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Module - 10
Lecture - 02
Output Feedback
Hi everyone. So, welcome to this lecture number 2 of week 10 on the course on Linear

Systems Theory. So, just to have a little recap of what happen or in the last lecture.
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So, we were looking at simultaneous controller and observer design.
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And we first derived what were the necessary and sufficient conditions for state
observation. And then we proceeded on to the design procedure of how to actually
construct the state observer. And it turned out that we were looking at situations; where

we had to design an L such that this A -L C is a stability matrix.
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Output feedback stabilization
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Where ok, then you have the state space model for the closed loop system taking this
particular form. And here you have the controller design part here you have the observer

design part.
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And what you also what we also saw at the end was that the design of the controller and
observer. Do not actually interfere with each other and this is how the how the closed loop

in terms of a of a transfer function looks like right.
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So, in summary if I go to just draw ah block diagram representation of it, it would just look
looks something like this right. So, here I have my state X = Ax +Bu,y=C x [ wantu
of the form -k x right. So, this is the u I do not have x for measurement. So, I will have the
estimated state as u = -kX hat and this ¥ comes as a result of the of the of the observer

design right.

So, where the observer part looked something like this yeah. So, this plus this gave us the
observer design. So, like ¥ = AX + Bu and if you just plug in all this you get a block
diagram representation, which looks something like this right ok. So, we today we begin
by looking at some small very small design problems; I also use the help of MATLAB a
little later. But let us first do a very very basic design procedure by hand ok. Let us say |

we change the colour right ok.
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So, let us start with the system x = Ax + Bu, y = Cx; where A [20.6 ] B [1],

and C = [1 0] ok. This example I just directly take from ogatta. So, just in case if there is
some confusion you can always go back to ogatta and refer ok. So, what are the design
specifications ok? So, there is a design specifications are such that we want the closed loop

poles, to be at -1.8 £j 2.4 ok.

So, assuming that x is available for measurement I will use the standard pole placement
techniques to find a value of k such that A - B k has its eigenvalues at minus 1.8 +j 2.4
ok. I will not go into the details of that steps ah, but that it turns out that the k here would
be 29.6 and then 3.6 ok. So, you can just use any of those formulas that we had last time

starting from just matching.

The two characteristic equations or a the ackermans formula or to the controllable
canonical form and so on ok. So, that is that is not important right so, but what happens
here is that x is not directly available for measurement. So, an additional step we need to
do is that often observer design ok. So, in most in most problems we will only be given

what is the desired plan performance.

So, this could be in terms of could be in terms of a certain overshoot or settling time and

so on. And what we remember from basic control course is that this will translate to some



kind of locations of the poles of the closed loop system. Or what we called what there as

the as the dominant pole analysis. So how do we go about doing the observer design ok?

Let us say that there is a specification such that the observer poles are desired to be at -8
and -8 ok. Like we design a observer for second order here ok; because we have to observe
that two states ok. So, I can similarly use the techniques I had. So, what the observer design
problem translates to is, to find the locations or assign -8; -8 in this example to a to this

matrix A - L C right. So, this is or over here.

So, A - B k we had poles at the minus 1.8 +j 2.4 and A - L C should have poles at say -8
ok. So, I just do the exact same procedure I can use bunch of methods as stated earlier. To
compute what is the k or L in the in this case or what is L such that eigen values of A -LC

are at exactly -8 and -8.

I can again compare the characteristic equations of what is the desired and what are the
unknowns in terms of L. So, it turns out that L will be something like this. So, this is a
little design procedure to show to tell how I place the controller poles and how I place the
observer poles. And what we also know is that these two do not interfere with each other

right.

So, even if I place this at -16, -16 nothing here would change and vice versa. So now, just
to plot how the closed loop response looks like, I can just compute the transfer function
right; so which we had derived over here last time right. And I can do a bunch of things to
check this step response and so on ok. So, what is important here is to is a location of

observer poles right.

So, one question that we will answer shortly is how to place how were actually where to
place the observer poles ok? And if you look at look at the closed lope system ah, what we

want is that the state X is the estimated state ah. So, there is there is two process right. So,

one is u should be computed as kX and this X is computed as result of an observer design.

So, first so the observer should give its X the estimated state to the controller and so on
right. So, first is which dynamics should be should be faster right. So, we will first just
check numerically right just try to play around a bit with the poles of the observer and
check how do I appropriately choose the poles of the of the observer ok.
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1 %% A code to design an full order observer-controller by placing poles at desired locations s
2= cle

3~ clear e
. -
5 % System state space matrices B

6= A=[010;001;02-1]
7= B = [0:1:0]

8- c=[100]

9- D=0

10~ poles con = [-2,-1+j,-1-31;
11~  poles cbs = [-8,-8,8];

13 % Pole placement for controller
14- K = acker(A,B,poles con);

A
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So, I will do a little example here ok. So, I just directly jump into the system here which
has A matrix, now which looks like this certain B and the certain I will I will post this code

online so, that you could check it for yourself. So, what is desired is that, the closed lope

poles are at -2 and 1 +j and 1 - j right.

So, two complex conjugate poles and one pole on the on the real access. And let me say

well I can [ want my desired observer poles to be at these three locations -8,-8, -8 so, these

many things ok.
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1 %% A code to design an full order observer-controller by placing poles at desired locations »

2= cle

3= clear

4

5 % System state space matrices

6= A=1[010;001;02-1]

7= B =[0:1;0]

= C€=1[100]

5= D=0

10~ poles con = [-2,-1+j,-1-3];
11~ poles_uha = [-E,-E,-i 5

o

13 % Pole placement for controller
14= K = acker(A,B,poles con);

50
l&\*} Pole placement for cbserver

NPTEL
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»
In 12 Col 1




Now, ok, so, MATLAB gives you bunch of tools to do the pole placements. So, I will just
use the command for ackerman’s formula. So, [ have A; which is my system matrix which
is defined by this thing over here. So, [ have B which is the input matrix I know what are
the desired poles? So, once you just give this three inputs. So, this command here it will it
will plot it will show you what are the what is the controller gain similarly for the observer

gain.

So, I have A; I plug it in here I have C and then I have also the location of the observer
poles -8, -8, -8. And I do I and I do the designs simultaneously and at the end I just plot

how my closed lope step response for example, looks like. So, let us just run this code ok.
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7— B = [0;1;0]

§= C€=[100]

9- DEO o)

10- pnlas_cun = [-2,-14],

11~ poles obs = [-8,-8,-8 N O B W

12 Time (seconds)

13 % Pole placement for controller
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So, what I see here is well I have nice looking response even though the overshoot is say

about 50 percent in this case, settling time about 5 seconds and so on ok.
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1 %% A code to design a d&r | Lles at desired locations A.
2= cle 12
3-  clear o
4 : = B

k-
5 % System state space %na |
6= A=[010;001;02 <
= B = [0;1;0]
8- c=[100 i

9= DO 02f|
10~ poles_con = [-2,-1+j,
11~ poles obs = [-2,-2,-2 S PR,
1 Time (seconds)
13 % Pole placement for controller
14- K = acker(A,B,poles_con) ;
197
167 § Pole placement for cbserver
I ‘ .

saript In 11 Col 2

So, let me do something else. So, let me say I place the poles at -2, -2 and -2 and I run the

code again so, ok. So, let us compare this two ok.
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So, this was; the figure 1 was where I had the observer poles at -8, -8, -8. So, this had an
overshoot about 50% this is response looks horrible right. So, you have an overshoot which
exceeds 100%, the settling time is much larger than what it was here. And you if you see

if you that you place it at -1, -1, it will get much much worse.
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11-  poles_obs = [-16,-16,-16]; e
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14~ K = acker(A,B,poles_con) ;

k) 4
1&\*‘; Pole placement for cbserver

e e )

v

script In 11 Col

Let us do another trial here let us say - 16, -16 and -16 ok. And I run the code this looks.

So, let us compare figure 1 and 3.
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Now, ok. So, well here I have a reasonably good settling time of about say 5 seconds or
even less. My overshoot has drastically decreased ok. And of course, these are this is nice
things that that [ have a lesser overshoot and a faster settling time is always desired in any

control design ok. So, one observation from here is the following right.



So, whenever the poles so, when whenever so, in that example we had three poles. But say
whenever the poles were close to the open loop poles then we had like a much larger
overshoot ok. So, let me just draw a little diagram here right let us say well I just denote
ok. These are my control pole poles with the blue line and say these are my observer poles
let us say they are somewhere here right or as both of them were real. So, let us say that

they are somewhere here ok.

In this case we will have a larger overshoot ok. And on the other hand when the poles were
here this is do not change right; because this come from the requirements of or this come
from the design specifications. So, in this case you have a lesser overshoot and also ah

smaller settling time ok.

So, well this is also kind of kind of obvious right. That your observer dynamics should
converge faster than the controller dynamics or then the then the controller dynamics. So,
here when I say controller dynamics I essentially say the dynamics of A - B k ok. So, this
kind of because what the controller or what the observer based controller does is it just

first computes the estimate state and then it has to feed it back to the plant.

And therefore, we would expect the observer to have a faster response than the controller
itself right. And then therefore, so one thing is to choose the observers poles to be much
further away from the desired poles of the closed loop plant ok. So, that is that is about

well little example illustration of observer design we could do a bunch of example.

So, you can actually construct your own example. So, lots of people over the forum post
messages that please do more examples I think we can construct examples. So, there are
lots of examples which you which can be found online, you can just work those out for
yourself and they are they are pretty forward right you know. So, just you can just check
for different values and just check for performance of a controller and the observer

simultaneously.
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In the observer design so far what we saw was that, we reconstructed all the state variables
ok. So, in some cases some state variables might be available for direct or even accurate
measurement. And therefore, one can avoid estimating those states right. So, whatever is
available for measurement, we can just directly measure those and feedback and whatever

are not available for measurement we can possibly construct an observer.

So, in general your state is an n dimensional vector and output is say some p; which is
typically less than n dimensional vector. So and when I say y =C x and say x isin R™ 'y
is in RP. Then these p outputs are usually linear combination of state variables and this
need not be computed. So, what we need to estimate is only the remaining n - p state
variables ok. So, when we need to estimate only the remaining n - p variables this is called

a minimum or a reduced order observer.
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So, let us see how this works ok. So, let us for simplicity say that p variables are of the
form or the p outputs or of the form y; = x; till y, = x, ok. And the remaining once
are the once which I which I need to estimate I do not know what is how does x,.; one
look like till x,, right. But I know how x; till x, looks like right I just making a very

nice assumption here that this holds.

In general what we said that there might be linear combinations of state variables. But here
I just make a much more stronger assumption just for ease of computation ok. So, now I
can I can split my variables or my state equations into the following form. So, I have x;
and X, in this way. So, these are the first p variables these are n - p and I split my a

matrices the B matrices accordingly.

And my output now looks something like this I just call this z has the p dimensional
identity matrix times x; and 0 and just rewritingy = C x in a in a different way here ok.
Now, these are all measured right. Because z is simply x; yes both are of dimension p ok.
Now, let us look at how the system whose states need to be measured look like. So, these

are the states set which need to be measured.

So, have x, = A,;x,+ Ay1x; + B, u and ok. Now, what is there this is I know x;

right; because I can directly measure this [ know u of course, [ know A,; and I know B,.



So, that I just call so, this a system x, = A,,X,,+ B#i where thisis B and this is there

the u right. So, this is a system whose states need to be need to be estimated right.
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Now similarly, I will define a new output in the following form that y is from the first
equation how this first equation look like? First equationis X; = Ay1x; + A%, +Bju.
So, from this I can I can write something like this. So, where the new output y is a new

C matrix which is A;,x5. So, these are the states that need to be to be measured ok.

And this A;,x, from this expression takes this form ok. Now we construct for a for an
estimator for this system, which whose states are x, and output is this ¥ ok. And [ used
the standard formula which I used over here to construct right. How did I construct the
state observer here is just with this equation ok. I will use exactly the same thing here to
construct a state to construct an observer for those un estimated states in the following way

right ok.

I will just skip those computations they are like fairly easy to check the error e takes the
following form in terms of A,, and A;, that is exactly what I wanted to estimate right.
So, so given over here in this system right, this X, = A,x, + B is the system that

needs to needed to be estimated ok.

Now, what do I know is that when the error should converge to 0. This Ay, - LA,

should be a stability matrix; with some eigen values or with eigen values at the desired



locations right. So, if the stability matrix then I know that the error converges to 0. So,
when can I do this? When can I place poles of A,, - LA;, at desired locations? This I

can do if and only if the pair A,,, A1, is observable ok.
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So, very similar to what were the conditions here right what was the necessary conditions
for A, A - L C to be here. Stability matrix was that the this pair A and C must be detectable.
Or observable in our case right or when the pair A, C is observable then I can place all the

eigen values of A - L C at the this desired locations right.

Similarly if I were to place the poles of A,, - LA;, this is observable ok. Now who
guarantees this? Well, we know that the pair A, C is observable and this guarantees that
this pair A,, and A;, is observable ok. You may just want to write down the proof of it

as quickly for yourself right I mean I will skip that these are.

So, we have done lot of lots of proofs and how to compute controllability or observability
via the duality the eigenvector test and so on. So, you can just make use of one of those
tests to show that the pair A, C being controllable is enough for me to guarantee that the
pair A,,, A1, is observable ok. So, A, C being observable is equivalent to saying A,, to
Ajp, is also observable ok. So, and therefore, I can assign eigen values to A,, - LA;,

right ok.
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So, one drawback here is that I was estimating X, andthis x, had an expression y and
y contained derivative of x; right. So, x; was. So, what was the x;? x; came from
here right. So, so z was equal to x; and it. So, the X, needed computation of x 1 dot ok.

Now, this is un desirable especially if x; is noisy.

So, if even though I can measure even though the states are available for measurement,
but there could be lots of sensor noise for example right. And derivative of noise is not a
desirable thing that differentiation of that signal actually amplifies the noise ok. So, how

do we get rid of that ok? To avoid that we eliminate x; from the design procedure.

And if I knew variable w as X3 - Lz ok. So, this kind of works out pretty neat that I can
write down my expressions or in terms of not in terms of x,, but in terms of w ok. So, |
can so, quickly compute whatis W = %, - Lz ok. Now, I know whatis %, from here,
I know what is Z from here and I can simplify this equation to look something like this

ok.

Again this is just not even a laborious process, but just couple of steps you can you can
write this down and you can arrive at this particular expression ok. So, w is an estimate
ofX; - Lz. And therefore, so, I know w. So, what is x,? Well, X, is now simply w +Lz.

So, this is what I estimated now I know this right.



So, this is known, this no this comes from the computation of the of the observer poles this
also know this comes some from the measurements. So, this z are available directly for
measurement ok. So, that is kind of kind of pretty need; because we do not have to now

go through the procedure of computing what is x ok.
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So, again coming back to the block diagram of it; so, again [ have X = Ax + Bu ok. So,
let me write down the few steps here. So, that it is easy for us to understand how the how
the block diagram actually looks like ok. So, again so, u comes as a result of -kX ok. So,

whatis X? So, firstis I estimate w and then once I estimate w, X, is constructed as w+Lz.

So, here right, so X comes as a result of this signals. So, my y was initially of the form
some p dimensional identity and x; and x, ok. Now, the estimated state is has two
components this is already measured directly and I have X, ok. What was x;? x; was

simply y and this X, was to be estimated ok.

0 _ _
o, this I can write equivalently as [ I ][J/CE - Ly] this L I know how to compute right

n-p
from the from the observer design plus I have a identity here L and a y ok. So, you just
rewrite this and you will realize get this back ok. So, this X now can be written as so, |
will call this as some € times. So, what was the signal right y was it was also equal to z

from this expression right.



So, this was my original y = C x ,I call that as z. So, this turns out to be C times w plus
let me call this some Dy. So, that is exactly what is happening here Cw + D times is y
gives me x hat and this via minus k goes back to my to my controller and like I equivalently
derive the transfer function and so on. And similarly we will also verify the notation for

the expression for w right. So, w = A,, - A;,w and so on ok.

So, you can just right check for this also. And this B and F are just these two terms here.
So, the term associated with y I call this entire thing as B and this as F. And you can

have the nice looking block diagram realization like this ok.

So, this is just as an nice pictorial interpretation of what how designing the reduce order
observer ok. So, what was the assumption here was that C was a kind of had a beautiful
expression like this. C was the p transfer identity and 0 ok; what if C is not in this form
then we know bunch of tricks that. We know how to transform C into a form which looks

like that.
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So, what if the output matrix is not of the form [, 0] well, we know what is the rank of
C right rank of C is p. And therefore, we use a standard trick of coordinate transformation
that let x = PX be a transformation with P given by C. And then € and then C is chosen
such that P is full rank that as in the same way as we did for the observer decomposition

or the even in the dual way the controllable decomposition.



Now given the system I can write it in to a system in a transformed form where in the new
coordinates ¥ my C takes the this form [I, 0] ok. Now, I do the design here because I
know nice looking formulas here. And I just use the reverse coordinate transformation that

x =Px to get see how the observer looks like in the original coordinates right.

Like what we do even for the for the controller design that you just get it into the
controllable canonical form you design the k. And then use the transformation P to get

back to the to the original system ok.
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Now can I just do a little example ok? So, again I start with x = Ax + B u with A =

H

to find what is the estimate of X; ok. So, what is the reduce order observer here. So, we

] Bis [(1)], Cis [0 1] which means I can actually measured x, directly and I need

need to design an observer of order 1 that because here n=2, P =1 ok.

Now, how do we do this? First is C in the form [, 0 Jwell the answer is no, but I therefore,
I would use a transformation P C C bar that was the notation we had use here right C €
such that ok. What is C? Cis [0 1]and € is [1 0] such that P has now as a as full right ok.
Now, I use the standard transformation X sorry X = Px and design a an reduce order

observer for the system in X.



So in this so, my new A will be of the form ok, here I use x = Px simplicity; x = Px. So,
if I use the transformation it will just simply change to you can also use X = P x right
nothing really changes just that instead of P AP~ it will be P~1 A P. So, we just the

transformation 1 will have my new a matrix A as [:g (1)

surprisingly € will now have the form which I want write 1 and 0 like this ok.

]; B is [(1)] and not

Now once I have this I just use the expression to design the observer which is this one ok.
I just substitute all the values and what I getis W as - Lw plus etc, will be plus you just
substituting value right. So, this is now we have an observer of order 1 ok. I am just rushing
through this steps but you could just substitute each of these values. And check should be
pretty straightforward right ok.

Now, let us say I just arbitrarily choose this to be -10 and therefore, [ have w = 10w - 122
y +10 u and w plus w (Refer Time: 35:05) also a w , + L z, now what is this? This is
simply w - 10 y ok, this is an estimate for X,. And therefore, y, w - 10 y is an estimate of

X ok. So, this all [ am in the new coordinate right.

This should be X, hat and therefore, the original estimate x will simply be
— 10y
y

happening here the first step [ do is to convert C the system into a form where the C matrix

p1 [W —yloy] this will simply turn out to be [W ] ok. So, and nothing much

looks like this. The next step would be to follow these steps here ah.

And then what happens here is that this w + L z is an estimate of X, ; because w is an
estimate of this thing ok. So that is pretty straightforward right and then I can go back to
the original transformation to see what how it looks like in the original coordinates ok. So,

just as we saw [ will re run the previous example with reduce order observer.
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cle
clear

e

% System state space matrices
a=0ho0001;02-1

B = [0;1;0]
c=1[100]
D=0

poles con = [-2,-1+j,-1-31;
poles_obs = [-8,-8];

% Pole placement for controller
K = acker (A,B,poles_con) ;

So, I have a third order system again A= |0 0 1| Cis [l 0 0] well I just for

simplicity. I just choose it to be in a way that that suits me ok. And then now I have the
desired poles of the closed loop system similarly as what I had earlier. Just that I am now

designing a reduce order observer. So, the observer here will be of order 2 which was of

0 1 0

0 2 -1

three earlier. So, it will be just be -8, -8 instead of -8, -8, -8.
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% Pole placement for controller
K = acker (A,B,poles_con);
I
% Partitioning the state matrices based on measured and estimated states
n = size(A,1);
nr= size(poles_nhs,z); % Estimated states

m=n-nr; % Measured states
A 11 = A(Lim,1:n) ;

A 12 = A(l:m;mtl:end) ;

A 21 = A(mtl:iend,1:m);

A_22 = A(m+l:end,m+l:end);
B1=B(lm,:);

B 2 = B(mtliend,:);

K 1=K(:1lin);




Then I just do the sa[me]- same thing for k to find the controller gain that will be the same
ah. And then now I design a reduce observer based on the states which look like this right.
So, I have to now design sorry design an observer for. Or in other words I can also say that
I want to design a full state observer for a system which looks like this in x, right and a

certain output here right.

So, a designing a reduce order observer for this system turns out to be designing a full
order observer for this system over here ok. And then I just write down the equations in

that form right. So, I just partition A into its appropriate matrices and so on.
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PE= A_ZZ = A(m+l:end,m+l:end) ; A
24- B1=B(lim,:);
25 B 2 = B(mtliend,:);
26— K1 =K(:1lm); =
21- K2 =K(:mtl:end);
28 ! o
29 % Pole placement for reduced observer
30- L = acker (A_22 4} ,A_li' ,polLea_nha) 3
31
32 % Finding the transfer function of the observer-controllr system
33~ Ahat = A 22 - L¥A 12;
34- B hat = A hat*L + A 21 - L*A 11;
35~ Fhat=B2- 1% 1;

A tilde = A hat - F hat*K 2;

) tilde = B hat - F hat*(K 1 + K 2*I);
“§:_tilde =K 3;

< >
m
Jumgeﬂ\ﬂvs,wl‘u‘fnw\d sciipt in 30 Col 26
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Design an observer for this A,, minus this pair A,,, A;, and this we know was
observable right. And I just run the code for, so the observer design for this pair A,,

andA,, with the poles being at -8, -8. And the rest of the process remains the same.
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39~ D_tilde = -(K 1 + K 2%L);
10~ [num,den] = ss2tf(A_tilde, B tilde, -C_tilde, -D_tilde);
41—  sysl = tf (num,den); 1

43 % Finding the transfer function of the original system
44— [num,den)=ss2tf(A,B,C,D);
45~  sys2 = tf (num,den);

(T

47 % Transfer function of system with observer-controller
48~  sys3 = sysl*sys2;

49— sys4 = feedback(sys3,1);

50-  fiqure()

51— step(sysd)

o= s

seript in 28 Col 1

I will upload the code and you can just play around with this. And again the closed transfer
function would look would look something like this. You can also look at changing the

poles for example, to say.
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5 % System state space matrices
6= A=[010;001;02-1]

7= B =[0;1;0]

- €=[100]

9- D=0

10~  poles con = [-2,-1+j,-1-3];
11~ poles obs = (-2,-3];

12

13 % Pole placement for controller

14— K = acker(A,B,poles_con) ;

15

16 % Partitioning the state matrices based on measured and estimated states

17= n = size(a1);
18=, nr= size(poles_nhs,zj; % Estimated states

1 % =n-nr; % Measured states
2057 & 11 = A(L:m,1:m); v
I _

>
[0, L S ——— it Jin 11 Gol 18
D

-2 and say -3 and check how the performance changes.
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You can see how different locations of the observer poles affect the closed loop transfer
function or the or the closed loop step response of the system ok. So, I will just leave to
you to run a little more codes and check for yourself ok. So, this kind of concludes the

lecture on observer and so simultaneous controller observer design and also the reduce

order observer.

And what is important here is to decide where to place the observers. And one take away
from those little graphs we plotted was that. The observer dynamics must be faster or the
error must converge to 0 faster than the then the then the controller dynamics right. So, the
observer pole should be further to the left then the desired poles of the closed loop plant
system ok. So, that is what we had today right. So, in module 11, we will start with some

basics of optimal control. And then end up with what is the famous Riccati equation ok.

Thanks for listening.



