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Hi welcome to this lecture 6 on week 7 of the course on linear systems theory. So, this 

lecture we will discuss some important aspects of what if the system is not controllable 

and how to even identify post the controllability rank conditions of what are the possible 

modes that are uncontrollable. 
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So, we will use the property of invariance with respect to a similarity transformations ok. 
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So, we will be as usual interested in both continuous and discrete time systems and what 

we saw in earlier lectures is that if there is a similarity transformation z = 𝑇ିଵ x which 

takes the system to from x coordinates to the z coordinates. I have a new system 𝑧̇ = Az + 

Bu with A new A and A B which look like this. 
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So the first thing that we will look at it is assume that the pair A, B is controllable what 

happens to the pair 𝐴̅ ,𝐵ത . So, a quick result says that this pair is controllable or when I say 

the pair A B is controllable I am essentially looking at controllability of the system ok. So, 

when this system is controllable then so controllability of this system automatically implies 



controllability of the transformed system ok. So, it is a very quick proof let us just write 

down the steps. 
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So, what do I have that if I have 𝑥̇ = Ax + Bu the controllability matrix looks like this. So, 

we have [B AB . . . . 𝐴௡ିଵB] ok. Now I have 𝑧̇ = 𝐴̅z + 𝐵തu ok. So, what is the controllability 

matrix here. This will look like [𝐵തതത 𝐴̅𝐵ത   . . . . 𝐴̅ ௡ିଵ𝐵ത] ok. Now what is 𝐴̅ that is 𝑇ିଵAT, 𝐵ത  

is 𝑇ିଵB ok. I just substitute those here. So, what is 𝐵ത? 𝐵ത  is T inverse B. What is 𝐴̅𝐵ത? 𝐴̅𝐵ത  

is 𝑇ିଵAT𝑇ିଵB right and so on. 

So, if I just write this down what I will get here is I just take this 𝑇ିଵ out I have A B this 

will be the identity I have A B. Similarly I will have 𝐴ଶB as a next term till 𝐴௡ିଵB ok. 

Now let me call this 𝐶̅. Now what is the relation between rank of C and rank of 𝐶̅ ok; 

because this is an invertible matrix that was a condition for the similarity transformation 

what we get is rank of C is rank of 𝐶̅ and therefore, if this system is controllable the 

transform system is also controllable and vice versa right.  

So, that is the proof of this at the pair A, B is controllable if and only if the pair 𝐴̅𝐵ത  which 

comes as a result of this similarity transformation is also controllable ok. 
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Now, this is important of we will look at what if the rank of the controllability matrix is 

some q which is less than n. So, the controllability matrix B to 𝐴௡ିଵB ideally you would 

assume that they would have n independent columns right for them to be of rank n. Now 

if the it is not full rank then it will be of some rank which is q and that is less than n right 

at least. So, which means that there will at least be q a linearly independent vectors here 

ok. Now this C will be A invariant ok. Now again. 
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I will just recap what we did here right. So, I was in this lecture from week 3 what we had 

what we called as an invariant subspace. So, if we had a linear transformation represented 

by the matrix A S which was an m-dimensional subspace of 𝑅௡. 



So, here if I look at I have some kind of a q dimensional subspace of the controllability 

matrix ok. So, now, this S is A invariant which means I take any element x from S I 

multiply it by A and I get S that I get. So, A times x is again in S which means that S is A 

invariant ok. Now 𝑣ଵ till 𝑣௠ were the basis for the subspaces and then I so, I just call them 

this m vectors ok. 

Now I know that A𝑣௜ is in x is in S because of invariance and this A𝑣௜ can be written as a 

linear combination of basis vectors of f and therefore, I can have an expression like this 

right that AV = V𝐴̅ where 𝐴̅ is a m x m matrix ok. So, this is; this is what we also what we 

did earlier too ok. 

 (Refer Slide Time: 06:27) 

 

Now, in that case I take this m independent vectors which come from here m independent 

vectors which come from this subspace I can always add to it n minus m vectors such that 

this T is a invertible matrix or such that this u together with this v forms a basis for 𝑅௡. In 

that case my 𝑇ିଵAT where T is constructed from here takes this form. 

So, it has a nice decomposition here right. I just I can just split it very nicely in this way. 

Now let us see what this means in the case of controllability or the cases where I actually 

lose controllability ok. So, I have this q independent columns. Now to this q independent 

columns I add so 𝑣ଵ till 𝑣௤ I can add some 𝑣௤ାଵ till 𝑣௡ such that this will form the basis 

for R n and then get do the similarity transformation ok.  



So, now, this 𝑇ିଵAT will look something like this exactly similar to what we were doing 

here and now it will be kind of obvious of why this particular concept was taught earlier 

here earlier in week 3. 
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So what happens to B, now since the image of B is a subspace of C the columns can be 

written as now independent as linear combination of the columns of v. That is there will 

exist a q x m matrix again in the in the in the similar way B with a suffix c such that B= T 

𝐵௖ or 𝑇ିଵB = 𝐵௖ and then you have a have a set of 0s here and this will be a q cross m 

matrix right ok. 
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Now, for every LTI system this is what we also proved earlier. There is a similarity 

transformation that takes the system which is of this form 𝑇ିଵAT looks something like 

this 𝑇ିଵB looks something like this and in the transformed system the controllable 

subspace is also transformed like this one. So, only the q modes are controllable right.  

So, here the rank( C) = q and therefore, c is now just the image of that q x q subspace and 

in this case the pair 𝐴௖ and 𝐵௖ will be controllable right and this is of 𝐴௖ is of; is from 𝑅௤௫௤ 

and the rank of this matrix 𝐵௖ till 𝐴௡ିଵ𝐵௖ is q ok. Now this pair is controllable, not A,B is 

not controllable whereas, some smaller 𝐴௖ and some smaller 𝐵௖ is controllable which 

means there is at least one smaller part of the system that is controllable. 

So, what happens to transfer function right? So, it is easier or it is useful now to look back 

at control one and say well there is something which is going wrong here and the system 

is not controllable; let us check what the how the transfer function looks like ok. 
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So, I have a decomposition here 𝑧̇ is also could do the same thing in this week time ah. I 

have 𝐴௖, 𝐵௖ and so this is with the decomposition that we did earlier. C will have some 

terms like this; whatever they could be. 
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Now, if I write down the transfer function ok. How to do the transfer function? I just do 

C(sI - 𝐴ିଵ )B + D. So, I do all those steps should be very easy to check and I just end up 

with the transfer function just having terms added to 𝐴௖, 𝐶௖ , 𝐵௖ and of course, T. So, so 

this is. 



So, this is a little important to note here right that the transfer function notice this 𝐴௖ and 

𝐵௖ this is the controllable part right. So, this pair 𝐴௖, 𝐵௖ was controllable and therefore, I 

can conclude that the transfer function is the transfer function of only the controllable part. 

What happens to the uncontrollable part well that is disappears in those as a result of 

certain pole-zero cancellations. 

 So, sometimes when I give you a transfer function that may not really be a completely a 

controllable system right and if you look at also it in terms of so, this is of dimension k 

and of dimension n - k. So, this the; last n - k, 𝑥̇ of n - k is just 𝐴௨. It has no control entering 

here right. 

So, this 𝐴௨𝑥௡ି௞ ok. There is no influence of the control input to this n - k states right. So, 

that is why we actually can nicely separate out the controllable part and the uncontrollable 

therefore, we call this the 𝐴௖ and this we call is the 𝐴௨ denoting the uncontrollable part 

right. 

So, the 𝐵௖ the control input effects only the first sorry should be q right that is what we 

assumed a q here and n - q right. So, q is controllable and the remaining n - q are not 

controllable right. 
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So we go back to this example of the parallel R C circuit. So, we conclude it or we could 

easily derive that when the time constants were equal the dimension of the subspace is just 



one or the system is not is not controllable that the rank of C is 1 ok. Now if I just look at 

the controllability matrix this is there is a linear dependency here therefore, I can say that 

rank of C equal to 1 if I just chose a basis ቂ
1
1

ቃ right. 

So, this vector together with the vector which is linearly independent of 1 just say 

[1 −1]் you could also you look at [0 1]் [1 0]் and so on ok. So, I construct this 

transformation T from V; V which comes from the number of independent columns of the 

controllability matrix which is 1 in this case and U which is an additional vector we 

construct in such a way that this U plus V together span 𝑅ଶ right. 

Now I do all the transformations 𝑇ିଵAT will look something like this 𝑇ିଵB will be of this 

form ok. 
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So, I have a system which now looks like this. So, if I look at here see the 𝑧ଶ term does 

not have any control influence. It is only the 𝑧ଵ that is getting effected by control by the 

control input. So, you would expect the transfer function to be have 2 poles, but then if I 

just compute the transfer function from the from this formula I just get that it is just has 1 

poles sorry just a 1 pole. 

Alternatively what you could also do is compute the transfer function of this system 

assuming a certain output and then when you plug in this equality there that the time 

constants are the same then you will essentially see a pole-zero cancellation ok. 



So, in this case also I am dealing off us with a system which has two states or essentially 

2 poles but then because of the dependence of time constants on each other or the time 

constants are equal there is a pole-zero cancellation and is look at it as a first order system. 

 Ok and this is some this is something which we miss while we do the transfer function 

(Refer Time: 15:27) analysis we assume that everything is nice and there is no pole-zero 

cancellation and so on ok. 

So, now, just look at just to conclude so, if I have this modes 𝑥௡ି௤̇   = 𝐴௨𝑥௡ି௤ ok. What do 

I do with this system? If I say well I can only control the first q modes what happens to 

this guys or it should be written in z coordinates right not in x, but does not matter. It is 

just a matter of notation. 

So, if this A is such that the this that the eigenvalues of this are unstable then the overall 

system is also unstable but there is some hope when I say when this eigenvalues are stable 

that this x that the remaining n - q states asymptotically go to 0 then I can do something 

with the controllability properties of the pair 𝐴௖ and 𝐵௖. 
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So, that is what we will look at when I, when in the next lecture where we talk of a weaker 

form of controllability which is essentially to do with stabilizability right. So, that; so we 

will focus on this controllable decomposition what to do with the uncontrollable modes 

and what to do with the controllable modes. 



Thanks. 


