Linear Systems Theory
Prof. Ramkrishna Pasumarthy
Department of Electrical Engineering
Indian Institute of Technology, Madras

Module - 09
Lecture — 04
Tutorial for Modules 09 and 10

Hello everyone, in this tutorial, we will discuss some problems relating to the content
module 9 and 10. So, we will try to solve about three or four problems. And we will also
upload an exercise which will consist of about 9 to 10 problems which you can solve for

yourself.
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So, going to the first problem which is as follows. Given a state space model with the

1 0 0 O
-2

0 . : : .
0 . So, this is a state matrix and then the input matrix
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is (1) which means there is a single input, and the output matrix is given by [0 0 1 1], and

0

D we take it to be 0. So, given this system, we are asked to find a minimal realization. So,
what is the realization, we saw that if any system is represented in this manner, A, B, C, D

matrices, then it is called one of the realizations.



And we have seen that any system which can be realized from a transfer function, it will
have infinite possible realization. So, one realization is already given to us. And using this
realization we are asked to find out another realization which is minimal. So, even minimal
realizations there could be many we are asked to find one of them. Now, how can we go

about this, first we need to check if the system is fully controllable and observable.

So, once we check this, we arrive at four cases. The case one being the system being fully
controllable and observable; second one being the system being controllable, but not fully
observable; third one being a system being observable, but not fully controllable; the fourth

one being system being neither fully controllable nor observable.

So, in the lectures we have seen that when the system is fully observable and
uncontrollable, then the given realization is the minimum realization because we know
that the minimal realization always is in fully controllable and observable form. But in the
cases when the system is not fully controllable or not fully observable or neither of them
is being satisfied, then we need to find a lower order system which is minimal. So, now,
when the system is not fully observable but it is controllable, then simple way of finding

minimal realization is given by the observable decomposition.

So, you just take a system decompose it into observable and unobservable parts, then the
observable part will be the minimal realization. So, in this case, when the system is not
fully controllable, then the minimal realization is given by the controllable decomposition.
So, now, what if happens that the system is neither fully observable nor fully controllable,
then minimal realization is given by you can do this in two ways, one is using Kalman
decomposition, but finding the basis for a Kalman decomposition is very difficult. So, we
have an alternate way of doing controllable decomposition plus observable decomposition.

So, we will do one after the other.

So, if we take the system, this is the given system is neither fully controllable nor fully
observable you can check this using the controllability and observability matrices, the rank
of those matrices by tell you that the system neither fully controllable nor observable. Now,
so we need either need to find the Kalman decomposition or we have to do first a
controllable decomposition and then an observable decomposition. So, as a system is

fourth order system instead of doing this manually we will try to solve this using matlab.
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5= Bhar = inv(T}*B: =
46 Char = C*T;

47

4= he = Rbar(l:rank ¢ 1:rank e);

49- Bc = Bbar(lirank c,:); =
50 Ce = Cbar(:,lirank g):

51 =
52 #Chsorvablly decomposition on fully controllable system

53- rank_co = rank (obsv(Ac,Ce)) ;

54 if (rank_eocsize(Re,1)) :
55— oba = obav (Ae,Cc) ;

56= [~,~,v] = svd(cbs};

&= Tavy; =

Abar = inv(T)*Ac*T;
Bbar = inv(T)*Be; -
Char = Ce*T;

| Mo Heshatn: .1 -
D) e e e e v S s kol s v L .
1 4% Finding a minimal realisation of a State Space Model

3= load ss_model

g % Finding the controllabilify and chservability matrices and their ranks -
3 cent = ctrb(AB);

7= oba = obev(h,C); -
8- rank_c = ranki{cent);

5= rank_o = ranki{obs);

10 =
11 % If the system is fully controllable, then shaorvable decemposition is
12 % oguivalent to Kalman decempositien and vice versa

14=  if (rank_c==size(A,1)&brank_o==size(A,1))
display('The system is fully contrellable and cbservable, and hence given realisation i
Blseif (rank _c==size(,1)}

So, in this case, | have written a code which will give you the minimal realization of any
given state space model. So, the first part of the code loads the model and then we are
finding out the controllability and observability matrix using this command ctrb and obsv,

and then we check the ranks.
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12 % equivalent to Kalman decomposition and viee versa .
13

1d=  if (rank_c==size(A,1)&érank o==size(A,1})

15 display('The system is fully sentrollable and chservable, and hence given realisation is
16~ elseif (rank c==size{A 1)} o
17 [~,~,v] = svd{cbs) ;

18- T=v; -
18- Abar = inv(T)*A*T;

20 Bbar = inv(T)*B;

21 Char = C*T; =
2= display('The system is fully controllable but not cbservable, and hence we do cbservable
23 Ace = Abar(l:rank e,l:rank o);

24 Beo = Bhar(lirank o,!); 2
25+ Ceo = Char(:,1:rank o)/

268 e
2{913:“ {rank_e==gize{A,1)} J [
T jiree :

So, now the code goes like this. If both ranks are full, then we know that the system is fully
controllable and observable hence the realization is given to be minimal. But, what is the
controllability matrix rank is full, but not the observability rank. So, in this case we follow
the observable decomposition. So, this is what we are doing. To find the observable
decomposition, we take the svd of the observability matrix and then use the eigen vectors
in V as the model matrix for transformation, and we do the following transformation and

then we get this.
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12 % equivalent to Kalman decomposition and viee verss b
13

11~ if (rank_c==size(A,1) &irank_o==size(A,l})

1% display('The system is fully eentrollable and ebservable, and hense given realisatien ir
16~ elseif (rank c==size(R,l)) =

11 [~;~,v] = svd{cbs);

18= TEv;

15— Abar = inv(T)*A*T;

20 Bbar = inv(T)*B;

21 Char = C*T; =
22- display('The system is fully controllable but not cbservable, and hence we do cbservable
23 Aco = Abay(l:rank o,l:rank o);

24 Beo = Bhar(lirank o,!); -]
25 Coo = Char(:,1:rank o) ;

2

E{f)luif (rnn.l_u—niza-ll,l]l |
I fiee :

el in 11 (el 10




So, now the system is in minimal form because we already know that it is fully

controllable.
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3= heo = Rbar(1:rank e,l:rank ¢); .
38 Beo = Bhar(lirank ¢,:);

36— Ceo = Char(: 1:rank c);

37

8- else ?
39 display('The systom is neither fully contrellable nor fully chservable, and hence we do

b =
41 $Pirstly pontrollable decempesition

42 [u,~,~] = svd(eont);

43 T=u =
4= Abar = inv(T)*A*T;

5= Bbar = inv(T)*B;

16 Char = C*T; o
a7

4847 Ac = Rbar(l:rank c,1:rank c; =
d{f) Be = Bhar(l:rank ¢,:); _:
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23- hee = Abar(1:rank o,1:rank o); e

2= Beo = Bbar(1:rank_o,:);

25 Coo = Chaxr(: lirank o) ;

26

21-  elseif (rank o==size(A,1)) =

28 [u,~,~] =|svd(cont);

29= T=u;

30- Abar = inv(T)*A*T:

31 Bbar = inv(T)*B;

32 Char = C*T; =

33- display('The system is fully cbservable but not controllable, and hence we do controllak

34 Aco = Abar(l:rank g,l:rank c);

34 Boo = Bbar(l:rank ¢,:); 3

36- Coo = Char(:,1:rank ) ;
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What if it is otherwise the system is fully controllable, fully observable, but not
controllable, then we do the reverse we find the svd of the controllability matrix, then using
U we transform the system into a form which will give us the controllable observable

system which is minimal in nature.
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rank_c) ;
8= Beo = Bbar(1:rank_c,:);
36- Cee = Char(: lirank ¢);
3
ii-  else =
39 display('The system is neither fully controllable nor fully chservable, and hence we do
A0 =
41 #Fizstly controllable decemposition
42 [u,~,~] = svd{cont);
43 T=u |
44 Abar = inv(T)*A*T;
45- Bbar = inv(T)"B;
46 - Char = C*T; =

LI

Ac = Rbar(l:rank e, l:rank ) ; =
Be = Bbar{lirank g,:);

So, but our case is the third case where it is not fully observable and not fully controllable.
In this case, what we will first do is we will take the controllable decomposition and then

we transform it into a controllable form.
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e gbar = inv(T}*B; o
46— Char = C*T;

17

18- he = Rbar(l:rank e 1:rank e);

49- Bc = Bhar(lirank c,:); 2
50 €e = Cbar(:,l:rank_¢);

51

62 ¥Chbsorvablly decomposition on fully controllable system

53 rank co = keank (shav (Ac,Cel) 2

51 if (rank co<size(As,1)) =
55— obs = cbav(Ae,Ce) ;

56 [~;~,v] = svd{cbs);

57 T=v; =
50 Abar = inv(T)*Ac*T;

1" Bbar = inv(T)*Bc; E
% v Char = Ce*T; i
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We will take the controllability part. And then we will take an observable decomposition

on the fully controllable system. So, this is what we do.
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56 [~,~,v] = svd(abs) ; A
51— T=v;
L1 Abar = inv(T) *Ac*T;
59 Bbar = inv(T)*Be;
60~ Char = Ce*T;
61 I
L7 Ace = Rbar(1:rank _co,l:rank co);
63- Beo = Bbar(1:rank _co,:);
€4 Cee = Char(:,l:rank co);
65 end
66— end
67
(1] digplay('The minimal realisation of the system is:')
69 Aco
1 ; =
BE =
I et s LY

And if the rank is less than the full rank, then again we do again we find out the
observability matrix then we take the svd of the observability matrix and then transform is
follows. So, this code will run the whole thing, I already copied the whole model into this

variable call ss underscore models. So, I will run this code and you will see what happens.

(Refer Slide Time: 10:36)

Clatrinit Falder
i 2> clear
e i > Min_Realisation

The system is neither fully controllable nor fully cbservable, and hence wa do Kald
The minimal realisation of the system ia:
Aco = |
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So, as you can see the system is neither fully controllable not observable and we will do
Kalman decomposition, so which is alternately done using first the controllable

decomposition and then the observable decomposition and after doing that the minimal



realization is given by this matrices. So, I will upload this code, you can try it out on
different matrices. And so this is the way to understand how minimal decomposition is
done. You can also use a command called min real. So, there is a MATLAB command
min real, which will also give you the minimal realization, but it might not be the same as
what you obtained using this way. But you can still verify that both the minimal
realizations will lead you to the same transfer function. So, I will leave that for you as an

exercise.
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So, going into the second problem, the second problem we are asked to find the

sz~ (B9

controllable and uncontrollable eigenvalues which are nothing but the poles of the
following system x dot is equals to which is the A matrix A x plus B is [ﬂl I times u a

single input. And then after finding out the controllable and uncontrollable eigenvalues,
using state feedback K the controllable eigenvalue can be shifted to a location to value p.
And we are asked to find a formula for p in terms of k; and k,, these are the variables. So,
K is [ky k3]. So, it is already said that there exists a controllable and uncontrollable
eigenvalues. So, we can always find one pole to be controllable and other pole to be
uncontrollable. So, how can we find out? So, a simple way is to actually find out the

controllable decomposition of the system.



So, you can always find out the matrix ok. I will find out the controllability matrix, you
1-2
1-2
of the first column from here and another column which is linearly independent of the first
one, it could be 1 0. So, now, using this, I will find out A= P! AP. And if I do that I will

_2 1 . . D _ -1 . . . . 1
get [ 0 _1]. And similarly B = P™"B in this [ will get it to be [0]

can just verify it will be [ ] So, its rank is 1. So, I will take a model matrix p, it consists

So, the transform system is Ax + Bu. So, now, you can see that only the first state is
controllable which means the first eigenvalue is controllable while the second eigenvalue
is not controllable sorry this minus 1. So, what are the eigenvalues; what the first
eigenvalue and second eigenvalue are clearly -2 and -1, because this is a upper triangular

matrix. I can always write the diagonal matrix diagonal elements as the eigenvalue.

So, now the first eigenvalues controllable because one is present in u in the first element
in B and the second eigenvalue is not controllable. So, now, how can we find out a formula
for P in terms of k; and k, to control this eigenvalue -2. So, -2 is the controllable
eigenvalue or the pole -1 is uncontrollable eigenvalues, so which means that I can always

change -2, but I -1 always remains to be a pole of the system that cannot be controlled, ok.

So, now we will take this K, K = [k; k,] and using state feedback, I find out the
characteristic matrix of the system with state feedback I can say it A - B K. So, if you find
out the characteristic equation of the system, it will turn out to be like this s? + s(k; +
ky,+3) + (ky + k; + 2). So, we can just substitute A, B and k and find out this
characteristic equation. Now, if you observe, this can be written as follows,
(s+1)(stkqtk, + 2). Now, you can see that the original characteristic equation sI - A will

be (s+1)(s+2) because -1 and -2 are the eigenvalues.

Now, once I introduce state feedback this S plus 1 still remains, but (s+2) gets replaced by
(stkq + k, + 2) which means that now I can change my values or choose my values k;
and k, such that I can place this -2 anywhere [ want. So, the formula for P will be k;
+k,+2. So, this is how we solve this problem. Now, going into the next problem, so this
problem pertains to the tenth module it this is about observer design. So, this how the

problem goes.
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So, in this problem we are asked to design an observer which means we need to find an
observer gain matrix K such that we have a system x=A x, and y = C x. And we want to
place the eigenvalues of the observer a -K C such that they are the roots of the polynomial

s? +dys+d,. So, this is the desired characteristic equation.

So, this is very similar to the controller design that we did in the previous module. So, how
. . . k
do we go about it? So, as per the dimensions K needs to be a column vector [ kl]' So, now,
2

what we will do is we will find out the characteristic equation which I can write it as now
if I will expand this I will be getting s2 +s(2 + k) + (2 + k). So, we have a characteristic
equation coming from A K and C. And now if we compare it with this given characteristic
equation, then we can simply say that d;= 2 + k, d, = 2+k,; which implies that k; is

equals to sorry not d, this is d. So, k; is =dy- 2 and k, = d;- 2.

So, this is how we can place the eigenvalues or the poles of the observer system such that
they are equal to the roots of this given polynomial. So, this brings us to the end of this
tutorial; as I said at the beginning of the tutorial we will be uploading some exercise
problems which are somewhat similar or somewhat similar to the content that is covered
in modules 9 and 10. You can go through them and post any queries in the forum if you

have.

Thank you.



