
Linear Systems Theory 
Prof. Ramkrishna Pasumarthy 

Department of Electrical Engineering 
Indian Institute of Technology, Madras 

 
Module - 09 
Lecture - 03 
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Hi everyone. So, in this lecture of lecture 3 of week 9, we will look at explicit Design 

methods for arbitrary Pole Placement. So, and then we will also eventually prove that a 

necessary and sufficient condition for arbitrary pole placement is that the system should 

be completely controllable, ok. 
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So, let us start with one of the very basic methods of pole placement, ok. So, what is the 

objective again? The objective is to find a feedback matrix K, such that the close loop 

poles have the desired locations from 𝜇ଵ until till 𝜇௡, ok. So, we will look at these 3 

methods. So, should be controllable here, ok. So, towards the end of the lecture we will 

prove this that the K can be obtained if and only if the system is completely controllable. 

So, we will first start with the direct substitution method, ok.  
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So, let us say I am looking at a as a third order system. So, my feedback law u -Kx will be 

of the form say –[𝑘ଵ𝑘ଶ 𝑘ଷ] ൥

𝑥ଵ

𝑥ଶ

𝑥ଷ

൩, it will be given as −𝑘ଵ𝑥ଵ -𝑘ଶ𝑥ଶ-𝑘ଷ𝑥ଷ, ok.  

So, what is known to us? I know A, I know B, additionally what do I know is that, 

additionally I also know the closed loop characteristic equation, ok. Where does the close 

loop characteristic equation come from? That comes from the location of the desired poles. 

So, I have (s - 𝜇ଵ)(s-𝜇ଶ)( 𝑠 − 𝜇ଷ), ok. So, the everything in this expression is known to me, 

ok.  

Now, what is unknown? Unknown is these 3 numbers 𝑘ଵ, 𝑘ଶ, 𝑘ଷ, ok. Now, what is the 

characteristic equation of the close loop system? That will just be the determinant of this 

(s I -A + Bk), ok. Where did this come from if I just look at 𝑥̇ = Ax I am looking at the 

characteristic equation of this form (sI – A) = 0.  

Now, if I have input to the system 𝑥̇ = Ax + B u with u of the form - Kx, then my system 

close loop system takes this form A - BK x, and the poles will now correspond to the 

characteristic equation which is obtained by this matrix A - B k. And therefore, the close 

loop characteristic equation will be of this form (sI - A + BK), and all the unknowns now 

are in this matrix k, ok. 



So, now this kind of looks on the left hand side I have a equation of all the everything is 

known to me, on the right hand side I have equations of 3 unknowns and I can just solve 

it by via some simple simultaneous equations, ok. 
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I just do a very small example on this. So, I have 𝑥̇ = Ax + B u, ok. I will go back to the 

black colour, ok, where A = ൥
0 1 0
0 0 1

−1 −5 −6
൩, B is also of the form ൥

0
0
1

൩. And let us say 

easy to check that this is actually in the controllable canonical form, right. 

So, let us say I want to place my close loop poles in the following locations. So, these are 

the desired poles. So, one pole is decided to be at 2 + j 4, the other would obviously, then 

be at 2 - j 4 and the third pole would be at  -10, ok. So, first is, ok, check if the system is 

controllable. Well, the answer is yes, a the system is actually controllable.  

I leave the steps for you to verify that you know you can gate easily check that the rank of 

C is equal to 3 and also because I have it in the controllable canonical form of the system 

is actually controllable, ok. And the characteristic equation of the uncontrolled or the open 

loop system would just be of this form 𝑠ଷ + 6𝑠ଶ + 5s + 1, this is what is given to me. 

So, now based on the close loop poles can I find out what is the desired characteristic 

equation? Ok. That will be from, (s + 2 - j4)(s + 2 + j4) (s + 10), right, from here. So, this 

is how the close loop characteristic equation knows and I know what is 𝜇ଵ, 𝜇ଶ, 𝜇ଷ, which 



are essentially these 3 numbers here. And this looks in the following this is 𝑠ଷ + 14𝑠ଶ + 

60s + 200, ok. So, now, what do I need to find? So, I know, I know this, right. Now, I need 

to find what is u = -kx that is useless. So, u will be of the form -𝑘ଵ𝑥ଵ -𝑘ଶ𝑥ଶ-𝑘ଷ𝑥ଷ or I am 

looking at the characteristic equation of the close loop system which is (S I - A + BK), ok. 

Now, if I compute this, if I compute this in terms of this unknowns 𝑘ଵ, 𝑘ଶ and 𝑘ଷ it turns 

out that the close loop characteristic equation, in terms of the unknowns 𝑘ଵ, 𝑘ଶ, 𝑘ଷ is I am 

just looking at the determinant of this. So, this will be, ൥
𝑠 0 0
0 𝑠 0
0 0 𝑠

൩ - ൥
0 1 0
0 0 1

−1 −5 −6
൩ + 

൥
0
0
1

൩[𝑘ଵ𝑘ଶ 𝑘ଷ], ok. 

I can expand this and then this is 𝑠ଷ + (6+𝑘ଷ)𝑠ଶ + (5+𝑘ଶ)s + (1+𝑘ଵ). Now, I can actually 

look compare the coefficients now, right. The coefficient of 𝑠ଶ here is 6 +𝑘ଷ which must 

be equal to 14, and therefore, 𝑘ଷ, so with this to I will have 6 + 𝑘ଷ= 14 which means 𝑘ଷ = 

8.  

Similarly, I can look at the coefficient of S, it is a 5 𝑘ଶ times S is 60 and therefore, 𝑘ଶ is 

sorry, there should be a, this should be (5 + 𝑘ଶ)s, 5 + k 2 is say 60, therefore 𝑘ଶ = 55 and 

the last expression says, 1 + 𝑘ଵ = 200 and therefore, 𝑘ଵ= 199, ok. That is looks pretty neat 

and straightforward, right. I can do everything with hand ah. But where the drawback is if 

as n becomes much larger these computations become tedious to do by hand, ok. 
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Now, what is the second method? The second method comes via the controllable canonical 

form, right. So, assume that my system is in the controllable canonical form, if it is not in 

the controllable canonical form I actually know how it works, right. I will tell you how to 

even deal with the system which is not in controllable canonical form. At the moment I 

assume that let the system be in controllable canonical form, ok. 

Again I will do it for the case of the SISO system. And again my problem is to find these 

unknowns, K which is from 𝑘௡, 𝑘௡ିଵ till 𝑘ଵ, right. Again, I am now looking at the close 

loop characteristic equation, again obtained by sI –(A – BK), ok. Let us actually do this 

the do this computations and check where we are, ok. 
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Where do I start from? So, I start from assume that the system is in the controllable 

canonical form that, and also I assume that n equal to 3, so that my computations become 

easy and they also look a little neat, and would not look too tedious. So, I have a 

൥
0 1 0
0 0 1

−𝑎ଷ −𝑎ଶ −𝑎ଵ

൩. This will be my A matrix, B will be of the form ൥
0
0
1

൩, ok. 

Now, what do I know? I know the following, right I know the close loop poles are the 

same steps like here, right. So, I know the desired poles. So, with the desired poles let them 

be at some arbitrary 𝜇ଵ, 𝜇ଶ and 𝜇ଷ such that (s - 𝜇ଵ)(s -𝜇ଶ)(s - 𝜇ଷ) expands this one 𝑠௡ + 

alpha 1. So, for the case of n = 3 this will be 𝑠ଷ+ 𝛼ଵ𝑠ଶ, 𝛼ଶs + 𝛼ଷ. Let us say all these are 

known to the μs and αs are known. Now, they are given to us, right, ok. 

Now, what should I find is what is what is K, right. So, I compute close loop characteristic 
equation which for the case the 3 by 3 case will just be like this as I have sI - A which is 

൥
0 1 0
0 0 1

−𝑎ଷ −𝑎ଶ −𝑎ଵ

൩, plus have a B times K here ൥
0
0
1

൩, [𝑘ଵ𝑘ଶ 𝑘ଷ], ok. So, how will this look 

like? So, this will be S here 1 to the minus 0 0 S, another minus 1 and here will be 𝑎ଷ + 
𝑘ଷ, here we will have 𝑎ଶ + 𝑘ଶ, here we will have 𝑎ଵ +𝑘ଵ, ok.  

And then I am looking at the determinant of this. And this turns out that it will be 

something like this I have 𝑠௡ + 𝑎ଵ +𝑘ଵ. So, in this case I am looking at 𝑠ଷ; 𝑠ଷ + (𝑎ଵ 

+𝑘ଵ)𝑠ଶ+(𝑎ଶ +𝑘ଶ)s+ 𝑎ଷ +𝑘ଷ = 0. So, I just look at these two equations now, right. So, this 



which, ok, this is a characteristic equation this and then I go about comparing the 

coefficients, ok. 

What do I have now from the first term is that 𝑎ଵ +𝑘ଵ = 𝛼ଵ, ok. I know what is what is a 1 

that comes from my given system, I know what is 𝛼ଵ that comes from by desired roots, so 

therefore, I can compute 𝑘ଵ as 𝛼ଵ − 𝑎ଵ. Similarly, I will have 𝑎ଶ + 𝑘ଶ by equating the 

coefficient of S here, with the coefficient of S that is 𝛼ଶ, 𝑎ଷ + 𝑘ଷ = 𝛼ଷ and so on, if I have 

a system of dimension n, ok.  

Now; so this is ok. What is a subtle difference between here? Right. So, here if I know, 

ok. What is I know; do I know a 1? Well, a 1 is directly given from here. Do I know 𝛼ଵ? 

Well, the answer is yes, ok. So, give me this and give me this I can directly compute what 

is the k 1, similarly for 𝑘ଶ and so on. A little distinction from here is that we were trying 

to explicitly compute the close loop characteristic equation in terms of 𝑘ଵ, 𝑘ଶ, 𝑘ଷ and so 

on. 

But here, just give me these two numbers and so, this can be can be obtained α, the 𝛼s can 

be obtained by the close loop characteristic equation 𝑎ଵ, 𝑎ଶ, 𝑎ଷ are known to me, ok. So, a 

little caveat and which is not very bad for us is that the system is assumed to be in the 

controllable canonical form. So, the K, I obtained here is in the controllable canonical 

form, ok.  

And let me assume now that well I do system is not in the controllable canonical form, but 

I get it into the controllable canonical form via some transformation x = T𝑥ො, and the system 

in 𝑥ො is in the controllable canonical form, ok. So, the K I compute here, the K I compute 

in the controllable canonical form would just be related to the original K via just this 

transform, ok, that is that is an easy process to check. 
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So, if I do not have the system in the controllable canonical form. So, we decided this 

distance, right. So, if I do not have the system in the controllable canonical form first 

transform it into this controllable canonical form via x = T𝑥ො, ok. Now, compute K, let me 

call this 𝐾෡ because I am looking now at the controllable canonical form using these 

formulas here, right, that, ok, what did I have; 𝑎ଵ  + 𝑘ଵ
෢ = 𝛼ଵ and so on, ok.  

Now, what is the original K? Original K for the system in x well this all this was in the x 

cap, right well the k turns out simply to be 𝐾෡𝑇ିଵ, ok. It is a very straightforward thing 

once you understand how one can arrive at the similarity transformation, right starting 

from any given system, ok. 
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So, that is pretty easy and neat ah. So, I will just do that the last thing which is a little 

tedious, but it is it is nice to know the Ackermann’s formula, ok. 
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This might look a little ugly and tedious, but let us still do it ah. So, I have 𝑥̇ = Ax + B u 

which I transform via u = -Kx to 𝑥̇ = (A-BK)x which I also call as 𝐴ሚx, ok. 

Now, what is a characteristic equation of the close loop system? Characteristic equation 

of the close loop system with (sI - A + BK) is (sI - 𝐴ሚ) that will be again (s - 𝜇ଵ)(s -𝜇ଶ) . . 



. . . (s - 𝜇௡). So, all these close loop poles are given to me, and I can expand this and write 

it in terms of the coefficients of the polynomial in S, ok. Now, ok so this is good. 

Now, let me go to the Cayley Hamilton theorem and what it tells me is 𝛷(𝐴ሚ) is that a 

matrix satisfies its own characteristic equation 𝐴ሚ௡ + 𝛼ଵ𝐴ሚ௡ିଵ + . . . 𝛼௡ିଵ𝐴ሚ + 𝛼௡I = 0. This 

is the n x n identity, ok. So, what do I know that 𝐴ሚ =A - Bk, A tilde square is what I just 

expand this (𝐴 –  𝐵𝐾)ଶ square and I can write this as 𝐴ଶ -A BK - BKA – (BK)(BK).  

I can also write this in a little simplified way as yeah sorry, 𝐴ଶ- ABK - BK𝐴ሚ. Similarly, 

𝐴ଷ can be written as 𝐴ଷ - 𝐴ଶBK - A BK𝐴ሚ - BK𝐴ሚଶ, ok. I will just do the proof for n = 3 

again for simplicity and then to just to avoid ugly looking computations, ok. 

Now, I put this all these values into the characteristic equation and what I get is the 

following. So, I am looking at 𝛼ଷ𝐼 + 𝛼ଶ𝐴ሚ + 𝛼ଵ𝐴ሚଶ plus sorry, 𝐴ሚଷ, ok. So, I will skip some 

steps and just write down how it looks in front. So, I will have some terms to do with 𝛼ଷ𝐼 

+ 𝛼ଶ𝐴 + 𝛼ଵ𝐴ଶ +𝐴ଷall this in A, then I will have -𝛼ଶBK -𝛼ଵA BK -𝛼ଵBK𝐴ሚ - 𝐴ଶBK, ok.  

So, we have again that 𝛷(𝐴ሚ) = 0, right. And, what can then I what can I then say in terms 

of 𝛷(𝐴)? 𝛷(𝐴) which looks like 𝛼ଷ𝐼 + 𝛼ଶ𝐴 + 𝛼ଵ𝐴ଶ +𝐴ଷ is 𝛷(𝐴) and this is not 0, right 

because a this 𝛼 s are the coefficients for the characteristic equation corresponding to 𝐴ሚ 

and, therefore they will not be the coefficients corresponding to the matrix A and therefore, 

𝛷(𝐴) will not be 0. 

But I can write 𝛷(𝐴ሚ) now as, ok, see the entire thing here is 𝛷(𝐴), ok. So, this is 𝛷(𝐴) - 

𝛼ଶBK -𝛼ଵA BK -𝛼ଵBK𝐴ሚ - 𝐴ଶBK, ok. So, we will have two more terms here -A BK 𝐴ሚ -

BK𝐴ሚଶ, because I will just put them up here to A BK 𝐴ሚ - BK𝐴ሚଶ, ok. Now, this 𝛷(𝐴ሚ) = 0, 

ok. Now, so, I can, so this entire thing will equate to a 0 here, ok. So, 𝛷(𝐴) minus all these 

terms will equate to 0. 
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And this we will simplify to some nice looking term here that, ok; I just take 𝛷(𝐴) to the 

left and what I will be left is [B AB 𝐴௡ିଵ𝐵], and allow some terms here, right 𝛼ଶ K and 

then K, ok, so ok. Something looks nice here, right. I just want if I just can do some magic 

to just find what is this K then I am done, ok. I will just skip, I will just keep skipping all 

the all these steps here, ok.  

So, for controllability this matrix should be should be invertible if I am looking essentially 

in the single input single output case. So, let me call this just C and I can now write this 

equivalently as 𝐶ିଵ𝛷(𝐴) is this entire matrix here with some term star 1, some term star 2 

and the K, ok, I call this star 1, I call this as star 2, ok, nice. 

So, I just again want to do something here, right. So, if I just multiply to the left of both 

sides by [0 0 1], this will be [0 0 1], times star of 1, star of 2, K, ok. What is this? This is 

just equal to K and I just now look at this and this it turns out that the K is simply [0 0 

1] 𝐶ିଵ𝛷(𝐴), ok. This is the what is called as the famous Ackermann’s formula, ok. 
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So, that is, so that is what is we derive through the Ackermann’s formula, ok. So, I just 

have this example I just live for you to solve this. It is again same application of the 

methods that we had over here, right, ok. And I will maybe put up the solutions when I 

when I upload the slides, ok, right. 
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Before I started this lecture we said that we should or; there were some hints that 

controllability should be some kind of a necessary condition for pole placement, right. So, 

you can start from the controllable canonical form, something similar was also seen in the 



Ackermann’s formula where you where you needed inevitability of the controllability 

matrix. So, let us spend some time and prove the following, right that the necessary and 

sufficient condition for arbitrary pole placement is that the system is fully controllable and 

observable, ok. 
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So, then system is, so what does it mean? So, if I can place the pole placement is equivalent 

to system being completely controllable, ok. So, let us start with part 1 of the proof, right. 

Let us say system is not completely controllable, which means at the rank of C which is 

[B AB 𝐴௡ିଵ𝐵] let it be some q < n, ok. 

In that situation, what I know is I can transform system into its controllable part and its 

uncontrollable part, right, ok. So, so I assume that there exists a transformation that will 

take my system from it is starting from it is original form to the to the controllable 

decomposed form, right, ok. Now, this is easy to check that if I have the characteristic 

equation in A and B, this will be the same as having the characteristic equation in 𝐴መ, where 

𝐴መ, 𝐵෠  and all they correspond to be a controllable canonical form, ok. Now, how does this 

expand to? 

So, I just look at this term here this will be sI minus, ok. What is A? A looks something 

like this ൤
𝐴஼ 𝐴ଵଶ

0 𝐴௨
൨ plus B will be ቂ

𝐵஼

0
ቃ, some [𝐾஼ 𝐾௨] , ok. So, this will be now of the 

forms I am looking at the determinant of this. So, this will be s𝐼௤. So, this A is a q x q 



matrix here right. So, this will be sI  - 𝐴௖ + 𝐵௖𝐾஼ all these controllable terms. Here I will 

have a -𝐴ଵଶ + 𝐵௖𝐾௨, 0 here I will have the S n corresponding to this 𝐴௨ would be of 

dimension n - q. So, the identity of s𝐼௡ି௤ - 𝐴ଶଶ, the determinant of this should be 0 which 

essentially means that I have (𝑠𝐼௤ - 𝐴௖ + 𝐵௖𝐾௖)( s𝐼௡ି௤ -𝐴ଶଶ) = 0, ok. 

So, I start with a system which is of the form 𝑥̇= Ax + Bu apply a control law of the form 

u = -K x and I assume that the that the that the system is not completely controllable which 

means I can decompose it into this controllable an uncontrollable forms and I look what 

happens with the application of control to the close loop characteristic equation, right. 

So, what I know is that the close loop characteristic equation will tell me, where the close 

loop poles are, ok. So, look at this, right. So, what are, what is the difference between the 

close loop poles of 𝐴௨ and its open loop poles? Right. So, they are the same, right, open 

loop sorry, I should call this 𝐴௨, right this to be consistent with the notation here, right. 

So, this should also be 𝐴௨, ok. So, this control law does not alter the poles of 𝐴௨, there is 

no change in poles here due to u = -K x, ok. Or other words the close loop eigenvalues of 

𝐴௨ do not depend on K and therefore, if the system is not completely controllable I cannot 

place the poles of this part of the uncontrollable part, ok. So, this is this completes one part 

of the proof ah. 

The second part of the proof would say that, start with a system which is completely 

controllable, start with the system and prove that one can place all the poles of the close 

loop system at the desired locations, ok. So, I just go back I know do the proof not repeated 

over here again, but what we saw say for example, here in this example is that, ok.  

So, if I have a system which is in this form this system is of course, completely 

controllable, ok. It is in the controllable canonical form, if it is not in the controllable 

canonical form I always know how to get it into the controllable canonical form. So, what 

was the conclusion here is that if the system is in this form then I can always place the 

close loop poles according to this formula. I can always compute 𝑘ଵ till 𝑘௡, right. 

So, what does this mean? Right. I start from a completely controllable system and I show 

that I can place all the poles or a solution to this exercise, starting from this given 

characteristic equation to this unknown equation always exists, right. So, that is a also 

proof of saying that well start from a completely controllable system, then you can place 



all the poles of the close loop system at the desired locations. I will not write down the 

steps, but I think this is kind of very obvious from what we saw over there, ok. 
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So, that is kind of kind of writing down the text over here again. 
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So, what we just saw is 3 methods of placing the close loop poles one from directly 

comparing the open loop and close loop characteristic equation. Second is write down in 

the controllable canonical form, so that the formulas become much easier. And the third 

was a little more involved one of the of the Ackermann’s formula, ok. So, what we will do 



is also have a little tutorial session where we solve a bunch of problems including partial 

pool placement, how to even handle these pole placement problems via MATLAB and a 

bunch of other practice problems that we will post online. And I hope that helps a bit in 

the in the learning process. 

So, this concludes a lecture on design controller design assuming the system was full is 

like, I all the states of the system were available for measurement, so that I could just do 

u= -K x. The question is what if all the states of the system are not observable sorry, are 

not yeah are not observable. That would lead to then say, then I need to do something else 

can I do an observer design, can I add on top of some I just have the output measurements, 

can I make use of the outputs to construct the states and then feedback those states to get 

the appropriate control design, right. 

So, that will come up in next week’s lectures in terms of a observer design. And we will 

also look at simultaneously how to design control and observer, and also see if designing 

an observer does it really affect the controllable, control part or and vice versa, right. So, 

we will see this both together. That is, that will come up next week. 

Thanks for listening. 


