windery Sl -sEl
fie il Yww ey Ao el
D0kl o % 5 CTEL EEY N EENEEEES S EHE EEW
A o Sl
Ehoc o 1
A‘ | . e
ad []
|'|'.'l Wk a [I'B
[ lL I
o

So, for example, check whether a given A is stable. Check whether A is stable, ok. It could

be a continuous time and discrete time both, ok.
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So, what, I am just at this year this YALMIP website. So, there are a bunch of tutorials
which you can go through, so, ours comes in the category of semi definite programming.

So, start from here. So, I have a linear dynamical system x = Ax.

(Refer Slide Time: 16:02)
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And the Lyapunov condition says that I need to solve for ATP+ PA < 0 with P is a
symmetric matrix which is greater than 0 and so on. So, how do you define? So, A you
can just write in the standard MATLAB way as defining a matrix, P is called my it is called
an sdp variable and solving for P. So, that will be called a sdp var of; so, its be our

dimension 3 x 3.

The LMI that I am really trying to solve is F, so I will just write down those these two
constraints in the code P > 0 and then AT P+ PA <0, ok. So, there is a little warning which
YALMIP tells us that, we are not really solving for strict inequalities, although
theoretically we are looking for strict inequalities, right that P > 0, AT P+ PA <0.

So, to do this what we could do is just add a little some kind of a threshold to P that this
do not check for P > 0, but instead say check for P being say greater than point, so the
condition which YALMIP checks do by default is this one, but you could also check for P
being greater than or equal to 0.001, right just to add act with this strictness here.
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There also other ways which these guys tell us, you can have the trace of P to be 1 and so

on, ok.
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So, once you write this constraint , F is such that P is greater than 0.
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Then the way to solve is you just say optimize F and then the feasible value of P would be
the value, so you have to write value of P, right because P is just this variable here and P
feasible value you just type down value of P it will give you the appropriate value of P,

ok.
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So, let us do some very very basic code here.
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= A=(01;11);

] o= [10:01]:

5 B = [0:1];

[ P = sdpvar(2,2);

1= X = sdpvar(2,2);

= N =sdpvar(l,2);

] F= [X >= 0.0001%ye (2}, A*X + X*A' + B*N + N'9B' <= 0];
10 optimize(F};

11 Xfeagible = value(X);

12 K = value (N) *inv (Xfeasible)

9
xTEL il In 12 (ol l-‘-
So, I just go to the very standard problem where A is given as say something very very

simple, right.
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So, A, let me start with this A as [_01 _11] and of course, it is easy to really verify that

this is this stable. But I just run this code for you and check what MATLABs actually gives

you, right.
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So, it actually tells you that this problem is solvable and you could also check for P

feasible.
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So, the matrix P that solves this problem will be given by this. So, you can check that this
matrix is a symmetric and it is positive definite, ok. So, and let me just do something else,

right. Let me just start some, ok. So, this is this unstable, right. So, A is now instead of, so

I just take another A which is [(1) ﬂand check how this LMI solves (Refer Time: 19:17)
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So, I go through this process again and actually it tells me that it gives me an infeasible
infeasibility thing, right, that the problem is actually not solvable and this because it is an
it is an unstable system that no there is no P that will solve the linear matrix inequality, ok.
And just to add a threshold I just checked put as P as greater than or entries of P > 0.001,
right and this is how just write the little code, ok. Now, let us go one step further. So, if

we, ok; let us me just open slides of lecture 1.
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What is not an LMI?

] The above inequality can be written as
A AX+ XA+ BKX+XK'B <0
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- Solution via Change of variables:

— Introduce the new unknown N = KX. We now have to solve for

X>0, AX+XAT+BNENB <0

3 ; et (ks )
Solving for X and N, K is obtained via K = N=X L) )

Linear Systems Theory Madule 12 Lecture 1 Ramkrishia P.




In lecture 1, we had this stabilization problem, right; so, how do I check if A + BKis a

stability matrix.

(Refer Slide Time: 20:04)

: I

What is not an LMI?
4 Consider a LTI system of the farm
Gl X=X+ Bu
] f : ; A
—— whne objective is to design a feedback control law, u = Kx, such that the closed loop
system given Dy
[ (A + BK)x
—
. i5 asymptotically stable
b——+
i This problem has a solution if and only if there exists P PT = 0 such that
X 4 AT n A
A+ BKYP+PA+BK) <0
(A+B8R) P+ P(A+BK) <
Let X = P~". Then, the Lyapunov equation for the closed loop system takes the form
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So, we kind of found that found out at the standard AT P+ PA does not work because of
these two unknowns k and x, ok. So, and then we had an equivalent LMI formulation for
that, right. So, AX + XAT+ BN +NTBT | where K was eventually given by this one, ok.
So, we will try to solve a problem like this using MATLAB.
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So, I just take this unstable A here [2 ﬂ, which we had which had here and say let B is

[(1)] and I need to search for a K or find whether or not the K exists such that this system is

stabilizable, ok. So, my P is usually of, the P I do not need any more. So, my X is again 2
X 2 matrix, this is my sdp variable, yet again going back here, right. So, X is what [ am
solving for and P is just X! that I can easily find out. N is of dimension 1 x 2, right this

is also an sdp variable.

So, there is no real constraint on A, right, so on N, right I am not really fixing N to be all
entry should be greater than 0 or whatever; only thing that is to be fixed is for x and then
y. So, this LMI I just this LMI just plug into this equation and I say optimize F and then I
have this P feasible or what knocking down the feasible X is this maybe I should call this
X feasible instead of P, ok. And then I find this value of K, right I just run this little code

and it gives me, ok. Let us check if, ok.
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# MATLAR R0163  academs e - ol
= i s e T
W 80 T e & W o a oA & (U fo
L L e J
Ve e e Cowes e Ses Ll AR b P
= e Vs, O gy | O Gy # v s .

:  0.00E+00 4.97E-08 0.000 0.0855 0.9300 0.9900 1.00 1 1 2.1E-08
9 :  0.00E+00 4.20E-09 0.000 0.0846 0.9900 0.9900 1.00 1 1 1.7E-08
10 :  0.00E+00 3.52E-10 0.000 0.0837 0,9300 0.9900 1.00 1 1 1.58-10

iter seconds digits ctx by
10 0.3 Inf -2.9085675560e~15 0.0000000000e+00
|Ax-b| = 6.8e-11, [Ay-c]_+ = 0.0E+00, [x|= 3.9e-11, |y|= 2.8etlD

Detailed timing (sec)

Pro pi] Post
E2 5.700E-02 2.540E-01 2.100E-02
v
s i3 3 Max=norms: ||bli=0, |||l = 1.000000e-04,

Cholesky ladd|=0, |skip| =0, [|L.LI| = 1.03563,
Undefined functioen or variable ‘Pfeasible’.

3,-“- Ezror in lyapunstab (line 12)

L ¥ N K = value (M) *inv(Pfeasible)

s fros

Something went wrong, ok. I should call this Xfeasible instead of P feasible, ok. Let me

run this code again.
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iter seconds digits ctx by
10 0.3 Inf -2.9085675560e-15 0.0000000000e+00
|Ax-b| = 6.8e-11, [Ay-c] _+ = 0.0E400, |x|= 3.9-11, |y|= 2.8e+00

Detailed timing (sec)

Pre IPM Post
6.100E-02 2.470E-01 1.799E-02
Max-nozms: ||b||=0, ||e|| = 1.000000e-04,
Cholesky |add|=0, |skip| =0, [|L.L|| = 1.03963.
K=

-2.2916 -1.BT49
> eig(AB*E)
ans =

-0.4375 + 1.04894

-0.4375 - 1.0489i

So, it gives me this values of K, right. And I can easily check what are the eigenvalues of
A + BK and you can see that the closed loop system is actually stable, right, ok. So, this is
some very very basic examples that you can try out discrete time version of this you can
try out Schur complements and so on, but I will just leave that to you. It is just a matter of

typing down; typing down the code, ok. A few more examples I would like you to quick,

to quickly do here.
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The Delay LMI

So, first is the delay LMI. And what is this delay LMI tool?
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Time delay system

: I

— Consider a continuous time LT| system of the farm
'T' X=Ax+Bu
p———+ L 1
with & feedback control law of the form u(t) = Kx(t)
r—
& Suppose there is a delay in the feedback loop, in which case the control law takes the
1 o { : har A icthe o = s e R ] =
i form u(t) = Kx(t - r) where r > 0 is the time d 2 Closed loop system is now of the
— form
— "
X X{t) = Ax(t) + BKx(t - 1)
{0
More generally, a linear time delay system can be written as
\ & ]
XU) =Ax(t) + Akt = 7) # s
x(t)=d(t), te[-n0], 0<r<m
where ¢(t) is the initial condition,
Linear Systems Theary Module 12 Lecture Rambkrishna P, 12/19

So, let us take a small problem or how do we motivate ourselves to do this problem of why

are delays important.
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Let us say | have a plant x = Ax + Bu. So, this is my plant. So, this is x = Ax + Bu. Let us
say I measures all the states this is my input and typically I will have a k here, which will
just measure, this will be measured instantaneously the control law will be computed and
then fed back all will happen instantaneously. But you know in practice things may be a

little different, right that you may there may be some computation time.



If you are communicating via network channel that will cause further delays and so on and
therefore, your control closed loop control law may not be instantaneous. So, if [ say [ am
looking at u = -kx, ok; let me put this piece here x(t) = Ax(t) + Bu(t), ok. If in the standard
case u(t) is k, x (t)and my system looks like this A + Bkx(t). And these piece problems I

know how to solve a A + Bk is stable then my closed loop system is stable, that is ok.

Now, usually u may not arrive instantaneously and it may arrive with some delay let me
call this 7, ok. Under this situation how does the closed loop system look like? [ have x =
Ax + Bx(t-1). So, this will be Ax + Bkx(t — 1), ok; so, longer in this form, right. So, the

eigenvalues of A + Bk would not tell me much about the closed loop system.

So, in general we can write that a delay system of the form x(t)= Ax(t) plus let me call this
some Agx(t-t), ok. So, when is this system stable? (Refer Time: 25:30) is this is the
question, ok. So, first, the necessary condition is that the system without delay should be
stable, right. So, the system without delay; without delay which means t = 0 is stable or it

should be stable and that is A + Bk or A + A, first must be a stability matrix, ok.

Then we can ask our self a few questions, right is the system stable independent of delay
that, ok, no matter whatever the 1 is my closed loop system will still be stable. We will see
if that could be true or derive, what under what conditions these systems are actually stable
independent of the delay; means whatever even for large delays my system would still be
stable. There could be cases where my system can or I can guarantee stability say if the
delay is like say 2 seconds or say 4 seconds, but anything larger than 4 seconds I might go

to the verge of instability, ok.

So, let us see how we can actually quantify those results. Again, as [ warned you that this
is not really an introduction or even its not even introduction you know forget about a
comprehensive review of delay systems, but it just like this is just teaching you a bit of
how to formulate problems as LMI problems, ok. So, what is the result that we will be
interested in?. So, I start with x= Ax + Bu and [ write a delay system which is of this form.

The initial conditions now need to be defined on all this time interval from -t to O.

So, just to solve a continuous differential equation, I need just x of 0 whereas, to solve a
differential equation I need the set of all initial conditions which happen in this range or in
this time interval -t to 0. Of course, I will not go into the details of that and also assume

that the delay is bounded from above.



One more assumption we make is the delay is constant with time, but they are also the
results where you can say that my delay changes with time and then you will say how fast
it changes how slow which changes and so on, but will restrict ourselves to a constant
delays. So, this system, I will call this system 2, is asymptotically stable, if there x is
symmetric matrices P and S such that P is greater than 0 and an LMI like this holds, ok.

(Refer Slide Time: 28:16)

Bl Delay Independent Stability
|| [ {iteoeniaad
_ 1
1 The system (2) is asymptotically stable of there exist to symmetric matrices P,5 > 0
such that
—
4 P>0 (3)
——
5 ATP+PA+S Phy
= £ <0 (4)
¥ AP =5
amm— o
X
The proof can be obtained using the following Lyapunov-Krasovskii functional
Vix) = & (t)Px(t) / K(5)5x(s)ds, x = x(t+0), 0 = [-,0]
and taking its time derivatines along the system trajectories
Linear Systems Theary Madule 12 Lecture 2 Ramkrishna P.

The stability certificates are still are again obtained by using my making use of Lyapunov
like function. So, this was a standard Lyapunov function for the system without delay. So,
now we have another term which takes care of how to handle the delay terms, ok. So, let

us see if we can really quickly do a proof on how we arrive at this delay LMI.
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So, Lhave V(x(t)) =x” Px + | tt_T x7 (1) Sx(t)dt ok. Then I do the differentiation V (x(t)).
Again, along the system trajectories what are the system trajectories system trajectories

are x(t) = Ax + A x(t-1), ok.

So, I just do the standard differentiation I get this is xT ATPx + x7 (t-1), ATPx + xTPA x
+xTP Agx(t-1) + xTS x xT(t — 7)Sx(t — 1). Now, rearrange terms in the following way,

right.

So, I have x(t) here, I have x(t — t) at the transpose. What [ am left here is this
ATP+PA+S PA t
. d] [ x(t) ] <0, right. So, x of t this with this constraint and t > 0.

ATp x(t —1)
So, V(t) < 0 translates to this matrix being less than 0, ok. Now, this is this is an LMI,
right. So, look at this. So, this is what I am interested in falling P > 0, again matrices S
which are also positive and symmetric such that this LMI holds, ok. So, I will just quickly

show you some examples again, ok. So, let me go here. So, let me, ok; comment this out,

ok.
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4 citce - CAUsers\Ador Dogumants MATLARUM P layind m | x |

h + § B*Ad; Ad'YP -§]

0001%eye (2) 5 >= 0.0001*%eye(2), DM <= 0]
l

10 ¥ Bfeasible = value(F)

11 L Sfeanible = value(5)

i cptimize(F):

13 A=[-201;0-30;10-2];

14 Ad= [-111;2-11;:00-1);

15 P = sdpvar{3 3);

16 8 = gdpvar(3,3);

17 DM = [A'*R + P*A + S D*Ad; Ad'*P -8];

18 F = [P >= 0,0001%eye(3),8 >= 0,0001%eye(3), DM <= 0];
1% optimize(F);

L!Lf' Pfearible = value(B);

zfj\-*) Sfeasible = value(S):

5

8.
HPTEL

So, what I will be interested in is to solve is to check for stability of this particular delay

system x(t) = [_01 _Oz]x(t) + [(1) g]x(t—r), ok. And if I just run this code here, so I just

plug in. So, my unknowns are P and S of they are 2 x 2. So, what I need to check is I just

plug in the LMI condition here that is P>0, ATP + PA + S and all this entire matrix, I just

plug it in here.

So, P>0, S > 0 and this DM which is the matrix inequality which we had, so this also, this
should be less than or equal to 0. I just run it for optimizing F and this is what I get, ok. I

get an error.
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e 0P .| Undefined function or variable 'A‘.
Lis Exror in delayind (line 7)
¥ apantal iy
st DM = [A'YE + F*A + § F*Ad; Ad'*P -8];
gamer il |

dalayiapm (script)
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I forgot to define the A.
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Sppmtibin ¥ ldghon € it ) ddandm © | i 4

= A= [=10;0=2]: A
6=  Ad=[10:0 1]:}

1= P = sdpvar(2,2);

= 8= sdpvar(2,2);

G= DW= [A""P + P*A + 5 P*Ad; Ad'*F -5];

10~ F= [B>= 0.0001%eye(2},8 >= 0.0001%ye (2}, DM <= 0);
11~ optimize (F);

12- Pfeasible = valua(P);

13 Sfeasible = value(s);

14

15 VA= ([-201;0-30;10-2]:
16 VM=[-111;2-11;00-1);
17 % P = sdpvar(3,3)!
18 % § = sdpvar(3,3);
15 § DM = [A'*P + P*A + 3 P*Ad; Ad'*P -5]:
208 F = [P >= .0001%eye(3) 8 >= 0.0001%eye(3), DM <= 0];

aptimiza(F);

Pfeaaible = valua(Pi: »

So, my A was this one was [-1,0;0,-2] the A; was just the identity that is [1,0;0,1], ok. And

let us see if this works.
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4 MATLAR F0164  acadermes uss - slEl
= r
] T i it e R e 'l—-
o o e M .!, w oy
i “mvv-u »  Litemim Fore—
Lot b v -
BT B e o et o ™ "’Mw St
- Cmeh ]
o T b v T e b Adis § Do § MATUAR & "
Clarrent Foiger
o 01 .| Detailed timing (sec) 4

LA Pre I Bost

' 5.899E-02  3.030E-01  1.900E-02
Max-norms: ||b|[=0, ||c|| = 1.000000e-04,
Cholesky |add|=0, |skip| = 0, ||L.L|| = 1.

wvmﬂﬂ' gt 3> eig(Peasible)
M:wi:! Undefined function or variable 'Peasible’.

Did you mean:
¥ elg(Pfeasible)

y ans =
L 0.5777
e 0. 6888
| sl >> eig(sfeasible)
ans =
Fh 0.6888
3\#- 1.1130

So, I get I can just check the eigenvalues now of Pfeasible, ok. So, P is positive similarly
I can also check for the Sfeasible, ok. So, this means that this the system governed by this
dynamics, with this particular A and A, is stable independent of delays, ok. Now, let me
do something else. This comment this out and go to some other example; where, ok; let

me write down the problem properly.
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'} Hotal - Windows Journal -oE8
(R Fil Nw et A [odk bl r
dMePd (%6 fEieorSat 0/ NENENENE EEBE EE® 44 =
b i
. s | -1
W o |2td ‘(‘ i ‘.]z
? g = le & °
T o e B S0 drdapasd 0 dey!
che 4 N7 Shi ekt G

pali ol
Iy b fuibe sl for £ €
LS

® o




-2 0 1 -1 1 1
So, in this example,so, x=| 0 -3 0 [x()+| 2 —1 1 |x(t-t)and check if this
1 0 -2 0 0 -1

system is stable, independent of delay, ok. So, let us see. So, I just plug in the A and A,
s0 my matrices are now unknown matrices are of dimension 3 x 3 and I just run this code,
ok. See that actually gives me an infeasible condition here, right, that this system is not

independent of delay.

So, the answer is the system is not stable independent of delay, ok. Whereas, the this
system actually was, this actually was stable independent of delay, ok. Now, the next
question that you will ask is this stable say maybe for some small delays. And then we ask
the question how small, ok. So, let us see if there are there are results which tell us that,

right.

(Refer Slide Time: 37:49)

l. Delay Dependent Stability

—— We first rewrite the system (2) as P et
1 ; ,{f'-'l
R H1) = (A4 Agx(t) = A, / (A(t + 5) + Aax(t — d +5lds ]
p— ! v
" | Theorem 1223
—4
- The system (1) is asymptotically stable if there exist real symmetric matrices P, Ry, Ry, 59
s and 5: such that
M -PAA —PAL
AP =5y 0 [<0
@e o =5
where M .;[|3[A +Ag)+ (A+A) P+ 5 +51
Linear Systems Theary Module 12 Lecture 2 Ramkrishna P,

So, the delay dependent stability, ok. I do some model transformation, I will skip these
steps. So, this system is; so I do a system transformation here such that when this system
is stable the original system is also stable x= Ax(t) + Azx(t-T). So, if this is stable this is
also stable. The converse may not be true and therefore, this transformation adds a bit to

the conservatism of the results, but ok, we will not at the moment worry about that.

So, this system is asymptotically stable, ok. So, should be 2 here. If there exists matrices
of this form such that [ have an equivalent matrix LMI of which looks like this, right. So,

unknowns here are P, S, and S;, where M has this term T now. You see there is some



something some dependency of the LMI on the delay term tau, ok. This can be you can

just h solve for this V, ok. I will not go to too much of the details, but, ok.
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Delay Dependent Stability

The proof follows by choosing a Lyapunav Krasovskii functional of the form

v x"[r]J-‘r{;‘]-[ /.[.\':{E}S{k]h(‘j][:"!']i.'k

Linear Systems Theary Module 12 Lecture 2 Rambkrishna P, 15/19

So, the this the delay term explicitly appears in the LMI in form of this M, whereas, in the
previous case there was no delay term, right. So, all these terms are independent of delay,

right.

(Refer Slide Time: 39:29)

A Exftr - CAUMM Admin Documants MATLAR LM delaydsp m - ol

T i % | Il e e
1 A=[=201;0=30;10-2):
! M=[-111;2-11;00-1):
d=0.1;
1 P = gdpvar(3,3];
80 = sdpvar(3,3);
51 = sdpvar(3,3);
1 Z = zeres(3,3);
M= (P*(A + Ad) + (R + Ad) "*B)/d + 50 + 81;
q DM = [M -P*Ad*A -P*(Ad*2); -A'*Ad'*P -30 Z; -(Ad*2)'*p I -81);
10 F= [P >= 0.0001%eye(3),50 >= 0.0001%eye(3) 81 >= 0,0001%eye(3), DM <= 0];
11 optimiza(F);
12 Pfeasible = value(B)

13 #5feasible = value(s)




So, now let us check if this same system, this was stable independent of delay now let us
just check what happens for say small delay. I just put a delay of say 0.1 and I just plug in

the code, ok. So, let us see what happens, ok. So, this looks good, so there is no in

feasibility condition.
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4 MATUAR R20184 - iehdims usn - sl

o e i F
3 ST Jifs— _.::: g Dlire= 8 [
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s

i
LY pe
Cuarant Falder ]

- 15 ;. 0.00E+Q0 3.67E-08 0.000 0.2022 0.5000 0.5000 1.00 1 1 4.2E-09

1 16 : 0.00E+00 7.37E-0% 0.000 0.2010 0.5000 0.%000 1.00 1 1 B8.5E-10

iter seconds digits [ by
. 16 0.1 Inf -4.340980214%e-14 0.0000000000e+00

e el IAx-b| = 7.6a-10, [Ay-c]_¢ = 0.0E$00, |x]= 2.60-10, Iyl= 2.8e400

iispace ®

e Vole i

Detailed timing (sec)

Pre m Post
1.400E-02 5.599E-02 7.001E-03
Max-norma: | |b||=0, |le|| = 1.000000e-04,
Cholesky |add|=0, |skip| =0, ||L.L|| =1,

Pfeasible =
-l 0.1081 0.0383 0.0689
| . 0.0363  0.0568  0.0265
f {;) = 0.0683 0.0285 0.1146
*WITEL wife
L I e S T |

So, for 0.1 the system is stable. Let us say now I go to say 0.3, ok. That still seem to be
good, right.
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# MATLAL R10168  dcadéms use - sl
[ falss 2 3 O

o e M L
N Opm | Cowe i
S e

16 :  0.Q0E+Q0 1.22E-08 0.000 0.2209 0.5000 0.9000 1.00 1 1 3.8E-09 3
17 = 0.00E+00 2,66E-09 0.000 0.2185 0.5000 0.%000 1.00 1 1 B8.5E-10

iter seconds digits [ 1 by
17 0.1 Inf -5.6703342246e-14 0.0000000000e+00

Suayoe (1) IAx=b] =  7.4e-10, [Ay-cl_+ = 0.0E400, |x|= 3.5e-10, |y|= 2,8es00

Workipace
e Vs o

Detailed timing (sec)

Pre I Post
1.500E-02 5.500E-02 2.997E-03
Max-nerms: ||b|i=0, |je|l = 1.000000e-04,
Cholesky |add|=0, |skip| =0, |IL.L|| =1,
Pfeasible =

0.2657 0.0753 0.1590

0.0753  0.1657  0.0699

0.1590 0.0699 0.3082
fro I

; ,}9. :
*HPTEL
L IO ¢ R W LT

So, there is no in feasibility condition here. Now, let me say, say d, d is say 1.
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13 :  0.00E+00 2.1BE-13 0.000 0.0565 0.9300 0.%900 -1.00 2 2 3.5E-03

mﬂu, primal improving direction found.
iter seconds |Ax| Ayl _+ Ix| Iyl
13 0.1 2.4e-10 6.4e-13 1.4e+dd 1.2e-13

Detailed timing (sec)

Pre 1M Post
1.2008-02 4.700E-02 3.9938-03
Max-norms: ||b||=0, ||c|| = 1.000000e-04,
Cholesky [add|=0, |skip| = 0, ||L.L|| = 2.1798%.
Pfeasible =

1.0e-13 *

0.1047 0.0786 -0.0183

0.0786  0.0675 -0.0263

-0.0183  -0.0263  0.4536

s i

No, I some I have some feasibility condition, right. So, two things that I found out was for
0.1 it is stable, 0.3 is stable and for 1 or for T equal to t or d whatever, T = 1 the system
turned unstable, ok. Then maybe you can just write a little loop to check for what is the

maximum value of tau or d that the system is stable, so it will be some 0.4 or things like

that.

So, we can just play around with the quantum of delay and check whether or not the system
is stable. So, what is observation here? Even though there are some systems which are
stable independent of delay some systems are stable well depending on for some small
values small values of delay are delays are acceptable say in this case 0.4 seconds, but for

larger values my system goes to the verge of instability. So, this is a little better result than

then what we had previously, right.
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Passivity of LTI systems

\_

Consider an contunuous time LTI Input output system

¥ = Ax+Bu

Define a supply function

.‘.. /] i.’: fe
s(u.y) ‘ Q ’\ . Q | I‘ (6)
U] H’ [ U

The system (5), with x(0) = 0 s said to be passive with respect to the above supply rate

/{ ydt >0, ¥T>0

Linear Systems Theory Module 12 Lecture 3 Ramkrishria P,

s(u,y), if

£ _<""~'t._l>l.ol>lx[‘ [TTI-:]

The last thing is about passivity, ok. So, this is something which is value as we kind of do
very very often, but we do not really think that this is or we do not work within the realm
of passivity, this is in the concept of passivity. So, I start with an input output system, some
type of x= Ax + Bu; y = Cx + Du. I just define a supply function which is quadratic and
say Q is of this form, ok.

So, as this system is with say some 0 initial condition or maybe no not necessarily, but so
for ease of representation. So, this system is said to be passive with respect to the supply
rate if and only if something like this, some relation like this holds, ok. So, what does this
mean from the physics point of view?. So, let us do the things in you know in a way that

we can understand.
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N
B Passivity of LTI systems

Definition

S{x(1)) < S(x(ta)) 4 / s(uft). y(t))dt

The differential version of the above inequality is as follows |

S(r(t)) < sult) v

Note: For an LTI system, the storage function is usually of the form 5(x) = .\'Tfn'}\-":([f]
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The system is called passive with respect to some supply rate. It is actually the physical
supply say some power supply you can call supply rate. If there exists a function called
the storage function where is the x is the state space, right say all x are coming from x, ok.
So, some type o here. Of course, storage function, so that for all initial conditions x(t) with
x(ty) =xg, xo belonging to x, right at any time t, and for all allowable input functions,

right and for all ¢4, ok.

So, this should be t;>t;. The following inequality holds that, the value of the storage
function at time ¢t; is less than or equal to the value of the storage function at time t; plus
some supply rate, ok. Now, [ can just draw it a slightly better different better looking
differential version of this one, right. So, that S dot is less than or equal to as less than or

equal to the supply rate, ok. This will not be here anymore.

And for the LTI systems, this is simply quadratic this the storage function is just of the
form xTPx, very similar to the Lyapunov function and actually has very direct

consequence also to the Lyapunov thing, ok.
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& .M Conditions for Passivity
=
a
S{(t)) = S(x(to)) = / u(s)y(s)ds + i'f,‘,}
Stared Epergy N’ dissipatedenergy
Bl
- _
X Let the system (5) be controllable, Then the system is passive if and only if there
exists a matrix P > 0, such that
AP4pA PB-C
T T d\_" D
B'P-C =D'=D
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So, what is the interpretation of this? That S(x(t;)), S(x(t1)) — S(x(ty)) is the stored energy
or the rate of change of energy, is equal to this supplied energy plus the dissipated energy,
that is what any physical system would obey, right. It is just the simple law of conservation

of energy, ok. So, I will do another very small example of a passive system, ok.
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So, just take a R with some voltage source V, ok. So, this R, L; L and C are all passive

elements we can extract only a finite amount of energy from these systems whereas, this



voltage source is not a passive element it is an active element, ok. So, let us see what are

we looking at here when I talk of the cvt, ok.

So, the dynamics of this would be V is ok, let me call this i;, the voltage across this as v,

ok. So, V={R+L % + v.. And what is this v,.? v, is simply C %, ok. So, I can write an

t
dve 1
. . . ar 0 < [0
equivalent state space form of in the following. So, daip | = -1 -R [iz] +{1|v;. Now,
— - — L
dt L L

let us say that the output is just i, ok.

Now, what is the total energy of the circuit? The total energy is %(Li2+ Cv?). And if 1

take what is % along this dynamics, ok. So, this will be Li;i; + Cv,.v, and I substitute for

1;, and v, from here and what I get is the following. So, this is -i*R + i;v;, ok.

So, this is exactly the passivity relation, right or the arrange energy balance equation that
we are here, that the stored energy is supplied energy plus the dissipated energy or the rate
of increase of stored energy, so this is my power dissipated and this is just my input power,
ok.

Now so, if the system is controllable then passivity is equivalent to solving the following
LMI, ok. So, look at this little carefully. So, how do we derive this condition? So, just

starting from here. So, what I am looking at is S— S(u, y) <0, ok. So, let us start from this.
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So, I have x= Ax + Bu, y = Cx + Du, ok. My storage function S(x(t)) is say x” Px, ok. Let
me leave out the half for the moment, ok. Now, what I should find out is how does
S(x(t))-S(u,y) <0, ok. So, first let us look at this term. S is, so I get x”Px + xPx(t). This
is, so this is (xTAT + uTBT)Px(t) + xT (t)P(Ax(t)+Bu(t)) So, this I can a club it in the

following way. So, I have x u transpose x u.

So, what do I have here? I have ATP + PA and the term involving x” and u would be P B
and the term involving u” and x is BTP and a 0 here, ok. And what is my supply rate? So,

1ol

1 0 u]’ ok. So, let us

supply rate the way I define is in the following way. This is [y u][

do this.

So, y what is y? y = Cx, ok. So, let us write it down this first. So, this will expand this is
0 1
1 0] [u

notations would be easier. So, I have this u”y plus in general this will be yTu, ok. Now,

transpose. So, [y u][ ], ok. Let us just make it a little scalar system, right, so that

uly is or Cx + Du, again yT this will be x” transpose, transpose, transpose, xTCT + uTD

u, ok.

So, I can write this. So, just plug this I, so, [ will have again terms relating to x u with the
transpose and x u, ok. So, I have terms relating to u”C. So, I will have a -C-CT there will
be a 0 here, here will be D +DT, ok. So, I just subtract it here. So, what I get is now the

following that relation which looks something like this, ok.

(Refer Time: 51:38) be a C. PB - C, -CT here this will be D, because of this minus here
and this must be less than or equal to 0 and therefore, this is equivalent to saying that this
is less than or equal to 0. That is essentially what I have here, ok. So, some things x”C

will have C transpose and a C here, ok. So, this will be C transpose this will be C, ok.

So, this is how I derived that particular LMI. So, to check whether or not a system is
passive I just plug in this inequality, right. And of course, there is a bunch of literature on
what can we do with passivity, how the passivity relate to stability and so on and how also

we can do things related to things called passivity based control and a lot of it.

Again, the idea is not to really go deep into concepts of delay or passivity or even D R
stabilization and other stuff, but it is just to give you some idea of what you can do with

LMI, why do we need a LMIs, starting from the Lyapunov equation to the stabilizability



conditions and then there is a bunch of stuff that you could do and we will just play around

with some of these this equations or these systems, ok.
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So, that kind of concludes what we what I had to say in this course of 12 weeks. I hope the
course was useful to you. That was just to give you a little introduction to some higher or
advanced level courses in control theory. This might give you a way to maybe pursue
courses in optimal control or non-linear control and a bunch of other things that will open

up for you. I hope you enjoyed the course.

Thanks a lot.



