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Hi everybody, welcome to this lecture 4 of week 7 on Linear Systems Theory. So, so far 

we had derived conditions for controllability. We had also checked equivalent methods 

starting from the PBH tests to the eigenvector test. Is there any relation between Lyapunov 

stability and controllability and so on?  
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So, this lecture we will talk mostly about discrete time systems. Discrete time systems 

layer usually given in this form x(k+1) = A(k)x(k) + B(k)u(k) for some M dimensional 

input. So, how does one define for here the state transition matrix? 
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We start with systems of the form let they be depending on time like the A and B. B 

matrices are also depending on time ok. So, how do I go about computing the solution of 

this or even the straight transition matrix? Now, very similar to what we had done earlier. 

So, let us start with a k = 0 and check how the solution looks like, 𝐵(0)𝑢(0). Similarly I 

can compute x(2) as A(1)x (1) + B(1)u(1). So, this is what is x(1). 

So, this is A(0)x(0) + B(0)u(0) + B(1)u(1) So, this is A(1)A(0) x(0) + A(1)B(0)u(0) + B(1) 

u(1) ok. So, in general, so if I call this as my state transition matrix. I can write it write a 

general expression for this right. So, and then x(𝑘ଵ) =  𝑥ଵ ok. 
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So, again the notion of the reachable and the controllable subspaces remains the same. So, 

we will just see about its read out the statements again. So, given two times 𝑘ଵ this is 

greater than 0 and 𝑘଴ can be equal to 0. The reachable subspace consists of all states 𝑥ଵ for 

which there exists an input sequence right. So, the reason why we just need this input 

sequence if you look at here sorry here is to define except to I need 𝑢଴ and I also need u 1 

ok. So, I need this input sequence the transfers state from x(𝑘଴) right.  

This is the origin to some state x(𝑘ଵ) right that is the set of all possible 𝑥ଵs for which there 

exists a control which can solve for this equation. So, this is just by substituting 𝑥଴ = 0 in 

this in this expression. Similarly, for the controllable subspace so, I have given two times 

𝑘ଵ with the same conditions the controllable subspace consists of all states 𝑥ଵ for which 

there exist input sequence that transfers from any initial condition to the origin. So, this is 

just looking at that my final state is the origin.  

So, I have was 0 on the left hand side and that would just turn out to be something like 

this. So, all the initial states 𝑥଴ for which there exists a solution to this equation right. So, 

to something so, if I were to just find out in this case of 2. So, I am just say what is; so, 

you have 0 is A(1)A(0) 𝑥଴ + A(1) B(0)u(0) + B(1)u(1). So, I am finding a solution for this 

u for all possible 𝑥଴. So, that is what this expression says I think this and 𝑥଴ missing here.  
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In a very similar way as that for continuous time systems we define the controllability 

Gramians right which will be useful for us in checking the conditions for controllability 



ok. So, there is a slight distinction when we translate from the control time systems to the 

discrete time systems ok. So, what is an important thing here to observe is that the 

definition of discrete time controllability it requires backward in time state transition 

matrix from k +1 to 𝑘଴.  

So, if I just look at the first expression. So, in general x (k+1) can be written as A(k)A(k-

1) all the way till A(𝑘଴) )𝑥଴ and I can solve for this 𝑥଴ if and only if all these A’s are 

invertible or they are non singular ok. So, we will again come back to what this means 

what happens to the Gramian in case these A’s are singular matrices we will discuss this 

again when we look at LTI system. So, that we can actually fit in and compute it very 

nicely an interpret what this statements could be ok. 
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So, the first theorem is its very easy to check is that the reachable subspace is just the 

image of the reachable, reachability Gramian in the discrete time case and the input that 

steers my state from the origin to any x(𝑘ଵ) is just given by this expression. Similarly I can 

do for the controllability test also right. So, if so the controllable subspace is the image of 

𝑊௖, essentially means that I am just a point just taking all the set of points that can be 

reached from the origin that will be just the image of this 𝑊௥ here.  

Similarly for the controllable subspace the proofs are very similar to those of the 

continuous time case. So, I will skip the proofs over here is this exactly the same steps. 
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So, here well what is the notion of a of a controllability matrix. So, we start with a discrete 

time system just for ease of notation I just write it x+ instead of x(k+1) = A x(k) and so 

on. Again I just switch to linear time invariant systems, now in this case I have the 

Gramians defined respectively in the following way and the controllability matrix remains 

the same ok. So, let us reinterpret this statement here. So, what is the definition of discrete 

time controllability Gramian?  

So, here let us say I am just interested now in this power set 𝐴(௞బିଵି௞) ok. So, when k= 𝑘଴ 

the first term becomes 𝐴(௞బିଵି௞బ)that is 𝐴ିଵ. Similarly in the second time step I have 𝑘଴ +

1 is 𝐴(௞బିଵି௞). So, what is k is now? k = 𝑘଴ + 1. So, this is 𝐴ିଶ and so on and therefore, 

you see that there is some requirement for the invertibility of A right.  

So, this is what it means here right. So, all these matrices are non singular and if this just 

not happen the Gramian cannot be defined ok. So, this is a little distinction between the 

control the continuous time and the discrete time evolution. No such problem though exists 

here. So, here we are we are kind of ok. 
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So, the next theorem says that again given any two time instances with 𝑘ଵ satisfying this I 

will tell you why this is important. We have the same similar theorem right that the 

reachable subspace which is equal to this should be the image of 𝑊ோ is image of C. So, 

this will be the image of the controllability Gramian which is equal to recontrollable 

subspace ok. 

So, I will do a part of this proof and the one which is obvious I will just leave it as an as 

an exercise ok. So, and then also we also look at why this particular thing here is important 

ok. So, what is to be shown is the following right. 
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So, R (𝑡଴, 𝑡ଵ) is the image of 𝑊௥ sorry just do in the discrete time says 𝑘଴, 𝑘ଵ this is image 

of C. I will leave the other the other proof. I will just do this part of the proof. So, what is 

easy to prove is the following. So, we start by showing the first step is if 𝑥ଵ is in the 

reachable subspace then it is easy to show that this 𝑥ଵ is also in the image of C. So, what 

is C is just the controllability matrix [B AB. . . . 𝐴௡ିଵ𝐵]. 

So, this part is easy. So, we will show the converse that if. So, assume that 𝑥ଵ is actually 

in the image of C ok. Now, that we have to check if this actually means that this 𝑥ଵ is also 

in the reachable subspace, which is nothing, but the image of the reachability Gramian 

from 𝑘଴ to 𝑘ଵ ok. Now, when 𝑥ଵ is in the image of C which means there will exist a vector 

sorry vector v which is in 𝑅௠௡ such that what is the dimension of this. So, this is this will 

be of dimension n cx mn such that 𝑥ଵ is C v. So, this is [B AB. . . . 𝐴௡ିଵ𝐵] times this is 

define these vectors 𝑣଴ till 𝑣௡ିଵ. 

So, this is summation ∑ 𝐴௜𝐵𝑣௜
௡ିଵ
௜ୀଵ  ok. How do how do we understand this? 
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So, whenever we talk of discrete time systems we talk of the n step control ok. What does 

it mean by the N-step control? So, let me just write down a simple equation here x(k + 1) 

=Ax(k) + Bu(k) ok. So, what does this do? So, I have 𝑥ଵ = A𝑥଴ + B𝑢଴ assume for simplicity 

here that u is just a scalar then 𝑥ଶ = A𝑥ଵ+ B𝑢ଵ. So, this is A ok. 



So, this is 𝐴ଶ𝑥଴ + AB𝑢଴ + B𝑢ଵ ok. Similarly I can write 𝑥ଷ = 𝐴ଷ𝑥଴ plus. So, x(3) let us 

write this is x (3) = Ax(2) + Bu(2). So, this is what is x(2), x (2) is  𝐴ଶ𝑥଴ + AB𝑢଴ + B𝑢ଵ + 

Bu(2). So, that will be 𝐴ଷ𝑥଴ + 𝐴ଶB𝑢଴ + AB𝑢ଵ + Bu(2) ok. So, let us just assume that n 

equal to 3 here. So, this is 𝐴ଷ𝑥଴ +[B AB 𝐴ଶ𝐵]቎
𝑢(2)

𝑢(1)
𝑢(0)

቏ ok. 

So, in when we do the controllability so, this is my C matrix ok. Here I am just assuming 

that this u is a scalar just for ease of understanding here. So, the controllability would mean 

that I should be able to reach any point 𝑥ଷ is say 𝑥ଷ starting from the origin. So, let me 

assume that this is the origin then it should mean that this C is invertible right ok. Now 

this is like the 3-step Gramian. So, I have this step one, step two, step three. So, in 

generalized I talk of the n step control. So, the idea here is ok. So, if this is controllable 

means C is invertible and I can control the system in say 3-steps or in general this is n 

steps. So, if I cannot control the system in n steps. Can I control? So, I just write this down.  

If the system is uncontrollable in n steps is can it be controllable in n + 1 steps ok. So, let 

us look at it right. So, the then my controllability the Gramian that I compute sorry the 

controllability matrix would be [B AB 𝐴ଶ𝐵] and say 𝐴ଷB or in general this would be this 

𝐴௡B ok, but what do I know up from the Cayley Hamilton theorem that this 𝐴௡B or 𝐴ଷB 

in this case can be written as a linear combination of this 3 and therefore, this does not 

contribute to the rank. So, if it is controllable in n in n steps it is controllable. So, and if it 

is not controllable in n steps it cannot be controllable in n + 1 steps. 

However there are possibilities where it could be controllable in some k steps which is less 

than n for example. So, I will do an example with this. So, this is the idea of n step control 

and that is where the Gramian comes in right. So, we compute the Gramian for n steps, but 

if I go for n + 1 it does not really add anything to my control not to my controllability 

properties, but what does it also go on to show is that I must compute this for at least. So, 

I must let the system evolve for at least n steps right. So, this is step one, step two, step 

three in this case because here I am just for simplicity assuming its 𝑅ଷ even though you 

could just generalize it for n dimensions ok. 

So, back to here alright ok. So, what we have to show is now that the control at least goes 

around four n steps and therefore, I can write u(τ) now as being 0 for 𝑡଴ ≤ t < 𝑡ଵ - n and 



this is 𝑣௧ିଵିఛ  for 𝑡ଵ - n ≤ 𝑡ଵ - 1 ok. I will quickly explain what this means, but just let us 

let us write down complete the proof first before we understand this. So x so I should do a 

k here right because I am talking in discrete times. 

So, this is sorry 𝑣௞భ ିଵିఛ  this is 𝑘଴ ≤ k < 𝑘ଵ - n. This will be again 𝑘ଵ - n ≤ k ≤ 𝑘ଵ - 1 ok. 

So, x (𝑡ଵ) is ∑ 𝐴௞భ ିଵିఛ𝐵𝑢(𝜏)
௞భ ି ଵ
ఛୀ௞బ

. So, now, this now this 𝜏 is 0 from 𝑘଴ to 𝑘ଵ - n. So, I 

just start from here right. It is this is equal to ∑ 𝐴௞భ ିଵିఛ𝐵𝑣௞భ ିଵିఛ 
௞భ ି ଵ
ఛୀ௞భ ି ୬  this is a simply 

∑ 𝐴௜𝐵𝑣௜ 
௡ିଵ
௜ୀ଴ ok. What do I know of this? What do I know of this because I know that. 

Student: (Refer Time: 22:42). 

𝑥ଵ is in the image of C. So, I will get 𝑥ଵ ok now let us let us quickly understand what these 

things mean ok. So, one way to understand this quickly is let me assume that 𝑘଴ = 0 and 

what do I need for control is I need to go at least n time steps. So, this is 𝑘଴ 𝑘଴ + 1 all the 

way till 𝑘ଵ in such a way that that this should be n right that 𝑘ଵ - 𝑘଴ should at least be equal 

to n right that is what this expression says and why do I need at least n time steps is for to 

compute the controllability matrix. 

Now, so, this is this is one way of looking at it now if I just look at 𝑘଴ = 0 and that 𝑘ଵ is 

such that 𝑘ଵ - 𝑘଴ ≥n then let us look at how this expression translates to ok. 
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So, what is the expression that we have ok. So, I have u(τ) the way I write it as 0 for 𝑘଴ ≤ 

k < 𝑘ଵ - n then I have this u is 𝑣௞భ ିଵିఛ  for 𝑘ଵ - n ≤ k < 𝑘ଵ- 1 ok. So, when let us say 𝑘଴= 

0 and what do I need I need. So, what do I have from this expression here is that for the n-

step Gramian is 𝑘ଵ-𝑘଴ should be at least equal to n. So, 𝑘ଵ - 𝑘଴ let me just assumed this is 

n. So, I have 𝑘ଵ = n ok. So, so this is 0 right the first one is anyway 0 because I have 0 less 

than or equal to k less than or equal. So, this is this is a strictly less than here less than 0. 

So, this is this is ruled out. 

So, the second expression we will say that what is so far from 0 < k ≤ n - 1. I will have the 

input v as now I have 𝑘ଵ - 1 -τ what is 𝑘ଵ this is n - 1 -τ. So, I have 𝑣௡ିଵିఛ  ok. So, that is 

what I have on the right hand side here and therefore, now to look at. So, this should be 

now a little easier to look at because 𝑘ଵ = n. So, I just look at this summation from 0 till n 

- 1 and then we just translates to 𝐴௜ here right and then you compute backwards from n - 

1. So, let us let us look at this summation part for a while. 

So, what do I have here is sorry summation tau equal to sorry ∑ 𝐴௞భ ିଵିఛ𝐵𝑣௞భ ିଵିఛ 
௞భ ି ଵ
ఛୀ௞భ ି ୬  

ok. What do I know? I know that 𝑘ଵ = n ok. So, this will be summation 

∑ 𝐴௡ିଵିఛ𝐵𝑣௡ିଵିఛ 
௡ ି ଵ
ఛୀ଴ . So, when τ = 0 I will have 𝐴௡ିଵ𝐵 v computed at n - 1. When = 1 

I will have 𝐴௡ିଶ𝐵𝑣௡ିଶ  all the way till 𝐴଴𝐵𝑣଴  that is what was here right this one ok. 
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Now, what is this lead us to observe or to conclude that in discrete time the notions of 

control ability and reachability coincide only if the if the matrix is singular right otherwise 

well that the reachable subspace is or the reachable set is a subset of the controllable 

substrate, but the reverse inclusion does not always hold ok. So, the second thing which 

we will derive with the help of an example we said in the discrete time the notion of 

controllability and reachability do not depend on time do not depend on time only when 

the intervals have length larger than n ok.  

So, what does it mean that if I again look at the n-step Gramian I have B sorry n step 

controllability matrix I have n - 1 B right. So, what happens when I look at a time n or n + 

1 or so on. This does not really contribute right. So, this is what it means right. It does not 

depend on time only when the intervals have length greater than or equal to n. So, after n 

I think any of those computations will not lead us to anything, but whereas, I if what 

happens if this interval is less than n if 𝑘ଵ − 𝑘଴ is less than n. So, let us just check with the 

help of an example ok. 
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So, let us say I have a system in 𝑅ଶ  x(k + 1) = Ax(k) + B u(k) where A is ቂ
0 1
1 1

ቃ B is ቂ
0
1

ቃ  

then the controllability matrix which is [B AB] is ቂ0 1
1 1

ቃ and the rank is two here you can 

check that easily. And therefore, the system is reachable which means that I can transfer 

from any state 𝑥଴ to any other state 𝑥ଵ in 2 time steps ok. 



Now, how do I let us say I have 𝑥ଵ has some vector ቂ
𝑎
𝑏

ቃ and 𝑥଴ is such that this is ቂ
𝑎଴

𝑏଴
ቃ ok. 

Now, I want to compute what are the control inputs that will steer the system to any other 

point in the state space ok. So, again we just look at x (1) = Ax(0) + Bu(0). x (2) = Ax(1) 

+ Bu(1) this is 𝐴ଶ x(0) + Abu(0) + Bu(1) ok. So, I can substitute. So, what do I know I 

know what is x(2) here is (a,b) this is a final state which I want to reach and 𝑥଴ = ቂ
𝑎଴

𝑏଴
ቃ ok. 

I know the matrices a b and so on. So, I just substitute it over there to get the following. 

So, I can also write this as [B AB] that is with 𝑢ଵ 𝑢ଶ is x(2), what is x(2) that is the final 

state that I want to reach a b - a square x naught ok. What is A square? A square is 1 1 1 

2. What is 𝑥଴ that is 𝑎଴ and 𝑏଴ ok. So, I know these two therefore, I can compute my u to 

be u 1 sorry this should be 𝑢଴ 𝑢ଵ 𝑢଴is simply b - 1 - 𝑏଴ a minus 𝑎଴ minus 𝑏଴ the minus 

here ok. 
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Now, on the other hand let me choose ok. So, let me just check the set of point I say I can 

actually reach in one time step which means x (1) = A𝑥଴ + B𝑢଴ and let me again just say 

what are the final states 𝑥ଵ is a,b and 𝑥଴ is 𝑎଴ and 𝑏଴ ok. In this case I just do this 

rearrangement 𝑥ଵ is a b minus a what is my A A is I just give this here a is ቂ
0 1
1 1

ቃ 𝑥଴ what 

is 𝑥଴ is  ቂ
𝑎଴

𝑏଴
ቃ plus the B matrix here is ቂ

0
1

ቃ and 𝑢଴ ok. Here I can actually solve for 𝑢଴ for 



example, if 𝑥ଵ is (1,3) and 𝑥଴ is ቂ
0
1

ቃ if I substitute this here what I have x 1 is ቂ
1
3

ቃ - 

ቂ
0 1
1 1

ቃ ቂ
0
1

ቃ ok. 

So, this should be equal to sign here this equal this equals to ቂ
0
1

ቃ 𝑢଴ ok. So, this implies 

that with 𝑢଴ = 2 I can transfer the state from 𝑥଴ which is (0 1) to 𝑥ଵ which is ቂ
1
3

ቃ in 1 time 

step ok. So, in this case what is the reachable subspace because when I do the when I 

compute see I only look at B right ok. So, the reachable subspace here is if I can look at 

just R I just compute the first term of the controllability matrix which I just say that is 𝐶ଵ 

what is the first term of the controllability matrix that is B because I do not compute 𝐴ଶB 

anymore right sorry. I do not compute A B anymore right. 

So, this is the span of all vectors span of ቂ
0
1

ቃ right and in this case the transfer can be 

achieved in one time step ok. The same transfer can also be achieved in 2 time steps and 

therefore, what do I have is we just go back to what we were saying here right. So, in the 

discrete time case the notion of controllability does not depend on time only when it is 

greater than n right, but what if it is what if the intervals are of length lesser and I still have 

a reachable subspace, but these reachable subsets will just be a just be a subspace of this 

image of c ok. 

But the reverse inclusion will not hold that is that is easy to check right. So, so image of C 

will not be as a subset of R right. So, which means that I can there are some states which 

I can reach in less than n time steps. In this example there are states for example, from ቂ0
1

ቃ 

to ቂ
0
3

ቃ which I can actually reach in 1 time step not I do not exactly need 2 time steps. So, 

there is some reachable subspace and that subspace is just classified by the span of C 

because also how do we look at R the reachable subspace reachable subspace say 𝑘଴, 𝑘ଵ 

was equal to the image of C and if this was usually because the way we compute C was [B 

AB ...𝐴௡ିଵ𝐵].  

So, I am looking at 𝑘ଵ - 𝑘଴ be equal to n at least could also be greater than 1, but what if it 

is less than 1 I am just looking at 1 time step; so, R[𝑘଴, 𝑘ଵ] where 𝑘ଵ or I will just do this 

𝑘଴, 𝑘଴ +1. So, I am just looking at just this oh this is image of B ok. That is what exactly I 

am I am doing over here right ok. 
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So, the controllability tests and all are very similar in the discrete time case that the rank 

of C should be equal to n ok. I will skip this proof; I also skip this proof of the Lyapunov 

test for controllability right. So, this is again exactly the same and we know now the reason 

why this matrix looks in this form 𝐴்WA - W = B𝐵். I will skip these steps, but it is just 

useful to know to know the results. 
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So, I just conclude this lecture over here and in the next lecture what we will see is ok. So, 

far we have asked ourselves of when is the system controllable how do I test whether or 

not the system is controllable? 

An important question that we will ask is, what happens if the system is not a controllable. 

How do I even check? So, system being not controllable might mean that there are some 

modes which I cannot control or some states which I cannot control. How do I even 

identify those? So, we will do that with the help of what we call as a controllable 

decomposition. So, that is coming up in the in the next lecture. 

Thank you. 


