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Hi, everyone. Welcome to this lecture number 2 of week 12 of the course on Linear 

Systems Theory. In lecture number 1, we or the aim was to introduce you to some 

computational tools that would help you solve some basic matrix inequality starting from 

the Lyapunov inequality in continuous time to discrete time, stabilizability and so on.  

So, today what I will teach you is some computational tools that you would, that would be 

helpful in solving this kind of LMIs. I will also run you through few examples or through 

tests or few test cases of formulating problems as LMIs. I will briefly touch upon the linear 

matrix inequalities related to time delay systems. We will derive or we will see how 

stability of time delay systems can be formulated as equivalent LMI problems and see if 

the systems are independent of delay depending on delay and so on.  

Similarly, with another concept called passivity of linear systems. Of course, a delay 

systems by itself is a vast course it has a bunch of books, bunch of literature on that. So, 

this is not a comprehensive or even a small introduction to delay systems. Neither is it a 

good introduction to passivity related concepts, but we will just learn little things that we 

may need and how we actually attempt to solve problems from different domains.  

Neither is this weeks lectures and an extensive introduction to LMIs, right. There are also 

a bunch of books that are available lot of literature, lot of research work still going on, but 

it just to expose you to certain tools which might be useful for you if you are pursuing your 

research activity or reading some other papers or just if you want to look at some areas 

which are related to what we learnt in the course. 

So, also the aim of the course or aim of this week’s lectures is not really to do is to give 

you a comprehensive introduction on LMIs, is neither to do with delay systems, nor to do 

with passivity or the other things that we are; that we are about to talk in this lecture. So, 

we just to give you a brief idea on how to use tools of this form, ok. 



(Refer Slide Time: 02:48) 

 

So, before we start, so just a little properties of LMIs that I would like to list out is the 

following. 
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So, if I say that F(x)> 0 this is equivalent to saying -F(x) < 0. Similarly, F(x) < G(x) is 

equivalent to saying F(x) - G(x)< 0. If 𝐹ଵ(x) < 0, 𝐹ଶ(x) < 0 this is equivalent to saying that 

the diag(𝐹ଵ(x), 𝐹ଶ(x)) < 0. Similarly, if I have LMIs in two different variables F(x)< 0, 

G(y) < 0 then I can say that the diag(F(x), G(y)) < 0.  



Similarly, if this LMI is feasible that this LMI is also feasible. If you just check by pre and 

post multiplying in this way A, B, C, D with ቂ
0 𝐼
𝐼 0

ቃ that is this like. So, these two matrices 

this matrix and this matrix would have some kind of a equivalence relation as we talked 

about in lecture 1, while we were deriving Schur complements, ok. 
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So, again start with the example that we did in the in lecture 1 using Schur complement of 

this block, ok. So, I am about to solve this LMI where I want to find what is the region for 

which F(x) >0, ok. So, based on 2 different methods that we learnt in lecture 1, we will see 

that the feasible region is just the interior of this unit disk and will look something like this 

and this is straight forward to check.  
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In addition, if I impose a constraint that, in addition to just F(x) being 0, I impose another 

condition that 𝑥ଵ + 0.5 > 0, right. So, the LMI would change now to something like this, 

ok. So, it is easy to check right that I am only looking at regions where 𝑥ଵ > -0.5, right.  

So, this the region to the left of this will no longer be the feasible region and so, solving 

for this LMI now would give me an appropriate feasible region which in addition to this 

constraint also takes care of this particular constraint that 𝑥ଵ + 0.5 > 0, ok. 
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So, LMIs can also be used to solve more you know kind of interesting problems. Much of 

the design problems that we looked upon were, first stability was important and second 

was design in terms of pole placement, right. So, what we will do here is, again this is not 

really a comprehensive introduction to what is called in literature as D stability or even D 

R stability.  
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So, suppose, let us let us work in the discrete time case for the moment, that so I have x(k+ 

1) = Ax(k) + Bu(k). The standard stabilization problem would be find control law u(k) = 

kx(k) such that the eigenvalues of A + BK are the eigenvalues are in the unit disk, right. 

And then we know now, how to first formulate this as an LMI that is what we learned in 

lecture number 1.  

Again, though I am just dropping the case the -K here which we would usually use, but 

nothing really changes, ok. So, suppose now so my usually I am not really looking at 

perform as stability, in addition to stability I am also interested in performance and 

performance usually translates to placing poles of my closed loop systems at appropriate 

locations.  

So, let us say can I say maybe I want my poles to lie within this region here or maybe some 

region like this or maybe like this or this several possibilities or say I just want my poles 

to lie within a circle of say radius 0.1 instead of 1, right. So, this these problems are called 

D stability regions. 



Well, in the continuous time it could just translate to say your closed loop poles being say 

to the left of say -K for example. It could also translate to poles being say within this region 

where you put certain restrictions on the damping. If you put certain restrictions on omega 

n then you will have another region and so on, right.  

So, equivalently like you learn concepts also exist LMI in the continuous time domain. So, 

let us look at for example, this particular thing in the discrete time case of how do I solve 

for my poles to be in one predefined region of the stable region, ok. 
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So, let us look at the autonomous system to begin with and ok. So, a D R region is defined 

by this following relation, right. So, in the z plane, so I have matrices
𝑅ଵଵ 𝑅ଵଶ

𝑅ଵଶ 𝑅ଶଶ
൨ ok. The 

D R region is now represented by this particular LMI, right, where, ok. So, 𝑅ଵଵ and 𝑅ଶଶ  

are of these dimensions and overall I can write R as a partition matrix of this from 𝑅ଵଵ, 

𝑅ଵଶ, its symmetric and you have 𝑅ଶଶ here right, ok. 
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So, what is the definition of that? The matrix A is said to be D R stable if and only if all 

its eigenvalues lie in the D R region defined by 1. And how what defines these regions? 

Are this choice of matrices 𝑅ଵଵ, 𝑅ଵଶ, and 𝑅ଶଶ; I will show you, I will shortly show you 

some examples. So, if I say well this my D R region looks something like this, so this is 

my D R region, ok.  

So, my system would be stable or my system I would call it D R stable if in addition to 

stability all eigen values are within this shaded region here. So, I am restricting my closed 

loop poles to certain sub regions of the stable region in this in the unit disk and the stable 

region is the unit circle, ok good. Some properties the D R regions are symmetric with 

respect to the real axis as this case within any general LMI regions.  
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So, a few examples of what are these D R regions. If I take a very simple example of say 

𝑅ଵଵ = -1, 𝑅ଵଶ = 0, 𝑅ଶଶ = -1, this will give me the standard unit disk or they just is the 

general stable region, ok. 
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Some other example, so if I just add a constraint saying that the real part of z >0.6 then, if 

you just add it into in addition to the constraints here then I get that this is my new D R 

region, right the region in blue here.  
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Similarly, I can restrict to several other regions of the z plane or of the unit disk, right. So, 

all these constitute D R regions. So, now, how to check; so ok. There are there are a bunch 

of results that you can obtain by choosing this appropriate Rs.  

So, you could also say well can I have my D R region as a say as a circle centered at 0.1 

with a radius of 0.1 and so on. So, the literature that is at the end of the; end of the slides 

will guide you through little more exposure to these kind of D R regions. But it just to give 

you an idea of what is what kind of problems then we can solve by formulating them as 

LMIs, ok. 
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So, what is the LMI here? How do I check given a A matrix and given a certain D R region 

if that particular system represented by an A matrix is D R stable or not. So, one result that 

says, ok, this from a reference that is mentioned towards the end of the slides is that a 

matrix A is D R stable and this D R stable these regions are defined by this choice of 

matrices 𝑅ଵଵ, 𝑅ଵଶ, and 𝑅ଶଶ.  

So, it is D R stable, if and only if there exists a positive definite matrix P also symmetric 

such that any relation like this and this is usually the Kronecker product, Kronecker 

product between two matrices, right. So, in general if I say A is a two-dimensional matrix 

of the form a 11, a 12, a 21, a 22 ቂ
𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ
ቃand say B is also a two-dimensional matrix A 

(x) B would be something like this that you have 
𝑎ଵଵ𝐵 𝑎ଵଶ𝐵
𝑎ଶଵ𝐵 𝑎ଶଶ𝐵

൨ ok.  

So, this is the LMI that we would be; we would be interested in solving. We can also 

formulate the problem of what if well what if this LMI if the answer to this LMI is no. So, 

for example, I ask a question, so given an A ok, is it D R stable. D R stable, say that I am 

only looking at not the unit disk, but say disk of radius 0.1 centered at 0.1, right.  

So, I am not interested in the stability region, but say some region like this, ok. So, if the 

answer is no, then I will look at an alternate problem, right. So, I will look at say I have 

x(k+1) = Ax(k) + Bu(k). Now, can I find a u = k x such that A + B k is now D R stable? 

And these problems are called D R stabilization problems, ok. 



So, I will not go into the details of that it is again an exercise which is similar to what we 

did for stability of stabilization of discrete and systems using Schur complements and so 

on, but I will again you can just refer to the literature at the which is mentioned at the end 

of the slides, ok. 
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So, now, how do we solve this via using MATLAB?  
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So, a couple of tools that would be useful, ok, there also this LMI toolbox in MATLAB, 

but I would prefer using these two you could you may just want to download these two 



software packages called YALMIP and Sedumi. Just add those folders, we have MATLAB 

file your MATLAB path and then things will be good, right, ok. So, the first thing, ok. Let 

us start by solving a very simple problem of stabilization or not stabilization, but even say 

stability problem.  
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So, for example, check whether a given A is stable. Check whether A is stable, ok. It could 

be a continuous time and discrete time both, ok. 
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So, what, I am just at this year this YALMIP website. So, there are a bunch of tutorials 

which you can go through, so, ours comes in the category of semi definite programming. 

So, start from here. So, I have a linear dynamical system �̇� = Ax. 
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And the Lyapunov condition says that I need to solve for 𝐴்𝑃+ PA < 0 with P is a 

symmetric matrix which is greater than 0 and so on. So, how do you define? So, A you 

can just write in the standard MATLAB way as defining a matrix, P is called my it is called 

an sdp variable and solving for P. So, that will be called a sdp var of; so, its be our 

dimension 3 x 3. 

The LMI that I am really trying to solve is F, so I will just write down those these two 

constraints in the code P > 0 and then 𝐴்𝑃+ PA ≤ 0, ok. So, there is a little warning which 

YALMIP tells us that, we are not really solving for strict inequalities, although 

theoretically we are looking for strict inequalities, right that P > 0, 𝐴்𝑃+ PA <0.  

So, to do this what we could do is just add a little some kind of a threshold to P that this 

do not check for P > 0, but instead say check for P being say greater than point, so the 

condition which YALMIP checks do by default is this one, but you could also check for P 

being greater than or equal to 0.001, right just to add act with this strictness here.  
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There also other ways which these guys tell us, you can have the trace of P to be 1 and so 

on, ok. 
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So, once you write this constraint , F is such that P is greater than 0.  
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Then the way to solve is you just say optimize F and then the feasible value of P would be 

the value, so you have to write value of P, right because P is just this variable here and P 

feasible value you just type down value of P it will give you the appropriate value of P, 

ok. 
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So, let us do some very very basic code here.  
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So, I just go to the very standard problem where A is given as say something very very 

simple, right. 
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So, A, let me start with this A as ቂ 0 1
−1 −1

ቃ and of course, it is easy to really verify that 

this is this stable. But I just run this code for you and check what MATLABs actually gives 

you, right.  
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So, it actually tells you that this problem is solvable and you could also check for P 

feasible.  
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So, the matrix P that solves this problem will be given by this. So, you can check that this 

matrix is a symmetric and it is positive definite, ok. So, and let me just do something else, 

right. Let me just start some, ok. So, this is this unstable, right. So, A is now instead of, so 

I just take another A which is  ቂ0 1
1 1

ቃand check how this LMI solves (Refer Time: 19:17) 

the instability across for me, right, ok. 
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So, I go through this process again and actually it tells me that it gives me an infeasible 

infeasibility thing, right, that the problem is actually not solvable and this because it is an 

it is an unstable system that no there is no P that will solve the linear matrix inequality, ok. 

And just to add a threshold I just checked put as P as greater than or entries of P > 0.001, 

right and this is how just write the little code, ok. Now, let us go one step further. So, if 

we, ok; let us me just open slides of lecture 1. 
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In lecture 1, we had this stabilization problem, right; so, how do I check if A + BKis a 

stability matrix.  
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So, we kind of found that found out at the standard 𝐴்𝑃+ PA does not work because of 

these two unknowns k and x, ok. So, and then we had an equivalent LMI formulation for 

that, right. So, AX + X𝐴்+ BN +𝑁்𝐵் , where K was eventually given by this one, ok. 

So, we will try to solve a problem like this using MATLAB.  
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So, I just take this unstable A here ቂ
0 1
1 1

ቃ, which we had which had here and say let B is 

ቂ
0
1

ቃ and I need to search for a K or find whether or not the K exists such that this system is 

stabilizable, ok. So, my P is usually of, the P I do not need any more. So, my X is again 2 

x 2 matrix, this is my sdp variable, yet again going back here, right. So, X is what I am 

solving for and P is just 𝑋ିଵ that I can easily find out. N is of dimension 1 x 2, right this 

is also an sdp variable.  

So, there is no real constraint on A, right, so on N, right I am not really fixing N to be all 

entry should be greater than 0 or whatever; only thing that is to be fixed is for x and then 

y. So, this LMI I just this LMI just plug into this equation and I say optimize F and then I 

have this P feasible or what knocking down the feasible X is this maybe I should call this 

X feasible instead of P, ok. And then I find this value of K, right I just run this little code 

and it gives me, ok. Let us check if, ok. 
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Something went wrong, ok. I should call this Xfeasible instead of P feasible, ok. Let me 

run this code again.  
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So, it gives me this values of K, right. And I can easily check what are the eigenvalues of 

A + BK and you can see that the closed loop system is actually stable, right, ok. So, this is 

some very very basic examples that you can try out discrete time version of this you can 

try out Schur complements and so on, but I will just leave that to you. It is just a matter of 

typing down; typing down the code, ok. A few more examples I would like you to quick, 

to quickly do here.  
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So, first is the delay LMI. And what is this delay LMI tool? 
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So, let us take a small problem or how do we motivate ourselves to do this problem of why 

are delays important.  
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Let us say I have a plant �̇� = Ax + Bu. So, this is my plant. So, this is �̇� = Ax + Bu. Let us 

say I measures all the states this is my input and typically I will have a k here, which will 

just measure, this will be measured instantaneously the control law will be computed and 

then fed back all will happen instantaneously. But you know in practice things may be a 

little different, right that you may there may be some computation time. 



If you are communicating via network channel that will cause further delays and so on and 

therefore, your control closed loop control law may not be instantaneous. So, if I say I am 

looking at u = -kx, ok; let me put this piece here �̇�(𝑡) = Ax(t) + Bu(t), ok. If in the standard 

case u(t) is k, x (t)and my system looks like this A + Bkx(t). And these piece problems I 

know how to solve a A + Bk is stable then my closed loop system is stable, that is ok. 

Now, usually u may not arrive instantaneously and it may arrive with some delay let me 

call this 𝜏, ok. Under this situation how does the closed loop system look like? I have �̇� = 

Ax + Bx(t-τ). So, this will be Ax + Bkx(t – τ), ok; so, longer in this form, right. So, the 

eigenvalues of A + Bk would not tell me much about the closed loop system.  

So, in general we can write that a delay system of the form �̇�(t)= Ax(t) plus let me call this 

some 𝐴ௗx(t-𝜏), ok. So, when is this system stable? (Refer Time: 25:30) is this is the 

question, ok. So, first, the necessary condition is that the system without delay should be 

stable, right. So, the system without delay; without delay which means τ = 0 is stable or it 

should be stable and that is A + Bk or A + 𝐴ௗ first must be a stability matrix, ok. 

Then we can ask our self a few questions, right is the system stable independent of delay 

that, ok, no matter whatever the τ is my closed loop system will still be stable. We will see 

if that could be true or derive, what under what conditions these systems are actually stable 

independent of the delay; means whatever even for large delays my system would still be 

stable. There could be cases where my system can or I can guarantee stability say if the 

delay is like say 2 seconds or say 4 seconds, but anything larger than 4 seconds I might go 

to the verge of instability, ok. 

So, let us see how we can actually quantify those results. Again, as I warned you that this 

is not really an introduction or even its not even introduction you know forget about a 

comprehensive review of delay systems, but it just like this is just teaching you a bit of 

how to formulate problems as LMI problems, ok. So, what is the result that we will be 

interested in?. So, I start with �̇�= Ax + Bu and I write a delay system which is of this form. 

The initial conditions now need to be defined on all this time interval from -τ to 0. 

So, just to solve a continuous differential equation, I need just x of 0 whereas, to solve a 

differential equation I need the set of all initial conditions which happen in this range or in 

this time interval -τ to 0. Of course, I will not go into the details of that and also assume 

that the delay is bounded from above.  



One more assumption we make is the delay is constant with time, but they are also the 

results where you can say that my delay changes with time and then you will say how fast 

it changes how slow which changes and so on, but will restrict ourselves to a constant 

delays. So, this system, I will call this system 2, is asymptotically stable, if there x is 

symmetric matrices P and S such that P is greater than 0 and an LMI like this holds, ok. 
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The stability certificates are still are again obtained by using my making use of Lyapunov 

like function. So, this was a standard Lyapunov function for the system without delay. So, 

now we have another term which takes care of how to handle the delay terms, ok. So, let 

us see if we can really quickly do a proof on how we arrive at this delay LMI.  
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So, I have V(x(t)) = 𝑥் Px + ∫ 𝑥்(𝜏)
௧

௧ିఛ
𝑆𝑥(𝜏)𝑑𝜏 ok. Then I do the differentiation 𝑉(𝑥(𝑡))̇ . 

Again, along the system trajectories what are the system trajectories system trajectories 

are 𝑥(𝑡)̇  = Ax + 𝐴ௗx(t-τ), ok. 

 So, I just do the standard differentiation I get this is 𝑥்𝐴்Px + 𝑥்(t-τ), 𝐴ௗ
்Px + 𝑥்PA x 

+𝑥்P 𝐴ௗx(t-τ) + 𝑥்S x 𝑥்(𝑡 − 𝜏)Sx(t – τ). Now, rearrange terms in the following way, 

right. 

So, I have x(t) here, I have x(t – τ) at the transpose. What I am left here is this 

ቈ
𝐴்𝑃 + 𝑃𝐴 + 𝑆 𝑃𝐴ௗ

𝐴ௗ
் 𝑃 −𝑆

 
𝑥(𝑡)

𝑥(𝑡 − 𝜏)
൨ < 0, right. So, x of t this with this constraint and t ≥ 0.  

So, 𝑉(𝑡)̇  < 0 translates to this matrix being less than 0, ok. Now, this is this is an LMI, 

right. So, look at this. So, this is what I am interested in falling P > 0, again matrices S 

which are also positive and symmetric such that this LMI holds, ok. So, I will just quickly 

show you some examples again, ok. So, let me go here. So, let me, ok; comment this out, 

ok. 
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So, what I will be interested in is to solve is to check for stability of this particular delay 

system 𝑥(𝑡)̇  = ቂ
−1 0
0 −2

ቃx(t) + ቂ
1 0
0 1

ቃx(t-𝜏), ok. And if I just run this code here, so I just 

plug in. So, my unknowns are P and S of they are 2 x 2. So, what I need to check is I just 

plug in the LMI condition here that is P>0, 𝐴்P + PA + S and all this entire matrix, I just 

plug it in here. 

So, P>0, S > 0 and this DM which is the matrix inequality which we had, so this also, this 

should be less than or equal to 0. I just run it for optimizing F and this is what I get, ok. I 

get an error.  
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I forgot to define the A.  
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So, my A was this one was [-1,0;0,-2] the 𝐴ௗ was just the identity that is [1,0;0,1], ok. And 

let us see if this works.  
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So, I get I can just check the eigenvalues now of Pfeasible, ok. So, P is positive similarly 

I can also check for the Sfeasible, ok. So, this means that this the system governed by this 

dynamics, with this particular A and 𝐴ௗ is stable independent of delays, ok. Now, let me 

do something else. This comment this out and go to some other example; where, ok; let 

me write down the problem properly.  
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So, in this example, so, �̇� = 
−2 0 1
0 −3 0
1 0 −2

൩x(t) + 
−1 1 1
2 −1 1
0 0 −1

൩x(t-τ) and check if this 

system is stable, independent of delay, ok. So, let us see. So, I just plug in the A and 𝐴ௗ, 

so my matrices are now unknown matrices are of dimension 3 x 3 and I just run this code, 

ok. See that actually gives me an infeasible condition here, right, that this system is not 

independent of delay.  

So, the answer is the system is not stable independent of delay, ok. Whereas, the this 

system actually was, this actually was stable independent of delay, ok. Now, the next 

question that you will ask is this stable say maybe for some small delays. And then we ask 

the question how small, ok. So, let us see if there are there are results which tell us that, 

right. 
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So, the delay dependent stability, ok. I do some model transformation, I will skip these 

steps. So, this system is; so I do a system transformation here such that when this system 

is stable the original system is also stable �̇�= Ax(t) + 𝐴ௗx(t-𝜏). So, if this is stable this is 

also stable. The converse may not be true and therefore, this transformation adds a bit to 

the conservatism of the results, but ok, we will not at the moment worry about that.  

So, this system is asymptotically stable, ok. So, should be 2 here. If there exists matrices 

of this form such that I have an equivalent matrix LMI of which looks like this, right. So, 

unknowns here are P, 𝑆 and 𝑆ଵ, where M has this term τ now. You see there is some 



something some dependency of the LMI on the delay term tau, ok. This can be you can 

just h solve for this �̇�, ok. I will not go to too much of the details, but, ok. 
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So, the this the delay term explicitly appears in the LMI in form of this M, whereas, in the 

previous case there was no delay term, right. So, all these terms are independent of delay, 

right. 
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So, now let us check if this same system, this was stable independent of delay now let us 

just check what happens for say small delay. I just put a delay of say 0.1 and I just plug in 

the code, ok. So, let us see what happens, ok. So, this looks good, so there is no in 

feasibility condition. 
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So, for 0.1 the system is stable. Let us say now I go to say 0.3, ok. That still seem to be 

good, right. 
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So, there is no in feasibility condition here. Now, let me say, say d, d is say 1.  
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No, I some I have some feasibility condition, right. So, two things that I found out was for 

0.1 it is stable, 0.3 is stable and for 1 or for τ equal to τ or d whatever, τ = 1 the system 

turned unstable, ok. Then maybe you can just write a little loop to check for what is the 

maximum value of tau or d that the system is stable, so it will be some 0.4 or things like 

that.  

So, we can just play around with the quantum of delay and check whether or not the system 

is stable. So, what is observation here? Even though there are some systems which are 

stable independent of delay some systems are stable well depending on for some small 

values small values of delay are delays are acceptable say in this case 0.4 seconds, but for 

larger values my system goes to the verge of instability. So, this is a little better result than 

then what we had previously, right.  



(Refer Slide Time: 41:16) 

 

The last thing is about passivity, ok. So, this is something which is value as we kind of do 

very very often, but we do not really think that this is or we do not work within the realm 

of passivity, this is in the concept of passivity. So, I start with an input output system, some 

type of �̇�= Ax + Bu; y = Cx + Du. I just define a supply function which is quadratic and 

say Q is of this form, ok.  

So, as this system is with say some 0 initial condition or maybe no not necessarily, but so 

for ease of representation. So, this system is said to be passive with respect to the supply 

rate if and only if something like this, some relation like this holds, ok. So, what does this 

mean from the physics point of view?. So, let us do the things in you know in a way that 

we can understand.  
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The system is called passive with respect to some supply rate. It is actually the physical 

supply say some power supply you can call supply rate. If there exists a function called 

the storage function where is the x is the state space, right say all x are coming from x, ok. 

So, some type o here. Of course, storage function, so that for all initial conditions x(t) with 

𝑥(𝑡) =𝑥, 𝑥 belonging to x, right at any time 𝑡 and for all allowable input functions, 

right and for all 𝑡ଵ, ok.  

So, this should be 𝑡ଵ>𝑡. The following inequality holds that, the value of the storage 

function at time 𝑡ଵ is less than or equal to the value of the storage function at time 𝑡 plus 

some supply rate, ok. Now, I can just draw it a slightly better different better looking 

differential version of this one, right. So, that �̇� dot is less than or equal to as less than or 

equal to the supply rate, ok. This will not be here anymore.  

And for the LTI systems, this is simply quadratic this the storage function is just of the 

form 𝑥்Px, very similar to the Lyapunov function and actually has very direct 

consequence also to the Lyapunov thing, ok. 
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So, what is the interpretation of this? That S(x(𝑡ଵ)), S(𝑥(𝑡ଵ)) – S(x(𝑡)) is the stored energy 

or the rate of change of energy, is equal to this supplied energy plus the dissipated energy, 

that is what any physical system would obey, right. It is just the simple law of conservation 

of energy, ok. So, I will do another very small example of a passive system, ok. 
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So, just take a R with some voltage source V, ok. So, this R, L; L and C are all passive 

elements we can extract only a finite amount of energy from these systems whereas, this 



voltage source is not a passive element it is an active element, ok. So, let us see what are 

we looking at here when I talk of the cvt, ok.  

So, the dynamics of this would be V is ok, let me call this 𝑖, the voltage across this as 𝑣 , 

ok. So, V = 𝑖R+𝐿
ௗ

ௗ௧
 + 𝑣. And what is this 𝑣? 𝑣 is simply 𝐶

ௗ௩

ௗ௧
, ok. So, I can write an 

equivalent state space form of in the following. So,

ௗ௩

ௗ௧
ௗ

ௗ௧

  = 
0

ଵ


ିଵ



ିோ



 ቂ
𝑣

𝑖
ቃ +ቈ

0
ଵ



 𝑣 . Now, 

let us say that the output is just 𝑖, ok. 

Now, what is the total energy of the circuit? The total energy is 
ଵ

ଶ
(L𝑖ଶ+ C𝑣ଶ). And if I 

take what is 
ௗௌ

ௗ௧
 along this dynamics, ok. So, this will be L𝑖𝚤̇ + C𝑣𝑣̇ and I substitute for 

𝚤̇ and 𝑣̇  from here and what I get is the following. So, this is -𝑖ଶR + 𝑖𝑣, ok. 

So, this is exactly the passivity relation, right or the arrange energy balance equation that 

we are here, that the stored energy is supplied energy plus the dissipated energy or the rate 

of increase of stored energy, so this is my power dissipated and this is just my input power, 

ok. 

Now so, if the system is controllable then passivity is equivalent to solving the following 

LMI, ok. So, look at this little carefully. So, how do we derive this condition? So, just 

starting from here. So, what I am looking at is �̇� – S(u, y) ≤ 0, ok. So, let us start from this. 
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So, I have �̇�= Ax + Bu, y = Cx + Du, ok. My storage function S(x(t)) is say 𝑥்Px, ok. Let 

me leave out the half for the moment, ok. Now, what I should find out is how does  

�̇�(𝑥(𝑡))-S(u,y) ≤ 0, ok. So, first let us look at this term. �̇� is, so I get �̇�்Px + xP�̇�(t). This 

is, so this is (𝑥்𝐴் + 𝑢்𝐵்)Px(t) + 𝑥்(𝑡)P(Ax(t)+Bu(t)) So, this I can a club it in the 

following way. So, I have x u transpose x u.  

So, what do I have here? I have 𝐴்P + PA and the term involving 𝑥் and u would be P B 

and the term involving 𝑢் and x is 𝐵்P and a 0 here, ok. And what is my supply rate? So, 

supply rate the way I define is in the following way. This is [y u]ቂ
0 1
1 0

ቃ ቂ
𝑦
𝑢

ቃ, ok. So, let us 

do this. 

So, y what is y? y = Cx, ok. So, let us write it down this first. So, this will expand this is 

transpose. So, [y u]ቂ
0 1
1 0

ቃ ቂ
𝑦
𝑢

ቃ, ok. Let us just make it a little scalar system, right, so that 

notations would be easier. So, I have this 𝑢்y plus in general this will be 𝑦்u, ok. Now, 

𝑢்y is or Cx + Du, again 𝑦் this will be 𝑥் transpose, transpose, transpose, 𝑥்𝐶் + 𝑢்D 

u, ok.  

So, I can write this. So, just plug this I, so, I will have again terms relating to x u with the 

transpose and x u, ok. So, I have terms relating to 𝑢்C. So, I will have a -C-𝐶் there will 

be a 0 here, here will be D +𝐷், ok. So, I just subtract it here. So, what I get is now the 

following that relation which looks something like this, ok.  

(Refer Time: 51:38) be a C. PB - C, -𝐶் here this will be D, because of this minus here 

and this must be less than or equal to 0 and therefore, this is equivalent to saying that this 

is less than or equal to 0. That is essentially what I have here, ok. So, some things 𝑥்C 

will have C transpose and a C here, ok. So, this will be C transpose this will be C, ok. 

So, this is how I derived that particular LMI. So, to check whether or not a system is 

passive I just plug in this inequality, right. And of course, there is a bunch of literature on 

what can we do with passivity, how the passivity relate to stability and so on and how also 

we can do things related to things called passivity based control and a lot of it. 

Again, the idea is not to really go deep into concepts of delay or passivity or even D R 

stabilization and other stuff, but it is just to give you some idea of what you can do with 

LMI, why do we need a LMIs, starting from the Lyapunov equation to the stabilizability 



conditions and then there is a bunch of stuff that you could do and we will just play around 

with some of these this equations or these systems, ok. 
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So, that kind of concludes what we what I had to say in this course of 12 weeks. I hope the 

course was useful to you. That was just to give you a little introduction to some higher or 

advanced level courses in control theory. This might give you a way to maybe pursue 

courses in optimal control or non-linear control and a bunch of other things that will open 

up for you. I hope you enjoyed the course. 

Thanks a lot.  


