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Hi everyone. So, welcome to this lecture number 2 of week 10 on the course on Linear 

Systems Theory. So, just to have a little recap of what happen or in the last lecture. 
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So, we were looking at simultaneous controller and observer design. 
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And we first derived what were the necessary and sufficient conditions for state 

observation. And then we proceeded on to the design procedure of how to actually 

construct the state observer. And it turned out that we were looking at situations; where 

we had to design an L such that this A -L C is a stability matrix. 
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Where ok, then you have the state space model for the closed loop system taking this 

particular form. And here you have the controller design part here you have the observer 

design part. 
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And what you also what we also saw at the end was that the design of the controller and 

observer. Do not actually interfere with each other and this is how the how the closed loop 

in terms of a of a transfer function looks like right. 
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So, in summary if I go to just draw ah block diagram representation of it, it would just look 

looks something like this right. So, here I have my state �̇� = Ax + B u, y = C x I want u 

of the form -k x right. So, this is the u I do not have x for measurement. So, I will have the 

estimated state as u = -k𝑥ො hat and this 𝑥ො comes as a result of the of the of the observer 

design right. 

So, where the observer part looked something like this yeah. So, this plus this gave us the 

observer design. So, like 𝑥ො̇ = A𝑥ො + Bu and if you just plug in all this you get a block 

diagram representation, which looks something like this right ok. So, we today we begin 

by looking at some small very small design problems; I also use the help of MATLAB a 

little later. But let us first do a very very basic design procedure by hand ok. Let us say I 

we change the colour right ok. 
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So, let us start with the system �̇� = Ax + Bu, y = Cx; where A = ቂ
0 1

20.6 0
ቃ B = ቂ

0
1

ቃ, 

and C = [1 0] ok. This example I just directly take from ogatta. So, just in case if there is 

some confusion you can always go back to ogatta and refer ok. So, what are the design 

specifications ok? So, there is a design specifications are such that we want the closed loop 

poles, to be at -1.8 ±j 2.4 ok. 

So, assuming that x is available for measurement I will use the standard pole placement 

techniques to find a value of k such that A - B k has its eigenvalues at minus 1.8 ± j 2.4 

ok. I will not go into the details of that steps ah, but that it turns out that the k here would 

be 29.6 and then 3.6 ok. So, you can just use any of those formulas that we had last time 

starting from just matching. 

The two characteristic equations or a the ackermans formula or to the controllable 

canonical form and so on ok. So, that is that is not important right so, but what happens 

here is that x is not directly available for measurement. So, an additional step we need to 

do is that often observer design ok. So, in most in most problems we will only be given 

what is the desired plan performance. 

So, this could be in terms of could be in terms of a certain overshoot or settling time and 

so on. And what we remember from basic control course is that this will translate to some 



kind of locations of the poles of the closed loop system. Or what we called what there as 

the as the dominant pole analysis. So how do we go about doing the observer design ok? 

Let us say that there is a specification such that the observer poles are desired to be at -8 

and -8 ok. Like we design a observer for second order here ok; because we have to observe 

that two states ok. So, I can similarly use the techniques I had. So, what the observer design 

problem translates to is, to find the locations or assign -8; -8 in this example to a to this 

matrix A - L C right. So, this is or over here.  

So, A - B k we had poles at the minus 1.8 ± j 2.4 and A - L C should have poles at say -8 

ok. So, I just do the exact same procedure I can use bunch of methods as stated earlier. To 

compute what is the k or L in the in this case or what is L such that eigen values of A -LC 

are at exactly -8 and -8. 

I can again compare the characteristic equations of what is the desired and what are the 

unknowns in terms of L. So, it turns out that L will be something like this. So, this is a 

little design procedure to show to tell how I place the controller poles and how I place the 

observer poles. And what we also know is that these two do not interfere with each other 

right. 

So, even if I place this at -16, -16 nothing here would change and vice versa. So now, just 

to plot how the closed loop response looks like, I can just compute the transfer function 

right; so which we had derived over here last time right. And I can do a bunch of things to 

check this step response and so on ok. So, what is important here is to is a location of 

observer poles right. 

So, one question that we will answer shortly is how to place how were actually where to 

place the observer poles ok? And if you look at look at the closed lope system ah, what we 

want is that the state 𝑥ො is the estimated state ah. So, there is there is two process right. So, 

one is u should be computed as k𝑥ො and this 𝑥ො is computed as result of an observer design. 

So, first so the observer should give its 𝑥ො the estimated state to the controller and so on 

right. So, first is which dynamics should be should be faster right. So, we will first just 

check numerically right just try to play around a bit with the poles of the observer and 

check how do I appropriately choose the poles of the of the observer ok. 
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So, I will do a little example here ok. So, I just directly jump into the system here which 

has A matrix, now which looks like this certain B and the certain I will I will post this code 

online so, that you could check it for yourself. So, what is desired is that, the closed lope 

poles are at -2 and 1 + j and 1 - j right. 

So, two complex conjugate poles and one pole on the on the real access. And let me say 

well I can I want my desired observer poles to be at these three locations -8,-8, -8 so, these 

many things ok. 
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Now, ok, so, MATLAB gives you bunch of tools to do the pole placements. So, I will just 

use the command for ackerman’s formula. So, I have A; which is my system matrix which 

is defined by this thing over here. So, I have B which is the input matrix I know what are 

the desired poles? So, once you just give this three inputs. So, this command here it will it 

will plot it will show you what are the what is the controller gain similarly for the observer 

gain. 

So, I have A; I plug it in here I have C and then I have also the location of the observer 

poles -8, -8, -8. And I do I and I do the designs simultaneously and at the end I just plot 

how my closed lope step response for example, looks like. So, let us just run this code ok. 
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So, what I see here is well I have nice looking response even though the overshoot is say 

about 50 percent in this case, settling time about 5 seconds and so on ok. 
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So, let me do something else. So, let me say I place the poles at -2, -2 and -2 and I run the 

code again so, ok. So, let us compare this two ok.  
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So, this was; the figure 1 was where I had the observer poles at -8, -8, -8. So, this had an 

overshoot about 50% this is response looks horrible right. So, you have an overshoot which 

exceeds 100%, the settling time is much larger than what it was here. And you if you see 

if you that you place it at -1, -1, it will get much much worse. 
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Let us do another trial here let us say - 16, -16 and -16 ok. And I run the code this looks. 

So, let us compare figure 1 and 3. 
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Now, ok. So, well here I have a reasonably good settling time of about say 5 seconds or 

even less. My overshoot has drastically decreased ok. And of course, these are this is nice 

things that that I have a lesser overshoot and a faster settling time is always desired in any 

control design ok. So, one observation from here is the following right. 



So, whenever the poles so, when whenever so, in that example we had three poles. But say 

whenever the poles were close to the open loop poles then we had like a much larger 

overshoot ok. So, let me just draw a little diagram here right let us say well I just denote 

ok. These are my control pole poles with the blue line and say these are my observer poles 

let us say they are somewhere here right or as both of them were real. So, let us say that 

they are somewhere here ok. 

In this case we will have a larger overshoot ok. And on the other hand when the poles were 

here this is do not change right; because this come from the requirements of or this come 

from the design specifications. So, in this case you have a lesser overshoot and also ah 

smaller settling time ok.  

So, well this is also kind of kind of obvious right. That your observer dynamics should 

converge faster than the controller dynamics or then the then the controller dynamics. So, 

here when I say controller dynamics I essentially say the dynamics of A - B k ok. So, this 

kind of because what the controller or what the observer based controller does is it just 

first computes the estimate state and then it has to feed it back to the plant. 

And therefore, we would expect the observer to have a faster response than the controller 

itself right. And then therefore, so one thing is to choose the observers poles to be much 

further away from the desired poles of the closed loop plant ok. So, that is that is about 

well little example illustration of observer design we could do a bunch of example. 

So, you can actually construct your own example. So, lots of people over the forum post 

messages that please do more examples I think we can construct examples. So, there are 

lots of examples which you which can be found online, you can just work those out for 

yourself and they are they are pretty forward right you know. So, just you can just check 

for different values and just check for performance of a controller and the observer 

simultaneously.  
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In the observer design so far what we saw was that, we reconstructed all the state variables 

ok. So, in some cases some state variables might be available for direct or even accurate 

measurement. And therefore, one can avoid estimating those states right. So, whatever is 

available for measurement, we can just directly measure those and feedback and whatever 

are not available for measurement we can possibly construct an observer. 

So, in general your state is an n dimensional vector and output is say some p; which is 

typically less than n dimensional vector. So and when I say y = C x and say x is in 𝑅  y 

is in 𝑅. Then these p outputs are usually linear combination of state variables and this 

need not be computed. So, what we need to estimate is only the remaining n - p state 

variables ok. So, when we need to estimate only the remaining n - p variables this is called 

a minimum or a reduced order observer. 
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So, let us see how this works ok. So, let us for simplicity say that p variables are of the 

form or the p outputs or of the form 𝑦ଵ = 𝑥ଵ till 𝑦 = 𝑥 ok. And the remaining once 

are the once which I which I need to estimate I do not know what is how does 𝑥ାଵ one 

look like till 𝑥 right. But I know how 𝑥ଵ till 𝑥 looks like right I just making a very 

nice assumption here that this holds. 

In general what we said that there might be linear combinations of state variables. But here 

I just make a much more stronger assumption just for ease of computation ok. So, now I 

can I can split my variables or my state equations into the following form. So, I have 𝑥ଵ̇ 

and 𝑥ଶ̇ in this way. So, these are the first p variables these are n - p and I split my a 

matrices the B matrices accordingly. 

And my output now looks something like this I just call this z has the p dimensional 

identity matrix times 𝑥ଵ and 0 and just rewriting y = C x in a in a different way here ok. 

Now, these are all measured right. Because z is simply 𝑥ଵ yes both are of dimension p ok. 

Now, let us look at how the system whose states need to be measured look like. So, these 

are the states set which need to be measured. 

So, have 𝑥ଶ̇ = 𝐴ଶଶ𝑥ଶ+ 𝐴ଶଵ𝑥ଵ + 𝐵ଶ u and ok. Now, what is there this is I know 𝑥ଵ 

right; because I can directly measure this I know u of course, I know 𝐴ଶଵ and I know 𝐵ଶ. 



So, that I just call so, this a system 𝑥ଶ̇ = 𝐴ଶଶ𝑥ଶ,+ 𝐵ത𝑢ത where this is 𝐵ത  and this is there 

the 𝑢ത right. So, this is a system whose states need to be need to be estimated right. 
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Now similarly, I will define a new output in the following form that 𝑦ത is from the first 

equation how this first equation look like? First equation is 𝑥ଵ̇ = 𝐴ଵଵ𝑥ଵ + 𝐴ଵଶ𝑥ଶ +𝐵ଵu. 

So, from this I can I can write something like this. So, where the new output 𝑦ത is a new 

C matrix which is 𝐴ଵଶ𝑥ଶ. So, these are the states that need to be to be measured ok. 

And this 𝐴ଵଶ𝑥ଶ from this expression takes this form ok. Now we construct for a for an 

estimator for this system, which whose states are 𝑥ଶ and output is this 𝑦ത ok. And I used 

the standard formula which I used over here to construct right. How did I construct the 

state observer here is just with this equation ok. I will use exactly the same thing here to 

construct a state to construct an observer for those un estimated states in the following way 

right ok. 

I will just skip those computations they are like fairly easy to check the error e takes the 

following form in terms of 𝐴ଶଶ and 𝐴ଵଶ that is exactly what I wanted to estimate right. 

So, so given over here in this system right, this 𝑥ଶ̇ = 𝐴ଶଶ𝑥ଶ +  𝐵ത𝑢ത is the system that 

needs to needed to be estimated ok.  

Now, what do I know is that when the error should converge to 0. This 𝐴ଶଶ  - 𝐿ത𝐴ଵଶ 

should be a stability matrix; with some eigen values or with eigen values at the desired 



locations right. So, if the stability matrix then I know that the error converges to 0. So, 

when can I do this? When can I place poles of 𝐴ଶଶ - 𝐿ത𝐴ଵଶ at desired locations? This I 

can do if and only if the pair 𝐴ଶଶ, 𝐴ଵଶ is observable ok. 
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So, very similar to what were the conditions here right what was the necessary conditions 

for A, A - L C to be here. Stability matrix was that the this pair A and C must be detectable. 

Or observable in our case right or when the pair A, C is observable then I can place all the 

eigen values of A - L C at the this desired locations right. 

Similarly if I were to place the poles of 𝐴ଶଶ - 𝐿ത𝐴ଵଶ this is observable ok. Now who 

guarantees this? Well, we know that the pair A, C is observable and this guarantees that 

this pair 𝐴ଶଶ and 𝐴ଵଶ is observable ok. You may just want to write down the proof of it 

as quickly for yourself right I mean I will skip that these are. 

So, we have done lot of lots of proofs and how to compute controllability or observability 

via the duality the eigenvector test and so on. So, you can just make use of one of those 

tests to show that the pair A, C being controllable is enough for me to guarantee that the 

pair 𝐴ଶଶ, 𝐴ଵଶ is observable ok. So, A, C being observable is equivalent to saying 𝐴ଶଶ to 

𝐴ଵଶ is also observable ok. So, and therefore, I can assign eigen values to 𝐴ଶଶ - 𝐿ത𝐴ଵଶ 

right ok. 
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So, one drawback here is that I was estimating  𝑥ଶ̇  and this  𝑥ଶ̇  had an expression 𝑦ത and 

𝑦ത contained derivative of 𝑥ଵ right. So, 𝑥ଵ was. So, what was the 𝑥ଵ? 𝑥ଵ came from 

here right. So, so z was equal to 𝑥ଵ and it. So, the  𝑥ଶ̇  needed computation of x 1 dot ok. 

Now, this is un desirable especially if 𝑥ଵ is noisy. 

So, if even though I can measure even though the states are available for measurement, 

but there could be lots of sensor noise for example right. And derivative of noise is not a 

desirable thing that differentiation of that signal actually amplifies the noise ok. So, how 

do we get rid of that ok? To avoid that we eliminate  𝑥ଵ̇ from the design procedure. 

And if I knew variable w as 𝑥ଶෞ - 𝐿തz ok. So, this kind of works out pretty neat that I can 

write down my expressions or in terms of not in terms of  𝑥ଶ̇ , but in terms of ẇ ok. So, I 

can so, quickly compute what is ẇ = 𝑥ଶෞ̇ - 𝐿തż ok. Now, I know what is  𝑥ଶ̇  from here, 

I know what is ż from here and I can simplify this equation to look something like this 

ok. 

Again this is just not even a laborious process, but just couple of steps you can you can 

write this down and you can arrive at this particular expression ok. So, w is an estimate 

of𝑥ଶෞ - 𝐿തz. And therefore, so, I know w. So, what is 𝑥ଶ? Well, 𝑥ଶෞ is now simply w +𝐿തz. 

So, this is what I estimated now I know this right. 



So, this is known, this no this comes from the computation of the of the observer poles this 

also know this comes some from the measurements. So, this z are available directly for 

measurement ok. So, that is kind of kind of pretty need; because we do not have to now 

go through the procedure of computing what is ẋ ok. 
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So, again coming back to the block diagram of it; so, again I have ẋ = Ax + Bu ok. So, 

let me write down the few steps here. So, that it is easy for us to understand how the how 

the block diagram actually looks like ok. So, again so, u comes as a result of -k𝑥ො ok. So, 

what is 𝑥ො? So, first is I estimate w and then once I estimate w, 𝑥ଶෞ is constructed as w+𝐿തz. 

So, here right, so 𝑥ො  comes as a result of this signals. So, my y was initially of the form 

some p dimensional identity and 𝑥ଵ  and 𝑥ଶ  ok. Now, the estimated state is has two 

components this is already measured directly and I have 𝑥ଶෞ ok. What was 𝑥ଵ? 𝑥ଵ was 

simply y and this 𝑥ଶෞ was to be estimated ok.  

o, this I can write equivalently as 
0

𝐼ି
൨[𝑥ଶෞ  - 𝐿തy] this 𝐿ത I know how to compute right 

from the from the observer design plus I have a identity here 𝐿ത and a y ok. So, you just 

rewrite this and you will realize get this back ok. So, this 𝑥ො now can be written as so, I 

will call this as some 𝐶መ times. So, what was the signal right y was it was also equal to z 

from this expression right. 



So, this was my original y = C x ,I call that as z. So, this turns out to be 𝐶መ times w plus 

let me call this some 𝐷y. So, that is exactly what is happening here 𝐶መw + 𝐷 times is y 

gives me x hat and this via minus k goes back to my to my controller and like I equivalently 

derive the transfer function and so on. And similarly we will also verify the notation for 

the expression for w right. So, ẇ = 𝐴ଶଶ - 𝐴ଵଶw and so on ok. 

So, you can just right check for this also. And this 𝐵  and 𝐹 are just these two terms here. 

So, the term associated with y I call this entire thing as 𝐵  and this as 𝐹. And you can 

have the nice looking block diagram realization like this ok. 

So, this is just as an nice pictorial interpretation of what how designing the reduce order 

observer ok. So, what was the assumption here was that C was a kind of had a beautiful 

expression like this. C was the p transfer identity and 0 ok; what if C is not in this form 

then we know bunch of tricks that. We know how to transform C into a form which looks 

like that. 
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So, what if the output matrix is not of the form [𝐼 0] well, we know what is the rank of 

C right rank of C is p. And therefore, we use a standard trick of coordinate transformation 

that let x = P�̅� be a transformation with P given by C. And then 𝐶ሚ and then 𝐶ሚ is chosen 

such that P is full rank that as in the same way as we did for the observer decomposition 

or the even in the dual way the controllable decomposition. 



Now given the system I can write it in to a system in a transformed form where in the new 

coordinates �̅� my 𝐶̅ takes the this form [𝐼 0] ok. Now, I do the design here because I 

know nice looking formulas here. And I just use the reverse coordinate transformation that 

x = P�̅� to get see how the observer looks like in the original coordinates right. 

Like what we do even for the for the controller design that you just get it into the 

controllable canonical form you design the k. And then use the transformation P to get 

back to the to the original system ok. 
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Now can I just do a little example ok? So, again I start with �̇� = Ax + B u with A = 

ቂ
0 −2
1 −2

ቃ B is ቂ
0
1

ቃ; C is [0 1] which means I can actually measured 𝑥ଶ directly and I need 

to find what is the estimate of 𝑥ଵෞ  ok. So, what is the reduce order observer here. So, we 

need to design an observer of order 1 that because here n = 2, P = 1 ok. 

Now, how do we do this? First is C in the form [𝐼 0 ]well the answer is no, but I therefore, 

I would use a transformation P C C bar that was the notation we had use here right C 𝐶ሚ 

such that ok. What is C? C is [0 1] and 𝐶ሚ is [1 0] such that P has now as a as full right ok. 

Now, I use the standard transformation �̅� sorry �̅� = Px and design a an reduce order 

observer for the system in �̅�. 



So in this so, my new A will be of the form ok, here I use x = P�̅� simplicity; x = P�̅�. So, 

if I use the transformation it will just simply change to you can also use �̅� = P x right 

nothing really changes just that instead of P A𝑃ିଵ it will be 𝑃ିଵ A P. So, we just the 

transformation I will have my new a matrix �̅�  as ቂ
−2 1
−2 0

ቃ ; 𝐵ത  is ቂ
1
0

ቃ  and not 

surprisingly 𝐶̅ will now have the form which I want write 1 and 0 like this ok. 

Now once I have this I just use the expression to design the observer which is this one ok. 

I just substitute all the values and what I get is �̇� as - 𝐿തw plus etc, will be plus you just 

substituting value right. So, this is now we have an observer of order 1 ok. I am just rushing 

through this steps but you could just substitute each of these values. And check should be 

pretty straightforward right ok. 

Now, let us say I just arbitrarily choose this to be -10 and therefore, I have �̇� = 10w - 122 

y +10 u and w plus w (Refer Time: 35:05) also a w , + 𝐿ത z, now what is this? This is 

simply w - 10 y ok, this is an estimate for 𝑥ଶෞ. And therefore, y, w - 10 y is an estimate of 

�̅� ok. So, this all I am in the new coordinate right. 

This should be  𝑥ଶതതത  hat and therefore, the original estimate x will simply be 

𝑃ିଵ ቂ
𝑦

𝑤 − 10𝑦ቃthis will simply turn out to be 
𝑤 − 10𝑦

𝑦
൨  ok. So, and nothing much 

happening here the first step I do is to convert C the system into a form where the C matrix 

looks like this. The next step would be to follow these steps here ah. 

And then what happens here is that this w + L z is an estimate of 𝑥ଶതതത ; because w is an 

estimate of this thing ok. So that is pretty straightforward right and then I can go back to 

the original transformation to see what how it looks like in the original coordinates ok. So, 

just as we saw I will re run the previous example with reduce order observer. 
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So, I have a third order system again A = 
0 1 0
0 0 1
0 2 −1

൩ C is [1 0 0] well I just for 

simplicity. I just choose it to be in a way that that suits me ok. And then now I have the 

desired poles of the closed loop system similarly as what I had earlier. Just that I am now 

designing a reduce order observer. So, the observer here will be of order 2 which was of 

three earlier. So, it will be just be -8, -8 instead of -8, -8, -8. 
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Then I just do the sa[me]- same thing for k to find the controller gain that will be the same 

ah. And then now I design a reduce observer based on the states which look like this right. 

So, I have to now design sorry design an observer for. Or in other words I can also say that 

I want to design a full state observer for a system which looks like this in 𝑥ଶ right and a 

certain output here right. 

So, a designing a reduce order observer for this system turns out to be designing a full 

order observer for this system over here ok. And then I just write down the equations in 

that form right. So, I just partition A into its appropriate matrices and so on. 
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Design an observer for this 𝐴ଶଶ  minus this pair 𝐴ଶଶ ,  𝐴ଵଶ  and this we know was 

observable right. And I just run the code for, so the observer design for this pair 𝐴ଶଶ 

and𝐴ଵଶ with the poles being at -8, -8. And the rest of the process remains the same. 
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I will upload the code and you can just play around with this. And again the closed transfer 

function would look would look something like this. You can also look at changing the 

poles for example, to say. 
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-2 and say -3 and check how the performance changes. 
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You can see how different locations of the observer poles affect the closed loop transfer 

function or the or the closed loop step response of the system ok. So, I will just leave to 

you to run a little more codes and check for yourself ok. So, this kind of concludes the 

lecture on observer and so simultaneous controller observer design and also the reduce 

order observer. 

And what is important here is to decide where to place the observers. And one take away 

from those little graphs we plotted was that. The observer dynamics must be faster or the 

error must converge to 0 faster than the then the then the controller dynamics right. So, the 

observer pole should be further to the left then the desired poles of the closed loop plant 

system ok. So, that is what we had today right. So, in module 11, we will start with some 

basics of optimal control. And then end up with what is the famous Riccati equation ok. 

Thanks for listening. 


