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Hi everyone, welcome to this last week’s lectures on the course on Linear Systems Theory. 

So, far we have done a bunch of things starting from basics of linear algebra to look at 

solutions to systems of equations both time invariant time varying discrete time continuous 

times and so on. We had a bunch of tools to analyze the stability of linear time invariant 

systems or also and also linear time varying systems.  

One of the most powerful tool we used was that of Lyapunov stability. We did a bunch of 

things for analysis of controllability, what to do if the system is only partially controllable 

or only few states are controllable, what if all the states are not measurable then we had 

the notion of observability. Then we had design problems where we had problems relating 

to designing controllers to designing observers simultaneous design of controllers and 

observers. We also had looked upon of reduce order observers and towards the end also 

looked at some problems relating to optimal control when we have constraints on the 

control energy or the control input we also have constraints on the time and so on.  

So, what we will do now is to just revisit those things and look at things a little more from 

a computational point of view. 
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So, let us start with the one of the basic equations that we had looked upon while we were 

interested in instability of systems. So, that is the traditional Lyapunov equation 𝐴்P + 

PA. So, here A is given to me, P is the unknown and I can say if you if you look at the last 

condition for Lyapunov stability we had a condition where something like this was equal 

to asymptotic and also exponential stability.  

A it was given to me P was the unknown and if there exists a solution P which is symmetric 

and positive definite then the system was asymptotically stable and if you look at it closely 

this equation is linear in P. So, we are solving for the matrix P or the elements of the matrix 

P and there is an inequality and that is somehow motivates the name linear matrix 

inequality ok. 

So, in general I can write that. So, I am solving for this equation for P in general my P 

could be of the form 𝐴்P + PA again some B’s and C’s of this form and some Q where 

my objective is to find a P such that this entire expression f(P) < 0 ok. Similarly, I have 

the discrete time Lyapunov matrix or the Lyapunov matrix inequality this was also a linear 

matrix inequality. You can check that this is also like this. So, this inequality 𝐴்PA – P< 

0 was also linear in P ok. 
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So, the in general so, if I look at say a two dimensional system, so, I was essentially solving 

for these three unknowns 𝑝ଵଵ, 𝑝ଵଶ and 𝑝ଶଶ when I was looking at a solution to this equation 

right. So, in general I can write LMI in its most standard form in terms of these unknowns 

𝑝ଵଵ, 𝑝ଵଶ and 𝑝ଶଶ. So, here I call this xi s are my unknowns as so, in general form I can 

write F(x) = 𝐹଴ + 𝑥ଵ𝐹ଵ +….𝑥௡𝐹௡ < 0 where ok.  

So, this should be 𝐹௜, well all this, 𝐹௜’s, i going from 0 till n are known matrices this 𝑥௜’s 

are unknown scalars like all this P s in this in this entries in this matrix are scalars and they 

are usually referred to as the decision variables. And there is a little result which I will not 

prove in general, but I will give you a little example of that any general LMI can be 

converted. So, an LMI of this form here can be converted into an LMI in the standard form 

ok. 
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So, let us start with a matrix A which looks like this: ቂ
𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ
ቃ, P is symmetric and has 

entries of the form ቂ
𝑝ଵଵ 𝑝ଵଶ

𝑝ଵଶ 𝑝ଶଶ
ቃ ok. So, I am just looking at how does this equality look like 

it or this inequality 𝐴்P + PA < 0 I just substitute into things. So, , just plug in the values 

of A and P here and what I end up is something like this I have twice 𝑝ଵଶ𝑎ଵଵ + 2𝑝ଵଶ𝑎ଶଵ 

and then because these are scalars I can always write a ij P with k l would be equal to this 

1 ok. 

So, and therefore, we will have this 2 s here. The second entry here would be 𝑝ଵଶ(𝑎ଵଵ + 

𝑎ଵଶ)+ 𝑝ଶଶ𝑎ଶଵ + 𝑝ଵଵ𝑎ଵଶ then you have 𝑝ଵଶ(𝑎ଵଵ + 𝑎ଶଶ) + 𝑝ଶଶ𝑎ଶଵ + 𝑝ଵଵ𝑎ଵଶ this is 2𝑝ଵଶ𝑎ଵଶ +

2𝑝ଶଶ𝑎ଶଶ is less than 0 can also be currently written in this form. So, I have 𝑝ଵଵ ൤
2𝑎ଵଵ 𝑎ଵଶ

𝑎ଵଶ 0
൨ 

+ 𝑝ଵଶ ൤
2𝑎ଶଵ 𝑎ଶଶ + 𝑎ଵଵ

𝑎ଶଶ + 𝑎ଵଵ 2𝑎ଵଶ
൨ + 𝑝ଶଶ ൤

0 𝑎ଶଵ

𝑎ଶଵ 2𝑎ଶଶ
൨< 0 ok. 

So, this I converted this LMI into what I called as a standard form of the in this unknown 

race 𝑥ଵ𝐹ଵ, 𝑥ଶ𝐹ଶ and, 𝑥ଷ𝐹ଷ. So, this is 𝑥ଵ𝐹ଵ, 𝑥ଶ𝐹ଶ, 𝑥ଷ𝐹ଷ and then the 𝐹଴ = 0 ok. So, I will 

not do a general proof, but the general proof will follow some similar arguments. So, I am 

just keeping things a little simple for the moment ok. 
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So, what does it mean geometrically right when I write down an inequality of this form 

and what am I actually searching for? So, let us do a little example and say F and LMI of 

this form 𝐴଴ + 𝐴ଵ𝑥ଵ with 𝐴଴ of this form 𝐴ଵ and 𝐴ଶ and searching for A with for A x being 

less than or less than 0 would be equal to these 2 conditions first 1 - 𝑥ଵ-𝑥ଶ < 0 and second 

I am looking at the determinant right. 
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So, I just compute the determinant and it will be something like this ok. So, I am just 

looking at now the 𝑥ଵ and 𝑥ଶ which satisfies this relation plus this relation which can 

together be written as a as a relation of this form.  
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So, if I plot these two regions individually this could be. So, this is this double shaded 

region here would give me the feasible set of all points 𝑥ଵ and 𝑥ଶ that satisfy this inequality 

of a x being less than 0 ok. So, this is easy to plot and check and therefore, ok. So, will not 

spend much time on the solutions of this, I just leave this to you because they are fairly 

looking equations here. So, but what we will what the aim of this is to show that just to 

give an illustration of what I am actually looking for. 

So, I am just looking for solutions of this which just look as this as a region all given by 

this one ok. 
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So, what if things are not LMIs what is not an LMI right? So, I know I gave you a general 

form of LMI what is not an LMI. So, we will start with the standard LTI system with a 

control input where the objective is to design a feedback control or u = Kx ok. I am just 

doing a little abuse of notation here whereas, traditionally we you would use u = -Kx, but 

just for some ease of notation I am just using u = Kx, but now nothing really changes in 

this right. 

So, not that all right to talk to you earlier was different than now. I am just omitting that 

minus for some convenience of notation here ok. So, my objective here is to design a 

feedback control law such as the closed loop system given by 𝑥̇= (A + BK)x; (A +Bk) x 

is asymptotically stable ok. What does Lyapunov theory tell me that this problem has a 

solution if and only if there exists a positive definite P and of course k such that this entire 

expression or this inequality holds that; A plus Bk (𝐴 + 𝐵𝐾)்𝑃 + P(𝐴 + 𝐵𝐾)< 0 ok. So, 

if you see that I have two unknowns here P and k.  

So, this is not an LMI because I have two unknowns here and they are not linear in P and 

k because this is this cross term here ok. So, what do I do with equations like this ok? First 

step that I will do is let me just take introduce another variable  X as 𝑃ିଵ and just 

substituting here and doing some manipulations. I get an expression like this is also not an 

LMI ok. So, what do we do under in situations like this ok? 
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So, I can expand that this inequality to write as the following AX + X𝐴்+ BKX +X𝐾்𝐵். 

So, the unknowns again are my X and the unknown is K and because of this cross terms 

the linearity is lost ok. I can do a little trick here right. So, I will just do a little change of 

variables and I introduce a new unknown X simply as KX ok. 

So, once I do this K times X becomes n this becomes 𝑁்  and I have a solution. So, what I 

have to solve for now? I have to find an X which is greater than 0 because P is greater than 

0 𝑃ିଵ will also be greater than 0 and therefore, X will also be greater than 0 such that AX 

+X𝐴்+ B N + 𝑁்𝐵்< 0. Now I can so, this is an LMI right. So, this is linear in X and N. 

So, if I find X from this if I find N for this to me to find K is easy right from this. So, K 

will simply be ok. So, K will simply be this is type 2 here since N =KX, K will simply be 

N𝑋ିଵ ok. So, that is that is a nice trick here right, we just introduce a new variable N as 

KX I solve for N I solve for X and I can easily realize what my what my K is ok. 
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So, now let us see what happens in the discrete time case. So, if I go to the discrete time 

case I have a system that x(k+1) = Ax(k) + Bu(k) where the objective again is to design a 

control law u(k) = Kx(k) such that the closed loop system is asymptotically stable again I 

just dropped the minus here for some obvious reasons again without loss of any generality 

ok. 

 Now from the Lyapunov stability theory what I know that this problem has a solution if 

and only if there x is a symmetric and positive definite P such that this inequality holds 

and again this is not again an LMI because I have this cross terms here ok. So, not only 

that if I just and it should be easy to verify that I if I just do a change of variables that trick 

may not work here directly. So, I may have to look at look at some other tools that will 

help me solve problems of this kind ok. 
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So, let us take a little break from LMIs let us go back to matrix theory and see if there are 

some tools that matrix theory teaches us in such that we can arrive at solutions to this or 

at least formulate them as LMIs ok. 
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So, one of the very powerful result in matrix theory is the Schur complement. So, let us 

say I start with A matrix A and I partition it in this way ൤
𝐴ଵଵ 𝐴ଵଶ

𝐴ଶଵ 𝐴ଶଶ
൨ and when assume that 

𝐴ଵଵ is non singular then 𝐴ଶଶ - 𝐴ଶଵ 𝐴ଵଵ
ିଵ𝐴ଵଶ. 



So, this entire expression is called the Schur complement of 𝐴ଵଵ in A and denoted by this 

Schur notation. Similarly when 𝐴ଶଶ is non singular then 𝐴ଵଵ -𝐴ଵଶ 𝐴ଶଶ
ିଵ𝐴ଶଵ (Refer Time: 

15:10) A 2 1 is called the Schur complement of 𝐴ଶଶ in A and is denoted in the compact 

way as the Schur of 𝐴ଶଶ ok. 
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So, what does this do to us ok? So, some deserves before we do this or some definitions 

before we go further 2 matrices I am not really dealing with square matrices. So, A and B 

are called equivalent if I can write B as some 𝑄ିଵAP for some inevertible matrices P and 

Q of appropriate dimensions. Slightly different than what I do in the similarity 

transformations because they are the underlying assumption is that the matrix is A square 

matrix. 

So, 𝑃ିଵAP will give me an 𝐴̅ and so, on. Here its A little more general way of looking at 

things ok. 



(Refer Slide Time: 16:00) 

 

So, this is good ok. So, what happens in this case? So, when 𝐴ଵଵ is non-singular then the 

matrix A is equivalent to the following matrix and this implies that A is non-singular if 

and only if the Schur of 𝐴ଵଵ is non singular and the determinant of A is just the determinant 

of this guy plus the determinant of this guy ok. So, I have A, I say that this is this A is in 

a way equivalent to this matrix ok. 
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So, I have ൤
𝐴ଵଵ 0

0 𝐴ଶଶ  −  𝐴ଶଵ 𝐴ଵଵ
ିଵ𝐴ଵଶ

൨ this is also called as the Schur of 𝐴ଵଵ and what the 

result says is that A being non singular it is equivalent to saying. So, this is possible if and 

only if the Schur of 𝐴ଵଵ is non singular ok. Now, let us do it. So, when 𝐴ଵଵ is non singular 

now that is the condition right, so, this is necessary for this Schur to exist. When 𝐴ଵଵ is 

non singular let us define these two matrices 𝑇ଵ.  

So, its ൤
𝐼 0

 − 𝐴ଶଵ 𝐴ଵଵ
ିଵ 𝐼

൨ similarly 𝑇ଶ as the ൤ 𝐼  −𝐴ଵଵ
ିଵ𝐴ଵଶ

 0 𝐼
൨ here and fine and say that A 

can be obtained as 𝑇ଵ A right where A is no partition like this right. So, that was the 

condition A is partitioned as ൤
𝐴ଵଵ 𝐴ଵଶ

𝐴ଶଵ 𝐴ଶଶ
൨, 𝑇ଵA𝑇ଶ. So, I just substitute for all of this and I 

just get the following. 

 𝐴ଵଵ 0 I will I will skip the steps 𝐴ଶଶ - 𝐴ଶଵ𝐴ଵଵ
ିଵ 𝐴ଵଶ this is the Sch(𝐴ଵଵ). So, what does the 

results say or what does the theorem statements say that A is non singular if and only if 

the Sch(𝐴ଵଵ) is non singular and additionally determinant of A is just given by the 

|𝐴ଵଵ|.|Sch(𝐴ଵଵ)| ok. 

So, the second so, this shows the equivalence of 11 sorry of A being equivalent to this 

matrix which means that A is singular if and only if Sch(𝐴ଵଵ). So, A sorry A is non singular 

if and only if the Sch(𝐴ଵଵ) is non singular right. So, 𝐴ଵଵ being non singular is anyways A 

necessary condition right ok. And now look at what do I do with the determinants ok. So, 

what we had to prove was A determinate of A was the determinant of A 11 times the 

determinant of the Schur of A 11 ok. 

So, if I look at this expression here what do I have is easy to check that the determinant of 

𝑇ଵ is 1 and also the determinant of 𝑇ଶ is 1 ok, therefore, this is this is now kind of trivial to 

check good. 
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Now what happens when the when the matrices are symmetric? So, we will, so, through 

the course we were interested in symmetric Ps and so on ok. So, what happens when the 

matrices is symmetric? So, let me say that the matrix is partitioned in the following way 

of ൤
𝐴ଵଵ 𝐴ଵଶ

𝐴ଵଶ
் 𝐴ଶଶ

൨ here which is that that A = 𝐴் ok. Then the result says that if A < 0 this 

implies that 𝐴ଵଵ< 0 and the Sch(𝐴ଵଵ)< 0 and similarly 𝐴ଶଶ and this also implies that 𝐴ଶଶ< 

0 and the Sch(𝐴ଶଶ) < 0 ok. I am I can write exactly the same results by replacing this with 

this and so on and similarly here ok. 

So, I think the proof should be should be a kind of easy because when the matrix A is 

symmetric then the previous transformations are such that 𝑇ଵ
்= 𝑇ଶ  and once we establish 

this then the results are like easy to check ok. And in general now this is also A 

straightforward consequence is its the following that I skip the proofs, but its easy its 

important to know these results that if A is as blocks which are of this way. So, 𝐴ଵଵ, 𝐴ଵଶ, 

𝐴ଵଶ
்  …𝐴ଵ௥

்  …and so on such that again A = 𝐴் then A < 0 implies that each of these entries 

are 0, 𝐴ଵଵ 𝐴ଶଶ all the way till 𝐴௥௥ are less than 0 ok.  

So, I will do maybe a very short proof of the sentence skip the longer one. 
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So, let us take a simple case of r = 2 ok. So, well then A < 0 its obvious to say that 𝐴ଵଵ < 

0 which also means that 𝐴ଵଵ
ିଵ < 0 and 𝐴ଵଶ

் 𝐴ଵଵ
ିଵ𝐴ଵଶ< 0 ok. So, applying Schur compliment 

applying Schur complement lemma which was essentially this one at the what we had here 

where A < 0 implied 𝐴ଵଵ < 0 and the Sch(𝐴ଵଵ) < 0, similarly 𝐴ଶଶ< 0 and this ok.  

The Sch(𝐴ଵଵ) which is 𝐴ଶଶ- 𝐴ଵଶ
் 𝐴ଵଵ

ିଵ𝐴ଵଶ< 0 this implies that 𝐴ଶଶ < 𝐴ଵଶ
் 𝐴ଵଵ

ିଵ𝐴ଵଶ and what 

do I know from the from the Schur complement lemma are. So, I just then I just have for 

this one. So, from this condition I just also have that 𝐴ଶଶ< 0 right. So, these two are true; 

𝐴ଵଵ< 0 and 𝐴ଶଶ < 0 right. So, A less than 0 implies these two conditions ok.  

For r its just maybe there will be A couple of more steps to for greater than 2 will be A 

couple of more steps, but I will just skip those things, but this is A good for A little 

understanding of what the result actually is trying to say right. 
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So, what do we do this with this Schur complement ok? So, I start with again the discrete 

time system x(k+1) = Ax(k) + Bu(k). System with u = 0 Schur stable if and only if there 

exists again P = 𝑃் > 0 such that any one of the following LMIs all right. So, P > 0, 𝐴்P 

+ PA this should be less than 0 and these two inequalities ok. 

So, this is again its very straightforward consequence of applying Schur compliment and 

then I will skip the steps, but we will go to the more interesting ones. Interesting ones 

where what about in the case of discrete time stabilization problems where we said I cannot 

use a change of variables, I can also to it was not an LMI in the continuous time case we 

could use a change of variables to arrive at a nice looking LMI which was solvable 

whereas, in the discrete time case that was not possible. So, what does what happens to the 

case of discrete time systems here ok? 
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So, this is not an LMI and I will say what does the Schur complement does to me ok. So, 

first is applying the Schur compliment to the discrete time the Lyapunov equation we first 

arrived at this expression and then there is still non-linear because I have a 𝑃ିଵ ok. Now 

next what I do is I add I multiply to the left and right by this matrix 𝑃ିଵ  I and set Q as 

𝑃ିଵ, I obtained something like this I have qs here I have Q𝐴் and some this Q is also Q 

and k both are unknowns I have some cross terms here ok.  

But, I can do some other trick I can just do I can set another I can call N as K Q and then 

rewrite all this terms here like this ok. Now this is this is can be easily verified to be to be 

an LMI. So, by making use of the Schur compliment I could convert the discrete time 

stabilization problem with unknowns k and P to a nice looking LMI again I can just solve 

solving for Q and, I can find out what is also the k in this case ok. 
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So, one more example it is not necessarily for stabilization problems, we could also have 

we will some complex looking LMIs which can be simplified via Schur compliment. 
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So, if I give you this thing to solve ok, so, I have this one right. So,൥
1 0 𝑥ଵ

0 1 𝑥ଶ

𝑥ଶ 𝑥ଶ 1
൩  and I 

have to solve this for being greater than 0 I can write it in the standard LMI of the form. 

So, I have ൥
1 0 0
0 1 0
0 0 1

൩  plus and I write it in terms of 𝑥ଵ. So, it will be 𝑥ଵ ൥
0 0 1
0 0 0
1 0 0

൩+ 𝑥ଶ 



൥
0 0 0
0 0 1
0 1 0

൩> 0. So, its left F naught plus 𝑥ଵ𝐹ଵ+𝑥ଶ𝐹ଶ.. > 0 and then we are go about 

computing the feasible set geometrically or even analytically.  

But what we see here is if I just apply the Schur compliment to this block here I just 

partition a matrix this way and if I apply; so, this is invertible right. So, if I apply the Schur 

complement to this block here what I get is something very nice looking here right. So, an 

equivalent condition for this LMI is something like this ok. So, this is equivalently written 

in the following form. 

So, I have a solution 1 -𝑥ଵ
ଶ - + 𝑥ଶ

ଶ > 0 it should be a greater than 0 here, And therefore, we 

have a condition that 𝑥ଵ
ଶ+ 𝑥ଶ

ଶ < 1 and then if I just plot that region I just get that the feasible 

region of this LMI is all this circle of all the points within the within the unit circle in the 

𝑥ଵ and 𝑥ଶ plane ok. 
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So, that brings us to the conclusion of part 1 of this lecture where we had introduced LMIs 

or the Lyapunov solution problems as some LMI formulation including the stabilization 

of continuous and discrete time systems. We saw how via Schur compliments we can 

translate difficult looking LMIs or even non-linear matrix inequalities in LMIs. So, next 

time we will just I will just teach you some MATLAB tools to solve this LMIs and in 

general some examples of formulation of LMIs of systems that we are more likely to 

encounter in real life.  



So, that just coming up in the next two lectures thanks for listening. 


