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Hello everybody. Welcome to this 5th week of lectures on Linear Systems Theory. So, 

this week will be a little shorter module, but we will focus on some nice qualitative 

behavior of systems and these are essentially to do with Equilibrium Points of the system. 
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So, well we would have encountered these definitions some times during our previous 

courses, but we will give it a general setting here of the kind of systems that we will be 

dealing with. So, if I consider a differential equation of the form. So, this could be non-

linear and also I put the t in just to also take into account the time varying nature of it. 

So, as usual x comes is an n dimension vector, f is a vector field from R x 𝑅 to 𝑅 with 

some initial conditions ok. So, the basic definition of an equilibrium points is the following 

that 𝑥∗ is an equilibrium point of this system. One if it satisfies this equation right so, 

f(𝑥∗, 𝑡) = 0 for all t > 0 ok. 
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So, what does this mean? So, we will go through few examples to see different kinds of 

equilibrium that we will encounter. So, in the case of a simple pendulum where everything 

all the parameters are normalized to 1; I have an equation which looks like this ok. So, 

equilibrium points are 1 where you know I just say 𝑥ଵ̇= 0, 𝑥ଶ̇ = 0 and so on. 

So, what do I get from the first equation is that so, this will imply that 𝑥ଶ = 0 which is a 

kind of to check that the velocity would be 0 at the equilibrium and this would mean that 

sin(𝑥ଵ) is=0 which means it will have a variety of solutions right. So, starting from say π, 

2π and so on; so, all this multiples of π.  

So, what is a different or a unique about this system is that it has multiple equilibrium. So, 

if I were just to look at a linear systems, we were essentially looking at �̇� = Ax and if A 

was full rank or invertible, then the origin was the equilibrium. So, this to begin with is a 

non-linear system, the on nonlinearity appears in this term here and this system is seen to 

have a multiple equilibrium. 
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So, if I relate to the phase space that I had drawn earlier for the case of undamped response 

so, you can see here right. So, this point here is a equilibrium sorry. So, you can see a 

couple of equilibriums here and one at the origin and so on ok; sorry this is behaving weird 

ok. So, if I go back to the phase space which I had drawn in one of our earlier lectures, you 

can see that this actually corresponds to set of different equilibrium point starting point 

here, you have an equilibrium point here and so on if you keep on progressing to the right 

and the left. 

So, this is a typical case of a system or a non-linear systems which has multiple equilibrium 

points. What are the nature of this equilibrium points do each of the equilibrium points 

exhibit the same behavior or not that we will see in the due course of this lecture ok. So, 

in general so, if so, the we started off with the system f (x,t), but if the system is 

autonomous that which means that that the system does not explicitly depend on time, then 

finding equilibrium corresponds to solving just the non-linear equation f(x) = 0; same in 

the case of a pendulum right. So, this was an autonomous system and I was just solving 

for f(x) =  0 ok. 
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So, is it all very obvious in the linear case that the origin is always the equilibrium point. 

Well, the answer turns out to be right not very obvious, but we will look at couple of 

examples. So, in the linear case the equation a x = 0. So, my dynamics are the form �̇� = 

Ax, I said �̇� = 0 (Refer Time: 04:55) solving for this equation if Ax = 0. So, this system 

has a unique solution if and if there is a typo here A is nonsingular or A is invertible. 

So, in case when A is invertible, I can just write that x is 𝐴ିଵ0 that is 0. So, the origin is 

the unique solution of this equation if and only if the matrix A is invertible. So, on the 

other hand if say A is singular, what happens if A is singular? So, let us say I take an 

example like this right 𝑥ଵ, 𝑥ଶ. I am looking for this to be 0 if a solve for this what do I get 

from the 1 that 𝑥ଵ = 0 and I do not get any expression for x 2 which means that (0, 𝑥ଶ) is 

a solution to this. 

So, what do I mean by this at any value right, it could be (0, 1) is a solution (0, -1) ,(0, 10) 

and so on are the solution to this equation. Any value of 𝑥ଶ with 𝑥ଵ=0 is a solution if I 

were just were to draw it here x 1 ,x 2. So, 𝑥ଵ = 0 and 𝑥ଶ being any values. So, this entire 

horizontal line is a solution to Ax = 0. In this case or it also means that if A is singular then 

it has a continuum of solutions right. So, this is a sorry. 

So, this entire line here is the continuum of solutions for this for this set of equations or 

the or for the system which is represented by A of this form ok. So, this is also the null 

space of A. So, here in the in the case when A was invertible or nonsingular, then the null 



space is just the trivial point like this that x = 0 is the space. Well this phenomena can also 

occur in the non-linear case. So, if I have a system which looks like this 𝑥ଵ̇= -a𝑥ଵ.+ b𝑥ଵ𝑥ଶ, 

𝑥ଶ̇ is so on. 

So, I just look at the solution of what is the equilibrium just look at the solutions of f(x) =  

0. The second equation will give me -b𝑥ଵ𝑥ଶ = 0 first equation is -a𝑥ଵ + b𝑥ଵ𝑥ଶ = 0. From 

here I already know that b 𝑥ଵ 𝑥ଶ is 0. Therefore, I am left with just this equation which 

means that 𝑥ଵ = 0. So, this is the only thing that I can derive from this equation and 

therefore, 0 and any 𝑥ଶ is a solution to this equation of is an equilibrium point for this for 

this system and therefore, this system also exhibits a continuum of equilibrium. 

An interesting case that throws to us lots of insights in to understanding equilibrium points 

is essentially with second order systems. 
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Well let us just say I am dealing with second order linear systems and this linear system 

could be just be linear by itself or it could come as a process of linearization of a non-

linear systems that we will do in the next lecture proceed succeeding this lecture. 

So, let me just make things simple here and say I am just dealing with a second order linear 

system which means �̇� = A x, A is in 𝑅ଶ௫ଶ x is a two dimensional vector ok. So, for any 

given some initial state 𝑥, the solution will always take this form and now we know how 

to compute 𝑒௧. We can also do it via its Jordan form and so on right. So, e power At and 



here j is the real Jordan form of a P is a nonsingular matrix which takes it from a given 

form to its appropriate Jordan form right and P is of course, nonsingular and we also know 

how to derive this matrix P ok. 

So, depending on the nature of eigen values, the Jordan form can take several forms in this 

case essentially it will take three forms. So, first is when the eigen values are real and 

distinct. So, this will just be the Jordan form will just be a diagonal also this should be a 

𝜆ଶ here which means the eigen values are just 𝜆ଵ, 𝜆ଶ. In this case, I just realize a nice 

natural diagonal form. 

In case the eigen values are repeated like lambda and lambda are my eigen values, then 

the Jordan form can take can be something like this where k can either be 0 or one 

depending on the on the multiplicity of the geometric multiplicity of the eigen values third 

thing is when I have complex eigen values where α ± jβ also ok; listen alpha missing here. 

So, we will have in this case complex eigen values ok. What do each of these eigen values 

signify? These are just information on stability or there is a little more of information than 

that and when do these cases actually occur ok. 
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So, first let us start with the case of real eigen values ok. 
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What does it mean both eigen values are real ah? They are both non-zero, we will come to 

the case of 0 eigen values a little later ok. So, let us say I have this set of eigen values, let 

me just derive this and I come and come back to this slide. 
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So, I have 𝜆ଵ and 𝜆ଶ which are not equal to each other and which are also not equal to 0 

and again I am looking at a system with �̇� = A x. 



Now, I know in this case that by taking its eigen vectors v 1 and v 2 and a coordinate 

transformation which looks like this. 𝑀ିଵx, I can transform this system into a diagonal 

form and the diagonal form looks like this 𝑧ଵ̇ = 𝜆ଵ𝑧ଵ and 𝑧ଶ̇ = 𝜆ଶ𝑧ଶ and this will have 

solutions 𝑧ଵ(t) = 𝑧ଵ𝑒ఒభ௧ similarly 𝑧ଶ of t is 𝑧ଶ𝑒ఒమ௧ ok. 

So, this is just how the solutions would look like now depending on the values of lambda 

whether they are greater or less than 0. These solutions will either increase exponentially 

or will decrease exponentially and tend to the origin ok. So, back to here so, so, this is 

what we have now right, the solutions in the diagonal form are just given by this. Now, I 

can just eliminate t to write my equations of this form this is this a little straight forward 

to check also how do I eliminate t.  

So, I have this two equations right 𝑧ଵ̇ = 𝜆ଵ𝑧ଵ, 𝑧ଶ̇ = 𝜆ଶ𝑧ଶ. So, I just have 
ௗ௭మ

ௗ௭భ
 can be written 

of the form 
ఒమ௭మ

ఒభ௭భ
 and I can do all the all the calculus that I know solving integral equations 

and I just end up with a with a solutions like this with C depending on the initial conditions 

and so on ok. So, this is this is like easy to check ok. 

The first case which we would be interested is when 𝜆ଶ < 𝜆ଵ and both are negative right. 

The first observation is since both are negative. So, I will it is easy to check that these will 

go to 0 this term will also goes to 0 as sorry as t goes to infinity ok. This is this kind of 

obvious and if I look at in the 𝑧ଵ - 𝑧ଶ plane. The trajectories tend to the origin like. So, here 

𝑧ଵ also 0 and 𝑧ଶ also goes to 0 and of course, in this case the 0 turns out to be the 

equilibrium point. So, the origin is the equilibrium point. 

Just you can substitute (𝑧ଵ̇, 𝑧ଶ̇) = (0,0) and end up with equations 𝜆ଵ𝑧ଵ = 0 𝜆ଶ𝑧ଶ = 0 and 

therefore, (𝑧ଵ, 𝑧ଶ) is (0,0) is the equilibrium point ok. 



(Refer Slide Time: 15:02) 

 

So, what happens in this case? So, if I look at look at so, what I know now is that these in 

the 𝑧ଵ-𝑧ଶ plane, the trajectories tend to 0 as times progresses right or asymptotically ok. 

So, what how do they actually do that? So, from my equation relating 𝑧ଵ and 𝑧ଶ, I can 

compute the slope of this line right how does 𝑧ଶ change with respect to 𝑧ଵ right that is what 

we that that the derivative is essentially the slope of it. So, this is a positive number. The 

slope of the curve so, it is easy to check from here that the slope of the curve approaches 

0 as z 1 goes to 0.  

Second is the slope approaches infinity as 𝑧ଵ goes to infinity right that is what is happening 

here right. So, as the trajectory approaches the origin, it becomes tangent to the 𝑧ଵ axis. 

So, if we look at these things as the approach the origin they are becoming tangent to the 

𝑧ଵ axis and away from the origin, they will be parallel to the 𝑧ଶ axis right at really at infinity 

right. And, the second observation is as it approaches infinity, it becomes parallel to the 

𝑧ଶ axis. You can you can just plot this for yourself and check.  

So, we have put up already the code to help you draw face portraits of this form. If you 

have already done this in our week 1 lectures a bit of it starting with phase space. So, this 

is also a continuation to that there we really did not talk of equilibrium points and the 

nature of them. But, slowly we will get to understand that the kind of things that we are 

doing today will essentially relate to stable equilibrium points unstable equilibrium points 



if I am talking on stable I am looking at an under damped situation, I am looking at an over 

damped situation, critically damped and so on right ok. 

So, this is nice here right. So, I just see that all the trajectories are actually converging to 

the origin. So, it means that if I am at the origin I will always be at the origin and so, but 

if I am slightly perturbed here say. So, if say end up at this point here, then I will slowly 

come back to the origin right. 
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So, let us come go back to the 𝑥ଵ- 𝑥ଶ plane and check what is happening here ok. In the 

𝑥ଵ- 𝑥ଶ plane, the trajectory is tend to the origin again as t tends to infinity ok. Now, we 

have here eigen values which are 𝜆ଶ < 𝜆ଵ < 0. So, we call this as so, if this condition is 

true, then the term 𝑒ఒమ௧ converges to the origin faster than 𝑒ఒభ௧ ok. So, this is faster ok. 

So, we call this is the fast eigen value and then the corresponding eigen vector as the fast 

eigen vector and similarly the with the slow eigen value and the slow eigen vector. 

So, as times increases, the trajectories become tangent to the slow eigen vector in 𝑣ଵ and 

as they approach and parallel to the fast eigen vector away from the origin. So, you can 

see roughly here that you know the slow eigen vector should be somewhere around here 

and the fast eigen vector like somewhere around here right. I think in just quickly check 

for any example this should hold right. 



So,. So, we in the 𝑧ଵ-𝑧ଶ plane, it actually looked quite nice of all trajectories are going to 

the origin and here in this case this will be the slow eigen vector and this will be naturally 

the fast eigen vector and correspondingly in the 𝑥ଵ-𝑥ଶ plane ok. When such a behavior is 

seen the equilibrium point 𝑥 is called a stable node because all any trajectory is starting 

around the origin will actually come back to the origin. So, we will define the notion of 

stability formally in next week’s lectures, but for the movement we can just observe this 

and call this a stable node right ok. 
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Unstable node its everything is still the same that your 𝜆ଵ and 𝜆ଶ are right. So, both are 

positive. So, 𝑒ఒభ௧ and 𝑒ఒమ௧ will both go to infinity as t goes to infinity ok. So, when 𝜆ଵ , 𝜆ଶ 

greater than 0, the exponential terms grow exponentially as time increases. It will happen 

same. So, so if I were to just plot it in the 0 one 𝑧ଶ plane, it will just be the same except 

the arrows being reversed right. 

So, all trajectory is starting from the origin will or near the origin will tend to go away 

from the origin whereas, in the stable node case all trajectory starting around the origin 

will tend to come back to the origin. If your initial condition is the origin, you will always 

be at the origin ok. So, in this case the equilibrium point is called an unstable node for 

eigen values which are greater than 0 ok. 
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Interesting thing happens when we have eigen values which are real, but which have 

opposite sign say +1 and -1 of course, this would corresponding to correspond to an un 

unstable system. So, we call 𝜆ଶ which is less than 0 the stable eigen value and of course, 

correspondingly the stable eigen vector and 𝜆ଵ. This should be unstable 𝜆ଵ is the unstable 

eigen value and hence the unstable eigen vector. 

So, 𝜆ଵ is stable and 𝜆ଶ is unstable it is a little typo here ok. So, how to understand the 

behavior of this? Let us again analyze this two terms here. So, I have 𝑒ఒభ௧ and 𝑒ఒమ௧. So, 

𝜆ଵ > 0 it is, this stable eigen value and 𝜆ଶ < 0. So, this is the unstable eigen value sorry 𝜆ଵ 

> 0. So, this is my unstable eigen value and of course, the corresponding eigen vector will 

be called the unstable eigen vector 𝜆ଶ < 0 and I will call this the stable eigen value ok. 

So, what would we expect as time progresses that 𝑒ఒమ௧ will tend to 0 as t goes to infinity 

whereas, 𝑒ఒభ௧  will tend to infinity as t goes to infinity ok. So, so, just come back to this. 

So, 𝑒ఒ௧ corresponds to 𝑧ଵ. So, 𝑧ଵ(t) = 𝑧ଵ, 𝑧ଶ(𝑡) = 𝑧ଶ𝑒ఒమ௧. So, if were to plot this in my z 

1- z 2 plane so, this plots would look something like this right. At infinity well the 𝑧ଶ will 

tend to 0 and 𝑧ଵ will go to infinity from starting from any initial condition; this way this 

way and this way ok. This is how the plot will look in the 𝑧ଵ - 𝑧ଶ plane when we have 

eigen values one of which real eigen values one of which one of which is unstable and the 

other one is stable ok. 



So, in back to the 𝑥ଵ - 𝑥ଶ plane, this would look something like this. So, the stable 

trajectories are along the stable eigen vector and the unstable trajectories are along the 

unstable eigen vector. So, this could this could so, you can just differentiate the things here 

or more naturally over here and so on ok. So, in this case the equilibrium point x = 0 is 

called a saddle point. So, this was about real eigen values. 
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What about the case when we have complex eigen values?  
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Well that case also turns out to be interesting. So, when both eigen values are complex I 

have some eigen values, let me call they are α ± jβ ok. So, let us again do this over here 

ok. 
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So, when I have complex eigen values, this means my 𝜆ଵ, 𝜆ଶare of the form α ± jβ and of 

course, I do the usual change of coordinates from z = 𝑀ିଵ𝑥 to get my system of the 

following form 𝑧ଵ = 𝛼𝑧ଵ - β𝑧ଶ 𝑧ଶ  =  𝛽𝑧ଵ + α𝑧ଶ. 

So, I just do a little change of coordinates let us say change to polar coordinates ok. What 

do I have in polar coordinates? r = ඥ(𝑧ଵ
ଶ + 𝑧ଶ

ଶ) and the angle θ = 𝑡𝑎𝑛ିଵ(
௭మ

௭భ
) of ok. Now if 

I write this equations in polar coordinates, I will have two coupled first order differential 

equations that is �̇� = αr. The second equation given by �̇� =β ok. 

So, for a given initial state 𝑟 and 𝜃, the solutions are the form r(t) = 𝑟 𝑒ఈ௧ and θ(t) = 𝜃+ 

βt ok. So, this is interesting here right. So, I see that I have some if I am looking in the 

polar coordinates, I am looking at the radius of it. So, to speak which is, which has an 

exponential term depending on t ok. 

So, if I just say what happens to the radius when α < 0. So, I have r(t) = 𝑟𝑒ି௧t, for 𝛼 = -1. 

So, this will mean that in my 𝑧ଵ - 𝑧ଶ plane, my trajectories will just spiral to the origin say 

may be in this way ok; the 𝑧ଵ- 𝑧ଶ plane right it is also obvious from here right I start with 

initial radius and it will just go spiraling to the origin ok. 



Now, back to here; so, when α < 0 the trajectory spiral to the origin, in this case of complex 

eigen value; I call my equilibrium point to be a stable focus ok. 
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Now, the same thing when α > 0; well I just see from here that when α> 0 r(t) which is 𝑟 

let us say α is 1, you see that the radius actually starting from some initial radius. The 

radius actually increases with time or it in other words it just spirals away from the origin 

ok. 

So, this is 𝑧ଵ- 𝑧ଶ the direction of arrows will be away from the origin; in this case, they 

will be towards the origin ok. In such a case, all the trajectories are going away from the 

origin the equilibrium point is called an unstable focus ok. 
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Interesting thing happens when r = 0 when r = 0 in this case sorry α = 0, r(t) = 𝑟𝑒ఈ௧; when 

α = 0 this is just is just 𝑟 just be the radius where it actually started from for all times t. 

This will just be for all times t > 0. 

Essentially I am looking at a circle of constant radius r for all times t> ok. So, if I if I come 

back to my 𝑥ଵ - 𝑥ଶ plane so, this could also in general be ellipses right. So, when alpha 

equal to 0 the trajectory is so, they just they just are in some periodic orbits around the 

origin like here right or this one. They either is a circle of radius r in this case or more 

generally, they will look like an like an ellipse. 

So, in this case the equilibrium point is called a called a center ok. So, this also if I look at 

it correspond to few cases that that we learnt earlier right. So, this is usually the undamped 

case. These things would correspond to the under damped system of course, I am not really 

talking about what is a damping in this stable in an unstable system that really does not 

make sense. So, this is this are things that are corresponding to the underdamped case or 

the undamped system whereas, I go back here this would correspond to something like an 

over damped system or when 𝜆ଵ, 𝜆ଶ are equal it will correspond to a to a critically damped 

system. And this are these kind of plots we drew earlier in our week ones lectures. 

Now, there we just talked about damping the damping properties of the system, but this is 

a little more general way of looking at it. 
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What happens when we have a repeated eigen values or for the case when we look at a 

critically damped system?  
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Well when we have non 0 repeated values which means lambda 1 and lambda 2 both are 

equal to lambda, the trajectory is well as usual they converge to the origin and in this case 

again the equilibrium is called a stable node ok. 
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So, let us let us check this in a bit more detail when we have a non 0 multiple eigen values 

ok; again I will look at ok. So, this means essentially that lambda 2 and lambda 1 are equal 

to lambda and this is actually not equal to 0. We will come to the case of for the 0 eigen 

value a little later and with appropriate transformation, I can write this system as z 1 dot is 

lambda z 1 plus k z 2 z 2 dot is lambda z 2. 

So, couple of cases can occur when k is 0 and when k equal to 1 ok. When k equal to 0 I 

am just looking at these two equations right z 1 dot is lambda z 1’, z 2 dot is lambda z 2. 

So, if I just compare with a first case which I had of z 1 dot is lambda 1 z 1, z 2 dot is 

lambda 2 z 2 which had the relation between z 2 was given by c times the z 1 power  

lambda 2 by lambda 1 and then c was z 2 naught by z 1 naught by z 1 naughtt lambda 2 

by lambda 1. 

So, if I just compare this to the situation where I will have 𝜆ଵ = 𝜆ଶ. It should be easy to 

check the following right that in if I just draw this in my z 1-z 2 plane. All the trajectories 

will be coming to the origin this way or this way or this way ok. So, so it is like the little 

contrast with the slow and fast eigen values and eigen vectors and so on ok. 

So, what is also interesting is the case when k = 1. This should be easy to plot I mean you 

can just check by yourself. So, when k = 1, then I have  𝑧ଵ̇ is λ𝑧ଵ + 𝑧ଶ, 𝑧ଶ̇ = 𝜆𝑧ଶ. So, the 

solutions would be 𝑧ଵ(t) is e power lambda t 𝑧ଵ + k𝑧ଶt, 𝑧ଶ(t) is e power lambda t 𝑧ଶ. 



Of course if I just want to write it in terms of 𝑧ଵ and 𝑧ଶ that will simply be 𝑧ଵ = 𝑧ଶ [
௭భబ

௭మబ
 + 



ఒ
log(

௭మ

ଶ
)] ok. So, I will just no not plot this, but we will just check what this means in the 

in the 𝑥ଵ- 𝑥ଶ case. So, it will turn out not surprisingly that that you are actually talking of 

a stable system because the eigen values are less than 0. We are talking of eigen values 

being equal to each others. So, we are talking about some critically damped situation where 

we would naturally expect the trajectories to come back to the origin starting from a 

neighborhood of the origin. 

So, this is how they will look like and will all already we will also call this as a stable 

node. 

(Refer Slide Time: 36:55) 

 

What happens when it is an unstable node, well just the plots will be similar with just the 

eigen just the direction or of the arrows being reversed. So, naturally I am looking at say 

eigen value of +1, +1, the system will naturally be unstable and this equilibrium. I will call 

as an unstable node ok. 
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The next thing that we will discuss is an interesting case when there is a possibility of 

having a 0 eigen value ok. 
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So, let us start with just one of the eigen value being 0 let us say 𝜆ଵ = 0 and then 𝜆ଶ< 0 ok. 
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So, how will it how will the system look at in how will the transform system look like? 

So, when I just write it in this Jordan form. So, 𝜆ଵ = 0 𝜆ଶ ≠ 0 and I just again its 

transformation matrix [v 1 v 2] and via the transformation z = 𝑀ିଵx in my new 

coordinates, I have 𝑧ଵ̇ = 0, 𝑧ଶ̇ = 𝜆ଶ𝑧ଶ. The solutions are pretty straight forward to compute 

𝑧ଵ(𝑡) will just be whatever it began with its initial condition 𝑧ଶ (t) will be 𝑧ଶ𝑒ఒమ௧. 

So, if I were just to plot 𝑧ଵ and 𝑧ଶ say for initial condition over here, 𝑧ଵ will just be here 

and if 𝜆ଶ <0 the trajectories would just now be behave this way. So, this is the initial 

condition of 𝑧ଵ, then the trajectories will be here if this is the initial conditions the 

trajectories will go this way for all 𝜆ଶ which is less than 0 ok. 

So, what does that mean right? So, first is the matrix a has a non-trivial null space and any 

vector in the null space of a is an equilibrium point of the system ok, how will we deduce 

the equilibrium points. So, if I have a system like this 
𝑧ଵ̇

𝑧ଶ̇
൨= 

0 0
0 𝜆ଶ

൨ ቂ
𝑧ଵ

𝑧ଶ
ቃz 1 z 2. What are 

the equilibrium points if I just solve for this, I will have 𝜆ଶ𝑧ଶ = 0 which means 𝑧ଶ = 0. 

Then there is this is the only solution I get from solving this. 

So, any point of the form (𝑧ଵ,0) is an equilibrium or is an is an equilibrium point of the 

system or in general here I will have an equilibrium space instead of an of an equilibrium 

point right. So, so any point take any z 1 where z 2 equal to 0. So, (1,0) is an equilibrium 

similarly is (10,0) (-10,0) and so on ok. 



Now, when lambda is less 𝜆ଶ <0 all trajectories converge to the equilibrium space. So, 

what is the equilibrium space here? This is entire 𝑧ଵ axis right. So, any point in 𝑧ଵ with 𝑧ଶ 

= 0 is the equilibrium space say here or let me just draw it in a red. So, this is my 

equilibrium space which is obtained by just this one; this is my equilibrium space. 

So, when 𝜆ଶ < 0 any trajectory right. So, this let these trajectory these trajectory every each 

of this trajectory will converge to the equilibrium space ok. 
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Next what if 𝜆ଶ > 0, everything will be the same. The matrix A will still have a non-trivial 

null space and any vector of in the null space of A is again the equilibrium point and the 

only thing that will change is all the trajectories diverge from the equilibrium space. 

So, let me just draw it here so, the trajectories. So, this is 𝑧ଵ this is 𝑧ଶ and this will just be 

my trajectory. So, all trajectories will go away from the equilibrium space the equilibrium 

space is the entire horizontal axis in this case. 
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The last case that we will look at is the case when both the eigen values are 0 not surprising 

to note that the a matrix will still have a non-linear sorry the a matrix will still have a non-

trivial null space. So, in this case when both eigen values are 0, we can potentially look at 

two cases. 
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So, I am looking at both eigen values 𝜆ଵ and 𝜆ଶ = 0. So, one one case could be that I am 

looking at systems of the form 𝑥ଵ̇  = 0, 𝑥ଶ̇  = 0 or in other words, �̇� =  [0]x ok. So, this will 

have both eigen values to be 0. This would correspond to the case when the null space is 



of dimension 2 and not only that very point in the plane will correspond to an equilibrium 

point ok. 

So, this case is it may not be too interesting for us to look at the phase plane, but what is 

interesting is the case when both eigen values are 0 and the dimension of the null space is 

1 ok. In how does that that happen that could happen in cases when well, I have systems 

of the form 𝑧ଵ̇ = 𝑧ଶ and 𝑧ଶ̇  = 0. So, in this case the a matrix is of form 0 1 0 0 and if you 

compute the eigen values, they will turn out to be (0 , 0).  

So, the a matrix is not completely 0 here. It has a it non-zero entry here, but still both of 

the eigen values are 0. You can compute check this as the simple exercise ok. So, it may 

not necessarily be in this form all the time, but via some appropriate transformations. You 

can write the systems to be in its form. So, when does this case happen and when does this 

case happen, it again is it is the same that you are looking at a certain Jordan form. So, if 

you compute the Jordan form of this form, you will you can check its algebraic and 

geometric multiplicity and check it is all algebraic and geometric multiplicity and you will 

have the appropriate Jordan form. 

So, this is the Jordan form when the algebraic multiplicity is 2 and the geometric 

multiplicity is one whereas, here it will be a slightly different case. I will I leave that as an 

exercise ok. So, this case is a little interesting to draw the phase space. So, what can I see 

directly even without worrying about the solutions is that 𝑧ଶ is a constant and 𝑧ଵ̇ varies 

positively with 𝑧ଶ or with the sign of 𝑧ଶ. If it is -𝑧ଶ, then it will vary negatively with 

increasing 𝑧ଶ and so on ok. 

So, how does the solution look like so, I will have 𝑧ଵ(t) is some initial condition 𝑧ଵ + 𝑧ଶ 

t and 𝑧ଶ(t) = 𝑧ଶ ok. Now what is the equilibrium space? So, in this case well, you can you 

can check easily right. So, I am just look at the solutions to this one for 𝑧ଵ and 𝑧ଶ. So, this 

will give me that 𝑧ଶ = 0 and therefore, the entire 𝑧ଵ axis is the equilibrium sub space this 

is called as equilibrium sub space. 

So, if I were to plot on the on the 𝑧ଵ- 𝑧ଶ plane. So, this entire z 1 axis is my is my 

equilibrium subspace on the 𝑧ଵ- 𝑧ଶ plane ok. What happens close to the equilibrium it is a 

easy to check that my phase curves will just be parallel to the equilibrium or the 

equilibrium sub space. So, here they just be the reverse sign now. So, there could be 



another cases when 𝑧ଵ̇ = -𝑧ଶ, 𝑧ଶ̇ = 0. What will happen to the phase curves will be exactly 

the same just with the directions of arrows here and here being reversed ok. 

So, that is like to different cases when 𝜆ଵ and 𝜆ଶ both are equal to 0 and the equilibrium 

sub space depends again on the on the Jordan form right. So, when the algebraic 

multiplicity is equal to the geometry multiplicity the Jordan form simply has this form and 

the equilibrium subspace will have dimension two whereas, in this case the Jordan form 

takes a form like this and you will have solutions for the phase space given by this set of 

equations. 

So, to summarize when both 𝜆ଵ, 𝜆ଶ = 0; case 1 the dimension of the null space is two again 

depending on the Jordan form and the case two that dimension of null space is one and if 

I were to plot in general in an in an 𝑥ଵ- 𝑥ଶ plane all. So, the equilibrium sub space could 

be somewhere like here passing through the origin. So, all trajectory starting of the 

equilibrium subspace either here or here. They will just move parallel to it similarly to 

what we say in the of the plots in the in the 𝑧ଵ𝑧ଶ plane and equivalently in the 𝑥ଵ𝑥ଶ plane. 

They will look something like this right ok. 
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So, just to conclude we have defined the notion of an of an equilibrium point. We did a lot 

of analysis qualitative analysis for several equilibrium points of second order systems. We 

had real eigen values complex eigen values repeated eigen values what if one or both of 



the eigen values go to 0 that is contains a bit of information of what will be useful for us 

in stability analysis.  

So, just to conclude this week’s topics we will deal with limit cycles which is a very 

interesting property of linear systems sorry of non-linear systems which not necessarily 

exists in linear systems. And, then we will look at couple of or few methods of linearization 

of how do we start from a non-linear system and end up with a linear system. So, that will 

be in the next lectures. 

Thank you. 


