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Hi everyone. So, welcome to this week 11s lectures on the course on Linear Systems 

Theory. I am Ramkrishna from IIT, Madras. If you have survived this course till week 11, 

I think you are doing pretty good. So, just a very quick recap of what happened over the 

past 2 or 3 weeks was at least from a design perspective we had formulated design 

problems. 

I certain say pole placement problems or we also at some point of time ask ourselves the 

question what if the states are not completely measurable, then we had an equivalent 

observer design. We also looked at simultaneous controller and observer design. And so, 

how design of a controller does not really affect what is going on in the observer design 

and vice versa. 

So, this can be treated as independent problems and how also towards the end we saw that 

the observer dynamics should be faster than the controller dynamics for obvious 

performance reasons, ok. So, what we were interested in? We were interested in one 

stability, second performance in terms of placing the closed loop poles at desired locations 

and of course, at times when we required an observer design. We actually also followed 

the procedure of designing the observer.  

And starting from the definition of controllability right so, loosely speaking week. So, the 

control definition was can I start from any point in the state space and come back to the 

origin with help of some unconstrained control. I was not really interested in what is the 

control effort required or how much time does it really take I was just happy saying; well,. 

you should reach from point a to point b in some finite time right and also an unconstrained 

control input. So, we were only interested whether or not the system is say for example 

controllable. 

We never talked about what is the cost of the control in what so, can I say, ok with a control 

restricted to some quality 𝑢ത, can I reach from point a to point b in say some 5 seconds for 



example, right. We never really talked about quantifying those quantities right of the 

inputs, the time and so on. So, what we will today do is to look slightly beyond just pole 

placement or just beyond looking at stabilization pro kind of properties. Or beyond looking 

at just a control problem as just u = -k x such that the poles of the closed loop system are 

at the appropriate locations.  

So, we will do something slightly different today and of what is called as an optimal 

control. So, what is a good control law? A good control law is something, is an expensive 

control law good control law right, it is like, if I were to draw an analogy to check; what 

is a good car for me to buy, ok? Then, you just maybe just out of curiosity just ask Google 

or you ask Alexa for example, she is also quite competent these days. So, what is a good 

car? and that in sometimes is also not a well posed problem; because you do not really 

specify your requirements of why do you need a car? What is the cost that you can afford 

and so on.  

It is also looking in a different way if I say, I get a salary per month, I want to maximize 

my savings, I also want to maximize my comforts, right. So, what is a good solution? So, 

if I say well I want to maximize my savings and I should not spend at all or if I say I want 

to maximize my comfort or luxury rebels I should not save at all. 

So, this is like in some sense a contradictory problem right of maximizing my savings 

versus maximizing my comfort levels. So, what does that mean in the control sense? That 

can we actually solve problems like this, when we have a conflict between good 

performance plus some constraints which occurred to us. 



(Refer Slide Time: 04:56) 

 

So what are the control problems that we typically encounter or say so, one is what we call 

as the state regulation problem, which is to keep the state x near zero right so to speak. So, 

what is the aim of the controller? Aim of the controller is to design a control law, which 

takes the state of a plant from some nonzero values to the zero state equilibrium for 

example. 

Now, well why does this actually occur, why do I even need to design the controller? So, 

if I am at the equilibrium might always be at the equilibrium. So, what could cause the 

state to move away from the origin? There could be disturbances, there could be external 

perturbations. Say, if I am looking at a power grid a sudden change in load patterns might 

actually trigger my system in such a way that it will move away from the set point. Or if I 

am looking at IRCTC website sudden a booking pattern might take my system away from 

my set point so, to speak.  

So, we can also similarly look at not only state regulation, but output regulation where the 

objective would be to keep the output in near zero or some. So, the zero is that I do not 

want to really drive the system to a zero output. But, some kind of a reference value which 

I set and you know usually, you can also talk of it in terms of the error will being you know 

in towards zero, ok.  

Now, the third thing could be looking at a tracking problem, right. Where I can make the 

state follow or even the output in some case follow a desired trajectory; say I am I want to 



design a solar panel then it seems. So, if I would maybe face it at the east in the morning 

towards the end of the day I may not maximize the output of my solar generator right. So, 

I have to really track the position of the sun and this has been kind of a very interesting 

and well said it problem in control literature or even from power engineering perspective, 

right. 

So, these are typical control problems that we encounter. So, so far we are like can I design 

a controller u -k x such that poles are given, performance is given, and so on, ok. 
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So, when I look at a little further, yes I can design a controller, but now I need to answer 

a little more questions right. So, one question would be; well, the main objective here if I 

look at an optimal control is to design a control signal that minimizes a certain cost, right 

at the same time does it maximize a certain performance index. 

And the plant could have some physical constraints. Let us say for example, if I drive a 

car, I know that I possibly cannot go beyond say 150 kilo meter per hour or 200 kilo meters 

per hour, it just comes with some kind of a physical constraint. So, even though the car 

can move as a controllable relate analysis would suggest that the car can go from point a 

to point b in some finite time, ok. 

Now, if I say can I go from say Chennai to Delhi by my car in say 2 hours; well, that is 

that is a difficult question to answer, right as. The answer may always not be possible. 



because my car is physically constrained by its maximum speed. Then in most cases I also 

want to maximize a performance index. Performance index could be in terms of say, if I 

go back to the web server problem which I which we had in the week once lectures. 

Can I serve maximum requests per second right and not only that can I also serve requests 

as fast as possible, There is a contradiction also in that particular problem right. And then 

of course, I want to minimize the overall cost, right. So, ideally I would want a maximum 

performance at zero cost and that is like the ideal situation. Well, but unfortunately that 

does not happen. 
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So, is there something that will help us a bit in this, ok? What could be other examples? 

So, something which is being talked about everywhere is about soft landings so, to speak 

ok. So, I will not tell you why we could not get to a soft landing ok, we will leave that for 

somebody else to say. But if I just looking at say just to draw some parallel between what 

I learn here to what actually see on TV each day, right. 

So, one is if we if I look at a soft landing of a spacecraft I am going to see simplified right, 

you can do better than those scientists. So, what is the primary task? The primary task is 

to land at a specific position with specific velocity in finite time, ok. While minimizing 

well the fuel consumption and minimizing the time, this could be one of the cost or the 

performance index.  



At the same time there could be physical constraints, that the thrusters might have a limited 

capacity and so on. And there could also be upper bound on the maximum attainable speed 

right, for whatever reasons right. For example, if I look at a current carrying capacity of a 

transformer or a voltage rating it knows not necessarily due to the conductor there, but it 

is mostly the properties of the insulator that kind of motivate that rating right.  

So,  these are essentially physical constraints which come with the system ok. Now, of 

course, there are another physical constraint you cannot go below the ground, right. This 

is kind of obvious, but this is a real time physical constraint, ok. 
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Now, what do we need to solve such problems? It is kind of fancy to talk about these 

problems of what they call also as soft landing and so on; what do we need to solve this 

problems? Well, we from our control engineers perspective we need a few things I need 

some few information. 

First is I should know the plant dynamics as closely as possible. I need to know what is 

my performance specification, ok. For example, my performance specification as a teacher 

should be on my teaching abilities, but not my football skills or like of that, right. So, given 

a performance specifications boundary conditions right what are my limitations of what 

can be worked out what cannot be worked out, right. And then of course, physical 

constraints of the system, right.  
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So, in general if I were to look at formulating this problem mathematically. So, all the time 

what we were interested is given a physical system can be write a model of that, a model 

was a mathematical abstraction of the system in terms of linear ordinary differential 

equations in this mostly in this in this course, right. So, from that model can I derive a 

controller and then put it back to my original physical system. That was my very 

straightforward you know design procedure set in a simplified way ok.  

So, let us say one of the more general forms of cost function, I think different books will 

start with different motivation. Because ok, we are not really doing an optimal control 

course here, but this is just a little introduction to optimal control. You are just like not 

even like scratching the surface, you are just maybe watching this, the surface a bit from 

business, ok. So, what are; what am I my interested in, right. So, what does this entire 

integral here mean right. So, what is let us analyze each of these terms a little in detail, ok. 

So, first I have ok, some difference here is z - y, z - y something to do with the inputs and 

something which has some t f here, right. So, we will just analyze what are each of these 

terms ok. So, let me say that the first term in general could correspond to some kind of a 

of a tracking error, right. I mean if I just want to my state to go to 0, then it will just be that 

I am just looking at x - 0, so this is my reference this is my actual and so on. So, this is 

something to do with the error ok, error some term Q here I will tell you what this means 



this is the input again some matrix R here ok. So, we will come to this term a little later, 

ok. 

So, first suppose is the first one, the first is the error weighted matrix Q first is that well 

usually who you would want or we would want the error to be small. So, this usually has 

the form 𝑒், ok. So, lots of people use also this 1 by 2 just because when you differentiate 

the 2 will go away, but ok. Now without loss of generality you can also remove the 1 by 

2. 

So, I am looking at a signal which is of this form 𝑒்(𝑡)Qe(t), ok. Now typically so, this 

could also have some kind of interpretation in terms of the energy of the signal, ok. Now; 

well, this should always be non negative ok. So, this is a little approximation when say Q 

is say identity for example, this is. So, this quantity is always non negative and therefore, 

the nature of Q and sometimes it could also depend on t; is such that it is positive definite, 

ok. 

So, what do you have to pay attention to we may have to pay attention to large errors and 

they are not they are not usually permissible. Now, second thing I have is the control 

weighted matrix. So, what; in the first case what we know is that the error weighted matrix 

Q should be positive for definite, right. So, we just get some kind of a quantification of. 

the error, right and then that the error should be small and so on ok.  

So, the control weighted matrix it also has a form like this. So, you have half 𝑢்R u. So, 

what this means is that well if R is typically greater than 0 that one has to incur a higher 

cost for a larger control effort. That is kind of natural that if I want to put in more control 

effort I would incur a natural larger cost. Say if I want to have a curve which goes as at 

say 250 kilometers an hour; I would possibly not get that for a price of a Maruti Alto for 

example, right ok. So, and then the control signal right, the control signal as I said earlier 

is usually unconstrained. 

Even though while in our basic analysis we kind of assume that there is a let us see well if 

there is an unconstrained control can actually go from point a to point b, ok. Now what is 

the conclusion from this three points? The conclusion is that we would like to keep the 

error small; keep the error small and not pay a lot for control, right. 



So, my error should be small, but it should also not incur a large cost on me, ok. And then 

last we have what is called as the asset terminal cost. So, that is taken care of by this term 

ok. So, the terminal cost is to ensure that the error at the final time is as small as possible, 

say I want to go from point a to point b in some 𝑡௙. 

So, what; where am I at how far am I from the desired performance objectives at the final 

time is what this qualifies, ok? And as usual again this matrix 𝑄௙  should be positive 

definite, ok. So, in general what I would like to then say that I want to keep errors small 

not pay large cost. And therefore; and at the same time also have the error at the final time 

is as small as possible. Now can I design a controller, which achieves these objectives? 

Ok.  

So, again my controller looks like a controller we will just look at you look like this, very 

similar to what we had previously now what is a good key, ok. Now, is there a standard 

solution to this? So, what will be important here is how much importance I give to each of 

those quantities? For example, I may want to reach from point a to point b in a shorter 

time, which means I am willing to pay longer, right. So, I am willing to pay a larger amount 

of money, ok. 

And on the other hand if I have constraints on the money of going from point a to point b 

I am to go by a slow moving transport or a public transport for example, right. So, I fixed 

those weights know things why are these terms and then decide how am I going to achieve 

my control objective given those certain constraints. A solution may always not exist for 

example, going from Chennai to Delhi in 2 hours with my little car, it made it will not 

access, right. So, these are possibilities that we could we could encounter, ok. 
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Now, most books will talk of a little simplify it cause function in this form, right. So, we 

will start just with something which looks like this right, where J is 𝑥்Q x + 𝑢் R u remains 

the same as before. So, first is minimize a time that is also and also at the same time 

minimize the energy, right. 

So, as usual 𝑥்Q x model the energy of the plant and 𝑢்Ru; what is the control input and 

so on right, a little general thing that we at most books would. So, we are here talking more 

like say a problem where I am looking at a some kind of a state regulation problem where 

I just want the states to go to 0, ok. 

And then as similarly I will have some kind of a terminal cost, the cost is the cost of not 

reaching the desired position at the terminal state and as usual I want this to be as close to 

0 or x(T) to be equal to x desired at least as closely as possible, ok. 

So, we start with bit of a assumption that ok. Sometimes the terminal cost is assumed to 

be 0. So, what we start now first is, is a finite horizon problem. Where I know that I want 

to reach from a certain initial time and a certain final time is fixed right, ok. 
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So, what is the problem here? The problem is that given a linear system 𝑥̇=Ax + Bu with 

some initial state. Determine the control signal u that minimizes this particular cost 

function, ok. Now, minimize this cost function. 

So, what is the observation here? First is look I am looking at 0 to T finite horizon problem, 

right. And then I have something which models the state cost something which models the 

control cost and something which more money is bit models the terminal cost, right. 
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And, what we will see and that, ok; there are multiple ways to solve this problem. So, I 

will present you two or three ways which you will regularly encounter in some textbooks. 

There might be in more ways to do that there are lots of detail analysis, but we will try to 

get for our self for a good understanding of what is happening here, right. Two-three 

different methods and again you can follow whichever method you want and all methods 

give me the same solution right, ok. So, first is let us start for a case which may possibly 

not have a terminal cost. 

(Refer Slide Time: 22:29) 

 

So, which means I have the cost function which is also sometimes called as the value 

function written in this following way should be, ok. So, first is let me call this my cost 

function or the value function, right. And let us say x(t) is z for all t between 0 and T, ok. 

And well, you can see that from here something which is obvious is that the value function 

or the cost function is has some kind of a quadratic form. 

Its 𝑧்P(t) z and this is also symmetric like this it is a straightforward computation from 

here to here. So the value function here computes the cost incurred due to the use of the 

control signal from t to T, with some initial condition given x(t) = z, right. 
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so we start with x(t) = z, let u t let me say that it is let u(t) be a constant function over the 

time interval t to t + h with some very small time h right. And within this interval I can 

write x(t + h) in the following little Taylor series expansion write x(t + h) is x(t + h) 𝑥̇, ok. 

So, this is kind of obvious and what is the state did not attend the state is said and the input 

is w ok. 

What is the cost incurred during that time well the cost incurred during this period is the 

following set x from ∫ (𝑥(𝜏)்𝑄𝑥(𝜏) + 𝑢(𝜏)்𝑄𝑢(𝜏))𝑑𝜏
௧ା௛

௧
 which can be loosely 

approximated to this, ok. Again this is just a little time interval from t to t+h. This should 

again be like easy to verify. 
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Now ok; so, let us without reading the steps let us actually try to derive all these things 

and I will come back to the explanations again, ok. 
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Now first so, simplify the value function 𝑉௧(z). So, what was 𝑉௧(z)? ∫ (𝑥(𝜏)்𝑄𝑥(𝜏) +
்

௧

𝑢(𝜏)்𝑄𝑢(𝜏))𝑑𝜏, ok. The second right has two parts right one is an integral starting from t 

to t + h, the time the same things inside 𝑥(𝜏)்𝑄𝑥(𝜏), 𝑢(𝜏)்𝑅𝑢(𝜏) plus the term integrated 

from now t + h to T with the same thing in the bracket. 



So, what will this mean? This will actually be the value function V computed at t + h with 

x(t+h). So, this is just I am just using the definition of the value function, ok. Now, from 

this approximation here I can rewrite this as (𝑧்𝑄𝑧 + 𝑤்𝑄𝑤)h + 𝑉௧ା௛. 

Now, again go back to this expression right, x(t+h) is just a simple expansion who tell me 

that this looks something like this. So, (𝑧 + (𝐴𝑧 + 𝐵𝑤)ℎ)்  ok. Now let us see what this 

thing looks like 𝑉௧ା௛(z +(𝐴𝑧 + 𝐵𝑤)ℎ) is ok. Now what is V like, V is this 𝑉௧ is a quadratic 

in P and z. 

So, this will be (𝑧 + (𝐴𝑧 + 𝐵𝑤)ℎ)் P(t+h), right. So, that is where we start from right 

times 𝑧 + (𝐴𝑧 + 𝐵𝑤)ℎ)். I am not doing anything special here I am just writing 𝑉௧ right 

this, for this particular V with this particular h where this particular x where the x is 

approximated as this function right, ok. 

So, I will ok, so what is the next step. So, this will remain as it is P, I can again further 

approximate as P(t+h) times 𝑃̇(𝑡), ok. You know this guy coming and sitting here again, 

ok. Now this can be a further approximated as 𝑧் P z plus I will have a bunch of terms 

here A sorry, (𝐴𝑧 + 𝐵𝑤)்Pz + 𝑧்P(t)(Az + B w) + I 𝑧்𝑃̇ z  , right. 

So, I am only taking the terms which have a common factor of h. And then you will have 

something of h square which I will ignore because h is like really small right. So, I can 

ignore these terms so ok. So, where are we now? So, we started with computing sampling 

the value function I said I will first integrate from t to t h. And then I have the remaining 

term over here which is approximated like this right, ok.  

So, where do I go from here? So, this 𝑉௧(𝑧) can now be written in the following way. So, 

the approximation of it, so, I am just taking this term plus what I derived over here which 

is equivalent to this. So, I will have a bunch of things here 𝑧்P z plus all the terms with a 

common factor of h, ok. 

So, there is so, what we will add here is that this term and this term also have a common 

factor of h. So, they will just go here right. So, this term will be as it is a transpose P z. So, 

whatever is in this big bracket here we will have two additional terms this one and this one 

ok. So, then this is how it will look like, ok. 
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Now, what we want to be so, we want to minimize this cost function over what we want 

to find the minimum u, ok. So, what is the u here; so, I am looking at minimizing it over 

w. So, I get the optimal w small w just a function in one variable which I want to minimize 

I just take the derivative equal to 0 and this is what I get at. 

The optimal control 𝑤் = -𝑅ିଵ𝐵்P(t) z. Now, what do I have now? So, once I have w, I 

can now get a state feedback control which is of this form ok, u is. So, in general right if I 

look at. So, for a small w it looked this way. So, what will the general u look like this is u 

this is -K(t) x, right ok. 

Now, what do I know from here? I know what is R because I fix the matrices here or I fix 

the weights of how much say constraints I have on the input and how much constrains I 

have possibly on the state right. So, I know this  B is given to me I know x, right. So, what 

is unknown here is this term P ok. Now to find this optimal input which depends on P, via 

this relation I still need to solve for this P(t), ok. Now how does this look like well this can 

be solved by substituting for this. So, the u which was Kx(t) or w which was this Kz I can 

put it back here ok. So, what does that that give me right, ok. 
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I will just skip the computations, but what will that give me that the equation now 

simplifies to something like this, ok. Now this is usually called as the Riccati differential 

equation for the LQR problem, ok. So, where did we start off with? 
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We started off by a system dynamics 𝑥̇= A x + B u with some initial condition. We wanted 

to determine a control input that minimizes a certain cost, ok. Now we know that well the 

solution in the absence of this guy we know that the solution 𝑉௧ is given by this matrix 

differential equation, ok. 



Now this implies that the solution to the original problem can be found by solving for this 

equation backwards in time for P(0) with final condition P(T) = 𝑄௙ right. So, that is what 

is so now, I can look at what my terminal cost looks like, right. So, I can I know this P(T) 

is 𝑄௙ and I can actually solve for it now backwards in time. So, once I know this it becomes 

a little easy for me. 

So, I can just substitute for that P over here, ok. Now this P is again this u of t which is 

time varying will be K(t) x(t) and so on right. So, now, what I know is, that to be get this 

value of K which is depending on time. I need to solve for this unknown P via this Riccati 

or this via this matrix differential equation, right. 

So, that is a little basic building block to what we are up to here right. How do I solve the 

optimization problem or the optimal control problem? Well, that turns out to be a coming 

from a solution of the matrix differential equation. Is something analogous to the matrix 

the Lyapunov matrix equation that we had 𝐴்P + P A = -Q; well, does a solution always 

exist or not this depends on whether the system over there was stable or not. 

It also depend here over the system is controllable or can I actually know the solution is 

not does not always exist. And we possibly we will see problems also where the solution 

may not exist ok. The next thing which I mean most books will talk about is the infinite 

horizon problem. In a way that ok, what will happen when I am looking at the infinite 

horizon problem is that well the final time is infinity, right. 
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So, the, this is the case of infinite final time and the 𝑡௙ is infinity, ok. And then the final 

cost term may not ok, this may not be or may not have any interpretation; may not have 

any realistic sense ok. Since we are interested you know usually solutions over finite time 

and just. Therefore, 𝑄௙ in this case must be equal to 0. 

So, we are solving now for the same problem with no final cost and the cost J going from 

0 to infinity, ok. So, in this case the value function or the cost function is simply quadratic 

it will now be independent of time because well there is nothing really associated here, ok. 

Now, the problem now turns out to be kind of pretty simple now. So, I am just looking 

now at a solution so, instead of a matrix differential equation. 
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I just have some kind of a linear like looking equation or well maybe not, right. So, I am 

just having maybe a non-linear equation here there is no differential term here. So, the 

solution that will give me the optimal control law is -𝑅ିଵ𝐵்P x, where P is now solution 

of this equation number 12 ok. 

And what is important here to look at is that the state feedback controller that the gain K 

here is constant throughout. Whereas, in the previous case the gain K over here was 

varying with time because of the dependence of P on time right so, that is a little distinction 

between the infinite horizon problem and ok. 



So, much of the textbooks will first start with the infinite horizon problem so, I just do a 

little reverse right. So, what I did so far was, what is also called as the dynamic 

programming approach. So, if you look at ogata he will have a different method which I 

will shortly tell you is in the following way. 
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So, consider a linear system 𝑥 ̇ = Ax + B u with some input that we need to design. And in 

such a way that the matrix K minimizes this cost function or the performance index, ok. 

Now, what do I know let us write down the steps here. 
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So, what is given to me is again 𝑥 ̇ = Ax + B u. And I want to minimize or find a control 

law u = -k x, which minimizes the cost function is defined from ∫ (𝑥்𝑄𝑥 + 𝑢்𝑅𝑢)𝑑𝑡
ஶ

଴
. 

So, this is like the linear quadratic regulator and that is where the name comes from 

possibly, ok. 

So, this is the control law right and then what I have, what do? I have as a closed loop 

system looks something like this 𝑥 ̇  = (A - B K)x right we have seen this already a lot. 

Now, it will be safe for us to assume that this is stable as there is no point designing this 

controller. So, let us assume that A - B K is stability matrix, ok. 

And therefore, the cost function now J looks like this 𝑥்𝑄𝑥; so, x this also means transpose 

this also means transpose. So, this is 𝑥்𝑄𝑥 plus u is K x. So, I will have 𝑥்𝐾்R Kx d t ok. 

So, this is of the form∫ 𝑥்(𝑄 + 𝐾்𝑅𝐾)𝑥𝑑𝑡
ஶ

଴
 ok. 

Now, let us play some tricks here right. So, let us set this number 𝑥்(𝑄 + 𝐾்𝑅𝐾 )x is -

ௗ

ௗ௧
(𝑥்𝑃𝑥) ok. Now ok, so what do we know right? So, this 𝑥்(Q + 𝐾்RK) x is this is 

differentiate this and get the following. So, this is -𝑥்̇P x - 𝑥்P𝑥̇ here. 

And this will look like this -𝑥்(𝐴 − 𝐵𝐾)்𝑃 + P(A - B K)x here right ok. So, this is 

something what we had also for the Lyapunov equation right. Now what do I know that A 

- B K is stable right. And therefore, given a matrix Q + 𝐾்R K now this is because Q and 

R grater than 0 this is also greater than 0. 

For this Q well, I should be able to find a P such that (𝐴 − 𝐵𝐾)்P + P(A - B K). So, some 

equation some Lyapunov equation like this holds, ok. Now, what is to be found out here 

while minimizing the cost function is does there exist a P which satisfies the solution given 

a certain optimal K, ok. 

Now, how to evaluate what is the P or what is the appropriate input? So, J here is now 0 

to infinity now from here right I just do a substitution. So, J was 𝑥்(Q + 𝐾்R K)x d t was 

𝑥்P x 0 to infinity this is x at infinity it will here it will be minus sign. 

Here because of the minus here -𝑥்(∞)P x(∞)+ x(0) P x(0). Now, since A-B K is stable 

this will go to 0 and what I am left is  J is sorry x𝑥(0)்P x(0) ok. So, this means that I can 



find the performance index J; in terms of the initial condition x(0) which is given to me 

and P ok. Now the next step to the solution is the following. 
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So, because R > 0 one can always write R as 𝑇்T, ok. Now, again T is a non singular 

matrix and so on and therefore, I can write down my Lyapunov kind of equation which is 

like this right (𝐴 − 𝐵𝐾)்P + P(A - B K) + Q + 𝐾்𝑇்T K = 0 where did this come from? 

So, there is a we recently opened here. So, for R I just substitute R = 𝑇்T ok. 
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So, next what do I do is I just write down from here to here right I am just expanding terms. 

And minimization of this terms right again with respect to K right. So, this is what I am 

finding what is what is a good K this requires that this particular quantity be the minimum, 

ok. 

Since the last expression or so, once we have so, the minimization of J with respect to K 

which means we may have to minimize this term and this occurs only when look at this 

end. So, I have 𝑥் I have something here with the transpose something here and x. So, this 

is possible if and only if this term here goes to 0, yet because this expression in general 

will be non negative; because I have something like something with a transpose. And this 

will always be non negative. So, the minimum value here is only 0 and this 0 occurs when 

the term in the bracket becomes 0 which essentially means that T K is something like this, 

ok. 
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Now, I can back substitute and get a good looking value of K which is 𝑅ିଵ𝐵்P, ok. Let 

us keep the same and 𝑅ିଵ𝐵்P is what we also had here this was my K here at 𝑅ିଵ𝐵்P, 

right. So, therefore, now I have the optimal control law which is of this form. 

And so, again the unknown here is this matrix P again how do I find this P well I have this 

expression for K in addition I also have an expression which looks something like this 

(𝐴 − 𝐵𝐾)்P + P(A - B K). This was equal to -Q + 𝐾்R K. 



Now substitute for this K in this equation right I am just using this equation again or this 

equation I substitute for a k=K and what we end up is that this reduces to solving this 

equation in P, right. So, this is called the reduced matrix Riccati equation or also the 

algebraic Riccati equation, ok. So, this is the second method for solving. 
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So, in the next class what we will also do in the or in the next lecture. To look at another 

method of solving the same problem same optimal control problem. And I will give you a 

brief introduction of this solvability of this Riccati equations under what conditions do I 

get the solution. Are there simplified methods to check whether or not there will exist a 

solution? How much is controllability important? How much is stabilizability important 

and so on, right? So, that will come up in the in the next lecture. 

Thanks for listening. 


