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Hello everybody in this 3rd lecture where we still continue to learn to develop models, we 

will learn a very special class of systems of course, this will not be a major part of the 

course starting from week 2, but it is good to know a model. So, far we have seen linear 

models, we have seen non-linear models, we have seen how linear models can be used to 

analyze network systems for example, in the wireless sensor networks.  

We also saw examples about hybrid systems where you have continuous dynamics which 

are also governed by certain discrete events which happened ok. So, this class of systems 

are called infinite dimension systems or infinite dimension models, a more engineering 

term for this is also called as lumped sorry distributed parameter models. 

So, far what we saw is that if I take a resistor it is just a little element of what I call as a 

lump, that it is just if it is just a small element which does not depend on any other 

parameter ok. So, what I mean by this distributed parameter models.  
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So, we will start from examples which we know from say electromagnetic text ok. So, 

now, if we remember models of transmission line well it is even if you do not remember. 

So, we had several models right we had something called the T model approximation 

which was something like this for I just ignore the dissipative elements here we also had 

something called the pie model right which was be something like this where the entire 

capacitance was clubbed into just one single capacitor, the inductors were distributed into 

two, 


ଶ
  this side, 



ଶ
  this side. 

Similarly, if I have what I call as a pie model I have to entire inductance of the transmission 

line, lumped into just a single inductor and capacitors just 


ଶ
, 



ଶ
 like that into two different 

elements ok. So, a simpler version of this is also the L model which we consider here right.  

So, I just have R L C G and ok, what is the difference between having this model and what 

actually happens is that the resistance is distributed over the entire length of the 

transmission line, say if I take say if it is a 5 meter lineType equation here. the resistance 

from 0 to 2.5 might be different than the entire line right. So, you have these parameters R 

L and C which are like distributed over the entire line. So, in this and I think so, we start 

with what is a simpler version of these models called the L model. So, it is called the L 

model of the line ok. 

So, if I take a small element starting from z to 𝑧 + 𝛥𝑧 which is that this entire thing is of 

length 𝛥𝑧 ok. So, if R L C and G are measured per unit length in a little element of the 

transmission line. So, this is my entire transmission line, starting from 0 to L and is 

interested in a little element here 𝛥𝑧 and this little element in this length 𝛥𝑧 looks like this 

L model ok. So, what will be the R for this element 𝛥𝑧 will be R *𝛥𝑧 similarly with L, G 

the conductance and C the capacitance right ok. 

What do I know about this things I already know the circuit laws right. So, if I apply KVL 

to the outer loop so, here at z I denote my voltage at as V(z,t), the voltage at z + 𝛥𝑧 as V( 

z + 𝛥𝑧 ,t). So, that I have to do this, because if I say am I have say generator here which is 

a typical setting going to some load here. So, the voltage at length 0 at any time t will 

definitely be different than voltage at length L at the same time in instant t essentially 

because there might be a drop in the line right.  



So, the line has it is own resistances so, the voltage here might be different than voltage 

here, then here ultimately until it reaches the it reaches the load and there are several 

methods of how to preserve, how to make this drop to be lesser and so on that is a part of 

a of a power system course. If you are an electrical engineer and if you have done that 

course, if you have not done it does not really matter because we are not really analyze 

power systems here ok. So, if I apply the basic voltage laws V equal to so, that if I call this 

current through this; through this branch as I( z,t).  

So, I just have the simple equation here, that V (z, t) is R for the little element 𝛥𝑧 the 

current times 𝐿
ௗ

ௗ௧
 right. So, the voltage here from here till here is a voltage across R L and 

the voltage here which is what which is simply V( z + 𝛥𝑧, t) again the time is fixed here 

right am, just looking at how the things vary with space. So, far we were interested in say 

ௗ௫

ௗ௧
= 𝐴𝑥 + 𝐵𝑢. So, there is another dimension here in terms of space ok. 
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So, I just rearrange terms and write my equations like this right and if I will take the limit 

as 𝛥𝑧 tends to 0 this looks familiar to what I learned in calculus as definitions of derivatives 

right. Now for a small elements also this turns out to be the derivative or the partial 

derivative with respect to z is on the right hand side I have things like this.  

So, this is the first equation now we start from ah lumped model of length 𝛥𝑧 to which I 

write down the equations for the entire line it would seem something like this. So, this is 



valid for all z between 0 and L and these are essentially systems which are now governed 

by Partial Differential Equations also called PDEs, but infinite dimensional systems are 

the systems governed by partial differential equations. The another transfer dimensional 

systems could just be like time delay system. So, one way to look at things here would be 

that if I send voltage here at time t = 0, it might just reach the load which is at length L 

with some delay top right. So, transmission lines can also in some cases be modeled as 

pure time delay systems right. 

So, there is possibly no loss maybe in some ideal case just that there is a time difference 

by the time I transmit my voltage from z = 0 till z = L again there is a lot of literature on 

that. So, the reason of also doing this is doing this model explicitly is that the same system 

can be represented by different models is what we claimed in one of our earlier lectures 

and this is one you know indication or one example of that ok. So, how do I write the 

second equation so, if I look at if I apply kcl to this node here. So, I have I(z,t) coming 

from here, I have the 𝛥 𝐼 here and I have I( z +𝛥𝑧, 𝑡 )as again all at the same time same 

time t. So, I just applied the current laws ok. 

So, I just write down I (t , z)= 𝛥𝐼 + I(z+ 𝛥𝑧, t) and I just write down this delta I in terms of 

V (z + 𝛥𝑧,t) and this 2 elements here ok, because that the potential at this point of the 

voltage at this point is just V( z +𝛥𝑧, t) ok. 
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So, and then I just rearrange terms take the limit as 𝛥𝑧 goes to 0 and then I have other 

partial differential equation here right ok. So, these two equations together constitute what 

are also called the telegraphers equations or the equations wave equations for a 

transmission line and this are also similar if you come from the mechanical domain of a 

vibrating string there is nothing. So, there is a traveling wave there is a traveling wave also 

here, the structure almost looks similar and both come from set of conservation laws right. 

So, what I said here is like you know we are essentially looking at systems of conservation 

laws ok, what are the things or what are the physical quantities that are conserved here ok. 

So, let me just take this equation for a while, now for simplicity let me assume G =0 what 

I would have and let me write down I and V in one of the fundamental terms right this is 

called the charge and the flux.  

So, we know that 𝑄 𝚤𝑠 𝐼, 𝛷 𝚤𝑠 𝑉̇̇  and after all the necessary things have been taken care of 

I can write this also as 
ௗொ

ௗ
 is or what the partial of Q which again depending on z,t till dΦ 

by ok. Now if I integrate this over the spatial domain what I have is from say 0 to L say 

again d z and this would be this will have a  
ଵ


. So, this guy goes here so, times 

ଵ


 so this so, 

the rate of the flux or the rate of the flux around the entire or in the entire spatial domain 

would just be so, this has dimensions of say 
ொ


 from 0 to L with a minus sign.  

So, this Q this has just the dimensions of voltage this is V at 0 minus V at L ok. So, 

whatever is the rate of change in the spatial domain is just what is being exchanged through 

the boundary ok, similarly I can write also for the other equation right over here. So, if I 

again right it in terms of Q and Φ as R = 0 what I will have is 
ௗః

ௗ௭
 where Φis the flux say 

ଵ


  

is 
ௗொ

ௗ௧
 and similarly to what I had here I can derive the conservation laws. So, if I integrate 

from 0 to L 
ௗொ

ௗ௧
 dz is from 0 to L. So, this will be the rate of current or the rate of the charge 

or the increase or decrease of charge in the spatial domain will just be what is being 

exchanged through the boundary. 

So, this will be 
ః


  with a negative sign from 0 to L this would be 

ః


 at z equal to 0 

ః


  at z 

capital L ,z =L ok. So, the conservation laws so, whatever is happening in the special 

domain is what is being exchanged with the boundary against in right same expression for 



the energy conservation at the rate of change of energy in the spatial domain which is from 

between 0 to L it just what is being exchanged through the boundary ok.  
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So, keeping this in mind can I derive expressions or equations which say for example, 

model a traffic flow right. So, this comes picture from one of the busiest highway in the 

US. So, I will just look at these as one dimensional flow right. So, because everybody there 

follows lane so, I can just say model through a one through one lane and then it just like 

one dimension traffic flow right you do not really go like zigzag as we do in an Indian 

condition in a lane less situations.  

How do I model this right. So, for example, if I say what does it mean by even modeling 

this. So, can I have an expression that relates the flow of the cars through a special domain 

also the entire length of the highway ok, this will clear a little slowly right. So, let me take 

a stretch of the lane right and you know these points as a to b ok, at any time instant t let 

N denote the number of cars in this interval from a to b. 

So, this is the number of cars which (Refer Time: 15:14) say there are like may be 1 2 3 4 

5 cars ok. Now what happens from t to Δt well it is a moving traffic so, the number of cars 

could possibly have changed right. So, the change in number of cars in a small interval Δ 

t is what it is it just a difference right. 



So, I look at the number of cars in the interval a b at the time t+ Δ t minus the number of 

cars in the interval (a ,b) at time t. So, am just writing down the change in the number of 

cars in a small interval at Δt. So, am just interested in this interval a to b how does the 

number of cars change from t to Δt ok.  

Now if say that the traffic is just still right it is not moving what will be the change, the 

change will be 0 right, because no cars enter and no cars leave. On the other hand if say 

that the traffic is moving in a very steady state right say it is like one car enters from here 

and one car leaves from here still the number of cars would be just 5 for example, in this 

case right. So, one is entering other is leaving so, the change from t to t +Δt will again be 

0.  

So, the change is caused in this the change will be caused only when there is a difference 

of cars flowing into the entire flowing into the interval at x = a and leaving at x =b, say 

there are 2 cars leaving this interview entering a and say 4 cars leaving b then there is a 

change right kind of obvious ok. So, now, if I am just standing at this point say at a and if 

someone else is standing at this point b, I can measure the number of cars passing this 

point a for example, at time t and I call it the flux Q (x,t) and I can do it for point b I can 

do it for any point between a and b this is generally call it x right so, the number of cars 

passing the point x at time t.  

Now, so, the change as I said is caused only by difference of what happens at point a and 

point b ok. Now the change in total number of cars in this interval will just be given by 

this one assuming that cars leaving are treated as negative at point b and then cars entering 

are treated as positive right in the interval Δt ok.  

Now this change is equal to this change, because here am just count counting what is 

happening between points a and b and I know that the change that happens between points 

a and b is only governed by what happens at x =a and x = b ok, that I quantify as this 

number. So, this one is equal to this 2 right so this what I write here.  
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Now, I divide by Δt here and then take the limit and have a nice looking ordinary 

differential equations in terms of an the rate or the rate of change of number of cars in the 

interval (a,b) is just defined by what is the number of cars that are leaving point b and the 

number of cars that are entering point a. So, what I have done is, I have just written down 

a model for this statement here and the change can only be caused by a difference of cars 

flowing into the interval at x = a and leaving at x =b right. So, if these two are equal then 

this is 0, 
ௗ

ௗ௧
 if you this and this are equal then 

ௗே

ௗ௧
  is 0.  

So, I just have a nice looking model for the statement, this statement I know is always true 

right this is basic observation and this relation holds for any point just say this is like 

starting from length 0 to 100 kilometers it holds for maybe a b here, a b here, here or any 

interval so ok. I am not really interested now in defining this interval, can I just write a 

general expression right for any point right ok, to do this I define x another quantity which 

again is kind of obvious right there is nothing really to be surprised about this.  

So, given a scenario like this right I can write like this I can always define the car density 

the number of cars per unit length at position x and time t physics teaches us about density 

and what I know about density or from what I know from physics would be that, there will 

be I cannot have infinite amount of cars per unit length right. So, the density is upper 

bounded I can only hold maybe 4 cars per meter or per 5 meters or something ok. Now if 



I define density I can then write down the number of cars in the interval (a, b) at time t 

simply as the function of density, like this is again from physics.  

So, now, I can on I can right relate this two expressions also now to the density ok. So, 

this I so, what do I eliminate here itself this (a ,b) here is actually can be written more 

generally here right and this (a , b) can be arbitrary anything ok. 
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So, this the rate of change of cars in the interval a b at time t is this can be rewritten in 

terms of the density ok. This also well, then this is also related to this that is what the next 

expression says N - Q (b,t) + Q (a ,t) is just now written this I can right. So, assuming that 

this Q is differentiable is this Q is differentiable with respect to x I can write minus Q (b 

,t) + Q (a,t) as expression and now we just combine these two ok, these two why are this 

expression and I get something like this right. 

From the integral a to b 
ௗఘ

ௗ௧
 + 

ௗொ

ௗ௫
 dx= 0 right I assuming smoothness and all that nice 

properties ok. This is what I call as a global conservation law right the number of cars are 

conserved that whatever is going from point a is actually coming out at point b and that 

there is no all of a sudden the car does not disappear or appear from nowhere. A little proof 

will also show we will skip the proof that I can just write this down as a local conservation 

law and this for any point x and this point is valid for any say any point between say 0 and 

L, if L is the length of the entire hybrid ok. 



So, this also resembles the mass conservation law influence in fluid dynamics, what is the 

relation right. So, if I look at so, what I do here is, I just look at car says really small 

infinitesimal points moving through a straight line that is essentially how I model fluid 

also a very small particles moving in a straight line and it is just a one dimensional motion 

it just go x am not really worried about this direction or this direction at the moment ok.  

So, even though well physics or the fluid dynamics is completed by another conservation 

law called law so the momentum conservation ok, will not go into the details of these 

things. So, just to show you an illustration of how starting from a physical observation of 

traffic flow we can actually write them down as partial differential equations ok. 

Of course the aim of the course will not be to look at solutions of these equations, which 

will depend on initial plus boundary conditions and so on, but just to give you an idea of 

how to start from basic physical observations to arrive at mathematical expression.  

Now of course, these are very simple models and you can derive more complicated models 

on is the flux depending on the density, is a flux depending on the velocity of the car upper 

bound on the velocity and there are more and more things on there. So, for those details I 

can just refer you to this notes which are available online ok. We pause here before we go 

to the next set of examples which will be on computing systems. 


