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Hi, everyone. So, welcome to this week 9th lecture on the course on Linear Systems 

Theory. So, much of the first 8 weeks were focused on of course, gathering tools sfrom 

math and the remaining part of it was devoted to lots of analysis of systems before even 

we start a design procedure or go about designing a system for a certain requirements could 

be on transients, could be on steady state and so on. And that kind of gives you also 

importance of the analysis part which includes starting from stability till verifying 

conditions for stability, controllability, observability and so on.  

So, now, we will slowly try to build up a case for why these tools were useful or why this 

rigorous analysis first was useful even before we start solving design problems alright. 

And then the next 4 weeks will exclusively deal on several design aspects of linear 

systems, starting from a controller design to an observer design, optimal control or a very 

basics of optimal control. And towards the end we will look at some of the computational 

aspects of the analysis tools that we had learnt earlier in the course, right. 

So, just before we go into design process we will just do the last part of the analysis which 

kind of turns out to be quite useful and also elegant in its representation, ok. So, we start 

with what is called the Kalman decomposition. So, the question that we will ask today is, 

in week 7 we had talked about a controllable decomposition and defined for ourselves the 

notion of stabilizability, and the system is good to stabilize if and only if the uncontrollable 

part is it stable and so on we had a weaker version of observability called the called the 

condition on detectability and we also had a process of how we go about doing the 

observable decomposition of the system into its observable and an observable part.  

And we kind of viewed these two as two independent features of systems which in practice 

may not be the case all the time. We may have a system which is both uncontrollable and 

an observable at the same time, right.  



So, we will today look at methods or how to arrive for this decompose models when I have 

both the system losing controllability and the system also losing observability, what is the 

appropriate transformation that will take me from take me to take me from the original 

system to the system which is decompose explicitly in terms of its uncontrollable, 

unobservable modes and so on.  

(Refer Slide Time: 03:32) 

 

So, there could be 4 possibilities that that could exist. So, if I just look at the standard 

controllability notion, I could decompose my system into the controllable part and the 

uncontrollable part. I will call this 𝑛̅ in such a way that 𝑛  +𝑛̅ was equal to n. So, I am 

just looking at the dimension of the controllable and the uncontrollable part, similarly with 

the observable and the unobservable part, ok.  

Again, in such a way that the observable, the total dimension of the observable space plus 

the unobservable subspace is the dimension of the state space, right. So, that is what we 

did separate analysis both for controllability and observability, ok. So, now, a system can 

have both the properties together, right. So, we can now decompose or divide the system 

based on it is both of its controllability and observability properties by control by 

considering controllability and observability together, ok.  
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How that looks like? So, it should be kind of pretty intuitive to arrive at this picture, right. 

So, we could have a system which has both modes which are controllable and an 

observable, like a part of the system could be both controllable and observable. A part of 

the system just could be controllable, but not observable, similarly a part of the system 

could be observable, but not controllable. And there could be a part of the system which 

is neither controllable nor observable. And we say let us decompose the system into its 4 

of this kind of subspaces where the part which is both controllable and observable like all 

eight of dimension n co.  

Here which is neither which is controllable, but not observable I call it 𝑛തതത and the part 

which is observable, but not controllable I call it n c bar o, and this is a part which is neither 

controllable nor observable, ok. So, this would be its respective dimensions. Now, these 4 

dimensions together will satisfy this relation that the all of these sub space will constitute 

𝑅 and a nice pictorial view of this decomposition, ok.  
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So, before we come to the overall a decomposition let us individually revisit the 

controllable and the observable decomposition techniques. So, first what we what we know 

is that a system which is not fully controllable can be transformed into its controllable 

mode, I call it 𝑥 and the uncontrollable modes I call them 𝑥̅, right, in such a way that the 

𝑥̇, the 𝐵 influences only the first k components and then the remaining n - k are 

uncontrollable, right. And then this will come via some kind of a for transformation which 

looks something like this where 𝑉 forms a basis for the A invariant controllable subspace 

𝐶 of A B, right, so this 𝑉 was constructed through the independent the k independent 

columns of the controllability matrix C, ok. 

Similarly, in the unobservable case we know that a system which is not fully observable 

can be transformed such that it decomposes the observable and unobservable components 

in such a way, right. So, these are my first say k observable modes, these are my 

unobservable modes and see, this need not be 0, but there can be something here like 𝐵 

bar and y will be decomposed into its observable and the un observable form, an 

observable and the unobservable components.  

Again, the transformation will be a 𝑉 and 𝑉ത, where the columns of V naught bar form a 

basis for the A invariant, unobservable subspace of the form of the transformation A C and 

this 𝑉 comes from again the observability matrix, ok. So, now, we will see how to 



combine these two and get a decomposition for a system which can be both uncontrollable 

in some modes and unobservable in some modes, ok. 
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So, this Canonical Kalman Decomposition would give us a similarity transformation 

which decomposes the system into it is its 4 components or modes and gives both 

controllable and observable pairs. So, we know what is the transformation that gives us a 

controllable decomposition that is if I say 𝑥, ok. Let me write this all over here again.  
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So, I have ቂ
𝑥

𝑥̅
ቃ = 𝑇ିଵ x which was such that this T was a result of [𝑉 𝑉̅]. So, I could just 

split it into, so this come comes from the controllable subspace with the pair 𝐴, 𝐵 being 

controllable, and similarly what we saw was with the observability get I have 𝑥, 𝑥ത  is in 

such a way that, so this decomposition comes why are again some 𝑇ିଵx sorry, 𝑇ିଵx where 

T was [𝑉 𝑉ഥ], ok. So, this columns found the subspace or this columns from a basis for 

the unobservable subspace and these columns from the basis for the controllable subspace, 

as we saw just in the previous slide, ok. 

So, now, can I write this or can I find a transformation which combines both of these 

things, right, so in such a way that I have this four subspaces controllable, observable, 

controllable but not observable, observable but not controllable and either controllable nor 

observable. So, can I find a basis for each of these 4 subspaces? So, V co denoting the 

basis for the controllable and observable subspace and so on, right. Can I find a 

transformation which then transforms my system to something like this? Ok.  

So, I have the decomposed system into its parts which are both controllable observable, 

neither controllable not observable or either of them, ok. So, this is how this is what we 

will derive today or how to find a basis which will transform a system to a form which 

looks like this, ok.  
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So, again x co are the controllable and observable states and so on, ok. 
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Now, I can just draw a block diagram of this which looks like this, right. So, I have all the 

modes here sorting from controllable not observable till neither controllable, nor 

observable, ok. 
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So, the other way of looking at how to arrive at this 𝑉 and 𝑉ത is also via the singular value 

decomposition. So, I take the controllable matrix and so I can I kind of try to find ortho 

normal basis for the controllable and the uncontrollable subspace, and this is given by the 

left singular vectors of in the SVD of the of the controllability matrix. So, the singular 



value decomposition of the C would precisely have these terms here like 𝑉 and 𝑉̅ which 

we derived earlier. And similarly for the observability matrix here I will have 𝑉
் and 𝑉ത

் 

this was the basis for the invariant controllable subspace, this was the basis for the a 

invariant unobservable subspace, ok. Now, ok; so, this is another way of looking at how 

to how to derive 𝑉 and 𝑉ത all, right, ok. It is the same process, you could just verify it 

quickly, ok. 
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Now, how do we start for this? Right. So, let us also write this down as we go by, ok.  
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So, let me just draw a little picture here, right. So, which will say, I have this as my 

controllable subspace of say some dimension 𝑛 and this is an observable subspace of 

some dimension 𝑛, and there is some intersection here which will say give me the 

subspace which is both controllable and observable, ok. Now, the aim is to find these 4 

basis here. This 𝑉, 𝑉ത , 𝑉̅ and 𝑉തതത, ok. So, now let us say I have, let us start with say 

that I want to find V c o from, I know these two things I know 𝑉 I also know 𝑉 from this 

the slides here, right or even the previous ones, and possibly also maybe 𝑉ത, ok. 

Now, for some vector, right, so some vector which comes from the, so this vector 𝑥 is 

from that is this is fully within the controllable and observable subspaces, ok. Now, this 

𝑥, so let us say, there is this, this has a point and call this 𝑥, ok. Now, this 𝑥 is both 

in the controllable subspace and also in the observable subspace and therefore, it can be 

expressed as, so 𝑥 is both in the controllable subspace and the observable subspace, ok.  

I am just I am using the notation a bit, but it is good for understanding. And because it is 

in both observable subspace it can be expressed as a linear combination of let us say this I 

call this as 𝑥 and I call this as 𝑥 of the basis vectors of the controllable subspace 𝑥 and 

the observable subspace 𝑥 which means that this 𝑥 can be written as; so, we will we 

just try to derive for these  expressions.  

So, this 𝑥 is say some 𝑎ଵ𝑉ଵ till 𝑎 𝑉, this can be written as 𝑉 a, ok. So, this is again 

you see that this 𝑥. So, 𝑥 is of dimension 𝑛 and therefore, I will have 𝑛 basis vectors. 

This x c naught can also be written in terms of this space with its corresponding basis as 

say some 𝑏ଵ𝑉, right; 𝑉ଵ + 𝑏𝑉 like a this is 𝑉, sorry 𝑉 b, right. This is the dimension 

of the observable subspace, ok. 

And this is also in this subspace, right with I can also write this as some basis of 𝑉 which 

is the subspace which is both controllable and observable plus some time some vector c, 

ok. So, this vectors a and b are such that 𝑥 is both within the controllable and observable 

subspace, ok. Now, what happens? Ok. How do we write? Now, given these two vectors 

how can I find our basis for 𝑉 like for this intersection space here? Ok. 

So, where we are now, right. So, for every 𝑥 in the controllable and observable subspace 

there will excess a unique a and b which form their own subspaces of dimension 𝑛. So, 

this dimension is the dimension of this subspace which is both controllable and observable 



and these are all the same vectors 𝑥 which is 𝑉a, 𝑉b and 𝑉c these are all the same 

vectors.  

Now, can we find again the basis for now, 𝑉 that is what we will do right now, ok. 
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So, let me say that, ok. So, let us say the go to a new page say consider the subspace of a 

to be spanned by some vectors say 𝑎ଵ till 𝑎, and similarly for b to be spanned by 𝑏ଵ till 

𝑏. 

Now, the basis for 𝑉 given the sets what do I have now; I have 𝑉𝑎ଵ 𝑉𝑎, this is 𝑉𝑉. 

Similarly, 𝑉 can also be written as 𝑉𝑏ଵ, 𝑉𝑏, this is 𝑉𝑉, ok. Now, what is this 𝑉 

here? 𝑉 is an n x 𝑛 matrix, and similarly 𝑛 x 𝑛. Similarly, 𝑉 is and 𝑛 x 𝑛 matrix, 

ok. 
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Now, what do I have now so far? So, this; so, the idea was, since 5, 6 and 7 to represent 

the same vector we can find a basis 𝑉 and 𝑉  for subspace is spanned by a and b vectors, 

such that a is 𝑉c and b is some 𝑉c, ok. Now, that is how this basis is derived. So, this 

means that now I can write these vectors, let us go here that 𝑥 as 𝑉, 𝑉c or this also 

comes from this thing here, right. So, 𝑉 is 𝑉𝑉. So, I just do this here.  

So, therefore, 𝑥 would be 𝑉, 𝑉c which essentially means that now compare this 

expression and sorry, and this expression which would kind of imply that there is 

something like this holds true alright which is also what we derived over here 𝑉 is 𝑉a 

and 𝑉 is also 𝑉𝑉, right, ok. 

Now, the next steps, right. So, what do we do? So, I have a this relation, and I have this 

relation. So, let us quickly do something else. So, if I know basis for 𝑉 or and we know 

𝑉ത we know that these are orthogonal complements which means 𝑉ത
்𝑉 = 0, ok. Now, what 

do I know? I know that 𝑉 is 𝑉𝑉, this is also equal to 𝑉V b, ok. 

Now, what do I do is just pre multiply this by this one, transpose, ok. Now, this is 0 

therefore, 𝑉ത
்𝑉𝑉 = 0, ok. Now, which means that this 𝑉 is in the null space of 𝑉

்𝑉, 

from here, ok. Now, what is this 𝑉? This 𝑉 is the basis for the coefficient say from here, 

ok. And therefore, now if I go one step further what is 𝑉? 𝑉 was 𝑉𝑉 or this is equal to 

𝑉. Now, where does 𝑉 come from? 𝑉 is just from the null space of 𝑉
்𝑉, right. So, this 



is the first one the relation that we derive, and this, the steps are written also here. So, this 

is what we derived, 𝑉 is 𝑉N(𝑉
்𝑉). Now, I know each of this set I know 𝑉, I know this 

one and I also know this one from the from the decomposition which comes from 

somewhere over here, ok. 

Similar, steps I can derive now 𝑉ത , 𝑉̅ and 𝑉തതത very similar steps, ok. And then I just use 

this nice property here, right. And therefore, now with this steps I now know what is this 

T that will take me from a given system to its this decomposes form into explicitly into its 

modes which are both controllable and observable controllable, but not observable, but not 

controllable and either controllable nor observable, ok. 
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So, now, so what we have derived now so far is the following. Like for every LTI system 

there is a similarity transformation which we just derived that takes it to the following form 

in such a way that this pair is controllable and this pair is observable; you see from the 

expression, you see like this is the controllable.  

So, you have controls 𝑥 entering here and here and no controls going here. So, these pairs 

is; these two pairs are controllable then. So, this is a controllable pair, this is an observable 

pair, the triple A, B, C, with 𝐴, 𝐵, 𝐶 is both controllable and observable and the 

transfer function of the original system is the same as the transfer function of this one, 

right of both the controllable and observable system.  



So, when we did the controllable decomposition we proved that the controllable or the 

transfer function is the transfer function of only the controllable part. Similarly, if I do it 

for the observable decomposition I get the relation that the transfer function of the system 

is only a transfer function of its observable part. Now, if I combine these two I get this 

result that the transfer function of the system is the transfer function of both the 

controllable and the observable system that is what we read from this triple here, ok. So, 

that is that is kind of kind of kind of nice. 

So, this leads us to now to define a concept of what is a minimal realization because if I 

look at this system here well the system is of dimension n, or if would expect that there 

will be n poles in the system whereas, if I derive the transfer function it will just have poles 

which just have this number, right from both the controllable and the a no the controllable 

part and the observable part. Well, this is also a state space representation of the system. 

Whereas, I can go back from this transformation and still derive the state space 

representation of the system and both are same, right. Even though here you define n states 

here you will define only 𝑛 states, ok.  

Now, we will see what is how to actually get to a system which has only you know which 

only shows me the controllable and the observable form and just discards the remaining 

parts, ok.  
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So, now what is the realization, and I guess we all know this derivation. So, given A, B, 

C, D this is called a realization of a transfer function, if I can do this. So, this is the relation 

between the state space and the transfer function model, ok.  

Now, given the state space model I can construct the transfer function. The converse 

problem is then called the realization problem. Can I go from, this is a simple computation 

or can I go from here till here, ok? Now, the size n of the vector x is called the order of 

realization, right. So, here I started with a system which was like this, right, so this in this 

realization. So, this �̅� was also of dimension n, whereas well if I look at the transfer 

function it might just show me 𝑛 number of poles or that will that is a minimal order of 

the system that is what we will go we will derive now, ok. 

So, now, well this is not surprising to know there are many possible state space realization 

for a give a transfer function, and they can be offer different orders. I will towards the end 

do some examples on this and see how it goes, ok.  
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So, before this we needs to define some small concepts called the Markov parameters, ok. 
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So, what are this Markov parameters? Ok. So, what I know from the relation between state 

space and transfer function and the tools from Laplace transforms is the following, right. 

This I think I know this one. Now, what is 𝑒௧? 𝑒௧ usually shows up as some infinite 

series, ok. Now, Laplace of 
௧ 

!
 is 𝑠ି(ାଵ), I think it should be able to derive this and 

therefore, (𝑠𝐼 − 𝐴)ିଵ is nothing, but the summation of now, ∑ 𝑠ି(ାଵ)𝐴ஶ
ୀ , ok. And 

therefore, the transfer function G of s which was usually computed in the following form 

that here C(𝑠𝐼 − 𝐴)ିଵB + D plus, then I substitute for (𝑠𝐼 − 𝐴)ିଵ I get ∑ 𝑠ି(ାଵ)𝐶𝐴ஶ
ୀ 𝐵, 

ok. So, these two matrices D and C 𝐴B for i ≥ 0 are called the Markov parameters, ok. 

And this Markov parameters are these parameters; Markov parameters can be related to 

the impulse response of the system impulse the responses also usually referred to as the 

natural response. So, therefore, G(t) would be the inverse of G(s) and I do all the steps and 

what I get is the following C 𝑒௧ B plus D with the impulse function δ(t), ok.  

Now, just take some derivative, so 
ௗீ

ௗ௧  = is C𝐴𝑒௧B and, the D will no longer be here, ok. 

From which we obtain the following relationship between the impulse response and the 

Markov parameters. So, the limit of t, ok, sort of this 
ௗீ

ௗ௧
 is C𝐴B. So, 𝑒௧ is the identities 

for all i ≥ 1, ok. So, these are the Markov parameters and this is a little procedure of how 

they are derived, ok. 



So, something which I will not prove, but just state as a result is the following say I have 

a system �̇� = Ax + Bu, y = Cx + Du and another realization which looks like this �̇̅� b= �̅��̅� 

+𝐵ത𝑢ത, the u will be the same. Now, y = 𝐶̅�̅� + 𝐷ഥ𝑢ത, ok. These two realizations denoted by A, 

B, C, D and �̅�, 𝐵ത , 𝐶̅, 𝐷ഥ are equivalent if and only if they have the same Markov parameters, 

ok. We will, I will not do the proof of this, but we will use this relation to prove results 

relating to the minimal realization, ok.  
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So, what does the minimal realization now mean? Realization G(s) of a realization of G(s) 

is called minimal or irreducible if there is no realization of G(s) of smaller order, right or 

if I go from the now transfer function to the state space it must just have n states, the 

minimum number of states. They should not be another 𝑛ᇱ  which is less than n, ok 

Now, when it is possible? Well, a realization or is minimal if and only if it is both 

controllable and observable, ok. So, we will do, spend some time just doing the proof of 

this.  
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So, what does it say? Ok. First we will prove that every minimal realization must be both 

controllable and observable, ok. So, we again use the method of contradiction, ok. So, 

assume that realization is either not controllable or not observable, ok. And therefore, by 

the Kalman decomposition, ok, we can always find realization of smaller order that realize 

the same transfer function and therefore, contradicting minimality. Because what does the 

Kalman decomposition theorem also say is at C(𝑠 𝐼 –  𝐴)ିଵB + D is the same as C which 

corresponds only to the controllable and observable form, ok. So, that is kind of easy to 

check, ok.  

So, now the second set that only if part assume, so we do the reverse thing that is, the 

reverse proof that assume that the system is both controllable and observable, but the 

realization is not minimal, ok. 



(Refer Slide Time: 38:17) 

 

So, what does this say? Ok. So, I assume that when the system is both controllable and 

observable I can find a realization A, B, C, D that is not minimal which means there exist 

some other �̅�, 𝐵ത , 𝐶̅, 𝐷ഥ that is actually minimal and then we will show that these two are 

actually the same, ok. There cannot be a realization which is minimal and then this one, it 

is actually the realization which we get from this assumption is actually the minimal one, 

ok.  

So, again I have a, right. So, this assume that this is the minimal realization with some 

dimension n and say this is, assume that, this is not the minimal realization, right that is 

what we proof by contradiction, right. That the system is controllable and observable, but 

this realization is not minimal which means there exists another realization �̅�, 𝐵ത , 𝐶̅, 𝐷ഥ 

which has a realization 𝑛ത which is less than n, ok. 

Now, I just look at the controllability and observability matrix of this guy and say that O 

C the observability matrix times the controllability matrix 
𝐶

𝐶𝐴
𝐶𝐴ିଵ

൩[ B AB…. 𝐴ିଵ] is CB 

here, CAB here, C𝐴ିଵ B and then here I get C𝐴ିଵB all the way till C𝐴ଶିଶB, ok. And 

essentially or what are in these matrices are the Markov parameters, ok. 

Now, look at the other realization, right which is which we claim is that this there is some 

𝑛ത bar which is less than n which gives me the minimal realization. So, this will be again 𝐶̅ 



till 𝐶̅�̅�ିଵ I have 𝐵ത , 𝐴𝐵ത , �̅�ିଵ𝐵ത , which will be the following. Again, I have the Markov 

parameters, now in terms of 𝐶̅, 𝐵ത  and so on. So, it will 𝐶̅�̅�ଶିଶ𝐵ത , ok. 

Now, let me call this say star and star with a bar, ok. Now, this star and the star with a bar 

realize the same transfer functions, ok. Now, if they realize the same transfer functions 

they must have the same Markov parameters as say that. So, I assume that there is a 

realization A, B, C, D of one transfer function G(s), and the same transfer function also 

real also has some other realization �̅�, 𝐵ത , 𝐶̅ and 𝐷ഥ, ok. So, these two realizations are come 

from the same transfer functions if and only if these are equivalent, right just for the result 

we stated earlier, ok. 

Now, when they have same Markov parameters what we have is O C is 𝑂ത𝐶̅, ok. Now, let 

us say, that say 𝐶̅ has only 𝑛ത columns which is less than n and therefore, which is rank is 

lower than n and therefore, rank of 𝑂ത𝐶̅ is less than or equal to rank of 𝐶̅ this is less than or 

equal to rank of less than or equal to 𝑛ത. This is less than or equal to n which contradicts 

the fact that if these two are similar the rank here should be the rank here, ok.  

And therefore, we conclude that, if I whenever I assume that there is another minimal 

realization well that actually is not true that will be a contradiction and therefore, we can 

conclude from both ways that a realization is minimal if and only if it is both controllable 

and observable. 
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We now prove that a minimal realization is both controllable and observable we can 

therefore, obtain it from the Kalman decomposition. So, I have the Kalman decomposition 

matrices 𝐴 both controllable observable both B also belonging to it should be C and so, 

the minimal realizations of all of a transfer functions are similar if, right. So, this A, B, C, 

D and 𝐴ሚ, 𝐵෨  etc are minimal realizations of G(s) then there will always exist a similarity 

transformation like this, ok. So, two minimal realizations of transfer functions are actually 

similar to each other. In the same way as similarity relations between systems which were 

transform maybe to the diagonal form or to the controllable form and so on, ok. 
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So, we will do a bit of an example and, ok; so, just to note the values a bit of the control, 

controller canonical form or the controllable canonical form here, that I just would like to 

refer you to this lecture nodes or the videos of our previous course on control engineering. 

So, I will not spend time doing the controllable canonical form all over again. But we will 

take a, we will use these examples to do a bit of illustration of the of the minimal realization 

here, ok. So, I have, so given this A, B, C, D sorry, this I will have G of s, right which 

comes from C(𝑠𝐼 − 𝐴)ିଵB. So, I can just compute this as 
ସ

௦మିଶ௦ି
 and this is an easy step 

for to compute, ok.  

Now, I write this system equivalently in the controllable canonical form where let us say 

in the new form I have a pair �̅�, 𝐵ത  and 𝐶̅ which look like this. So, �̅� will be, so �̅� in the 

controllable canonical form would be ቂ
0 1
2 7

ቃ the new B would be ቂ0
1

ቃ and the C would be 



[4 0], ok. So, again I do the transfer function from this I convert this to the transfer function 

where again C(𝑠𝐼 − 𝐴)ିଵB and I get 
ସ

௦మିଶ௦ି
, right and therefore, I can write like verify 

this relation over here, right,. So, that is one simple example here, right, ok. 

Now, what we can just to also add one step is check if this minimal realization here is both 

controllable and observable, right and you will actually find that this realization is both 

controllable and observable and therefore, the system which we get start from here is 

actually the minimal realization, ok. I will skip the skip the steps of finding computing the 

controllable, controllability and the observability matrix. It should be a very simple 

exercise to check, ok. 
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Now, we will go from the transfers function, right. Can I find a minimal realization for the 

following a transfer function? Ok. So, in the controllable canonical form if I write down 

the state space realization that will be something like this 
0 1 0
0 0 1
8 4 −2

൩ a with B being 


0
0
1

൩and similarly, C being [2  1 0], ok.  

Now, from if I go again back to the state from the state space transfer function I can realize 

this, but check if A, B, C is both controllable and observable, ok. And you can easily check 



that the system is not observable, you can just check from the rank of the observability 

matrix, ok. And therefore, this is not a minimal realization, ok. 

Now, check this transfer function, right. So, we can also write this in the following way  
௦ାଶ

(௦మିସ)(௦ାଶ)
 is  

ଵ

௦మିସ
, ok. And then I can now write down the controller a canonical form, the 

controllable canonical form and the observable canonical form where I have a new a let 

me call this �̅� as say ቂ
0 1
4 0

ቃ, 𝐵ത  will be ቂ
0
1

ቃ and 𝐶̅ will be [1 0] and this you can say that it 

is both controllable and observable. And therefore, this realization is actually a minimal 

realization and not this one, ok. 

One thing we can you can immediately observe is whenever the transfer function you know 

if you have can spot the pole zero cancellation then, you if you go from here till here this 

may not necessarily be minimal realization because you kind of miss the pole zero 

cancellation here. So, whenever, you just factor out this terms here and take into account 

any cancellations then you will arrive at a minimal at a minimal realization of the system. 

And therefore, we also talked about the relation between the system losing controllability 

and or observability via pole zero cancellations and this is a little you know we can also 

look at it from that point of view of to get some intuitive relation of things between pole 

zero cancellations and lots of controllability and observability.  

Similarly, you can also go from here till start with this realization and of course, it is easy 

to check that it is not controllable and observable, go back here, do the pole zero 

cancellation and then come back here, ok.  
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So, that is, that concludes todays lecture where we talked about decomposing the system 

into it explicit the forms are starting from all from the space which as this was controllable 

and observable till the space which is neither controllable and nor neither controllable and 

nor observable, and from that we derive what is the concept of a minimal realization of the 

system, ok. 

So, next time we will start with our results on controller design, essentially this would 

mean can I find a state feedback to achieve certain system performances. So, we will 

slowly also relate to the performance specifications what we did for second order systems 

in an earlier control course on the peck over showed the damping and so on. So, we will 

begin a bit of motivation from there and then go about solving more complex, complex, 

design problems. Now, so that is coming up in the next lecture. 

Thanks for listening. 


