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So, let us come back to again our discussion on solutions of linear state space equations.  
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So, again we will start with 𝑥̇ = A x for the moment we will leave out the input term and 

define slowly the concept of a state transition matrix. So, it essentially tells me how a state 

goes from a certain x at time t =0 to its any x at some time t. So, given an initial state how 

can I compute the state at some future time, time t, essentially like I am looking again at 

solutions of the differential equation.  

So, let me first define an equivalent matrix so differential equation or this, this was my 

vector differential equation, where because x was in 𝑅௡. So, this is a matrix differential 

equation right, where 𝑀̇ = AM(t); A is again n x n matrix and M is also now has a matrix 

representation ok. It slowly be clear why I am doing this, and we will derive this a little 

later, but for the moment we will just learn it a little not very constructively, but something 

which will help us understand or we understand the basics of state transition matrix ok. 



So, let me start with this matrix differential equation and let me define as Φ(t,𝑡଴), as the 

solution to this matrix differential equation with the initial condition being the identity ok. 

So, I am just using any arbitrary time as my initial condition even though 𝑡଴ can also be 

equal to 0. So, we will alternatively use this to make computations easy, where you know 

in many cases I will call or I will assume that 𝑡଴ is actually equal to 0; even though nothing 

changes in general generality ok. 

So, this matrix Φ is called the state transition matrix ok. Now, if this is the state transition 

matrix, so what I claim here which I will prove is that the solution to 𝑥̇ = A x ok, the B 

goes away here right. The solution to 𝑥̇ = A x is simply given by this one, x(t) is Φ(t,𝑡଴)𝑥଴ 

ok, now this is a matrix right. So, Φ(t,𝑡଴) is a matrix, which is the solution to this matrix 

differential equation and just multiplied by the initial state ok. 
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So, let us try and prove this one.  
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So, again, so I start with 𝑥̇ =  A x and what I claim is that this is further the solution to 𝑥̇ =  

A x is given by x(t) is Φ(t,𝑡଴) 𝑥଴. So, let us for simplicity assume that 𝑡଴ = 0, even though 

nothing changes for this just my expressions just look a little easy ok. So, what is the 

property of the state transition matrix or how did I define this, well this was the first thing 

like Φ(𝑡଴,𝑡଴) was the identity or the initial condition of the matrix differential equation was 

the n x n and identity matrix, ok. 

Now, what I claim is that the solution to 𝑥̇ =  A x is the solution to 𝑥̇ =  A x is just this 

expression here ok. So, how do I verify this ok, first is check the initial conditions ok, what 

is the initial condition for this for the original differential equation that x at 0 was 𝑥଴.  

Now, I will just do this right. So, this is the solution which I proposed it x(t) is Φ(𝑡,𝑡଴) I 

will just say Φ, 𝑡଴ is 0 so I will just omit that times x(0) ok. Now, what is the let me verify 

the initial condition x(t) is Φ (0)x(0). So, what is Φ (0) is the identity, so this is x sorry, I 

should write this x(0) here sorry, this, x(0) this is to verify the initial condition is Φ (0) 𝑥଴. 

So, what Φ (0) is the identity and therefore, I retain the initial condition ok. 

Now, second thing to verify is well if a certain x(t) is a solution to 𝑥̇ =  A x, then it must 

actually satisfy the differential equation right that is what we learn as a trick of backward 

substitution, when I may be writing a competitive exam; I do not really compute the 

solutions, but I actually checked if the solution satisfies the original differential equation 

right, ok. 



So, let me do what is x dot t here, ẋ(t) = Φ̇(t)𝑥଴, I will just again assume that  𝑡଴= 0. Now, 

where does Φ(t)̇  come from well Φ(t)̇ , so is the solution to this matrix differential equation 

which means Φ̇ is such that it satisfies, AΦ(t) 𝑥଴. Now, what is Φ(t) 𝑥଴? Φ(t) 𝑥଴ is exactly 

this, this is A x(t). So, I recover starting from this solution which I rewrite for 𝑡଴ = 0 as 

Φ(t) 𝑥଴. I start from this a differential equation I sorry, this solution which I proposed for 

𝑥̇ =A x, I substitute for x equal to here and I recover again the original differential equation.  

So, the initial conditions agree and also the differential equation agrees, it satisfies so this 

function which I proposed as a solution, satisfies the initial condition and it also satisfies 

the differential equation right. And therefore, well this is the so this statement is true right, 

then the solution to 𝑥̇ =A x is given by x(t) = Φ(t, 𝑡଴) 𝑥଴, right. 

So, they also a little goes on to say or what we use here that if two functions of time, they 

satisfy the same initial conditions and the same differential equations and these functions 

are equal right, so that is what I make use of our which kind of in a way obvious. And what 

is a little key here which is not explicitly, discussed when we do our basic state space 

representation in control one is that solutions to a given differential equation exist and they 

are unique.  

Essentially means given an initial condition, I can only travel in one particular direction. 

There is there will be only one solution or that I stand here and I can go this way, this way, 

up, down all those are not allowed right. So, what so there are some conditions which 

guarantee existence and uniqueness of solutions to differential equations. We will not do 

the details of that, but for our course we will assume is not an assumption that it is actually 

true that solutions will exist and they will be unique. 

So, my uniqueness it means given an initial condition there will be only one solution that 

will emerge out of that initial conditions. So, if I were just to draw a trajectory, say this is 

𝑥଴ and the solution goes this way, this is the only possible one there will be nothing which 

goes maybe this way or even this way ok. So, existence and uniqueness is this is 

guaranteed, but we will not really go into the details of that ok. 

The second thing which we can prove is the following right. So, x sorry, we are write this 

term is 𝛷(𝑡,𝑡଴) is 𝛷(𝑡,𝑡ଵ) 𝛷(𝑡ଵ,𝑡଴) ok. So, again 𝛷 is a solution so let us just check if the 

left hand side and right hand side, are do they satisfy the same initial conditions and they 



satisfy the same differential equations. And then I exploit this statement right. So, if two 

functions satisfy the same initial condition and the same differential equations and 

essentially the functions are equal ok. So, in the left hand side I have the following, so I 

know this already right 𝛷̇(t,𝑡଴) is A 𝛷(𝑡, 𝑡଴) ok. So, first check for any initial condition 

right or just check for any value of time t if they agree.  

So, let me check at 𝛷 say at t = 𝑡ଵ, on the left hand side I have 𝛷(𝑡ଵ,𝑡଴); on the right hand 

side what I have, I have 𝛷(𝑡ଵ,𝑡ଵ) 𝛷(𝑡ଵ,𝑡଴). Now, what is phi t 1, t 1 this is the identity and 

therefore, well they both agree at point t 1. So, let me assume that as my you know as a 

condition where I am checking if they are they are equal or not, ok. 

Now, do they satisfy the same differential equation well, I know already they said that 𝛷̇ 

is A 𝛷. Now, let us look at the on the right hand side, on the right hand side well if I 

differentiate this well this is all these are constants, because I can compute them at 𝑡ଵ and 

𝑡଴. So, this is the time varying terms I have 𝛷̇(t,𝑡ଵ) 𝛷(𝑡ଵ,𝑡଴) ok. 

Now, what is 𝛷̇? 𝛷̇ is A 𝛷(t,𝑡ଵ) 𝛷(t,𝑡଴). So, they so these two functions satisfy the same 

differential equation, so such that so I have on the left hand side, I just differentiate this 

function. So, I just write this side, so d by d t of this entire thing here write 𝛷(t,𝑡ଵ) 𝛷(t,𝑡଴) 

will give me A times the entire function rewritten here itself ok. So, the second thing is 

also true and I think well, this can be a little easy to prove. So, I will just leave that as a 

little exercise right, ok. 
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So, let us spend some time just solving particular thing right. So, again unforced system, 

so u goes to 0 that I have that the system matrix is of this form. So, just before this way. 

So, why am I writing this in a little more generality is because I also I like this notations 

can also be used, when I am using a time varying system for example.  
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And for now it must be little easier to guess the following that in the case of LTI case, this 

is my state transition matrix starting from time t equal to 0 and at any  time t and because 



I get the solution if you look at it, so what I call it, so the solution to 𝑥̇ = A x + B u or just 

or without the input is given by 𝛷(t), let us assume 𝑡଴ = 0, 𝑥଴. 

So, what is 𝛷(t), 𝛷(t) is 𝑒஺௧. It also satisfies the property that this initial condition is the 

identity, just put t equal to 0 here and you get the identity. For if you if it just for any 

arbitrary t, (t,𝑡଴), you will have things like this; 𝑒஺(௧ି௧బ) that satisfies that a t = 0, this initial 

condition is the identity. So, a little so this is an easy to guess starting from here right that 

𝑒஺௧ is essentially the state transition matrix for a linear time invariant system of the form 

𝑥̇= A x + B u ok. 

(Refer Slide Time: 13:37) 

 

So, let us see how to compute this well, I have given two differential equations with certain 

initial conditions, system matrixes is just like this and I just do this way right. 
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So, I just expand it in powers of A and I do all the complex math and I can conclude that 

this is the solution 𝑒ିଶ௧, because this has the form of 𝑒ିଶ௧, 0 here and so on and so forth 

ok. Now, do I really do this all the time right I just give me any matrix I should I expand 

it at in powers of t and A and then try to get a solution right. 
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So that might be a little tedious, but what we know which we already started motivating 

with is the use of Laplace transforms, now that makes life much easier for me right. 
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So, if I have a general state space representation 𝑥̇= A x, this the state transition matrix ok. 

So, let us see how it goes right, so I have X(s) as (𝑠𝐼 − 𝐴)ିଵ 𝑥଴, this (sI-A) is always 

invertible and I think we should remember this from our basic control course if not, just 

let me know I can do maybe proof of that in the forum.  

But a very important thing to understand here reset (s I- A) is always invertible ok. So, 

once I know this if I write this in the time domain well, this essentially the inverse Laplace 

of (𝑠𝐼 − 𝐴)ିଵ is essentially my state transition matrix, which also takes to this form 𝑒஺௧, 

right ok. 
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And then I can do the entire stuff again and it actually becomes a little easier right. So, I 

can so given transfer function kind of thing here I can always rewrite it in this time domain, 

why are the inverse Laplace transform. I do not need to teach you this, this has been done 

in a control one also some basic courses on differential equations.  
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Some little properties well, at t = 0 is of course, identity this well all this I think these are 

these are easy to prove right; 𝑒஺௧ = (𝑒ି஺௧)ିଵ, this is also easy to prove 𝑒஺(௧భା௧మ) = 

𝑒஺(௧భ)𝑒஺(௧మ), this look like those lots of indices which we study in high school ok. This I 



will leave for you to derive by yourself that 𝑒(஺భା஺మ)௧ is 𝑒(஺భ)௧𝑒(஺మ)௧ if and only if the 

matrices commute that 𝐴ଵ𝐴ଶ = 𝐴ଶ𝐴ଵ.  

And lastly you could 
ௗ

ௗ௧
(𝑒஺௧) is this one and this is also equal to 𝑒஺௧𝐴 and lastly with the 

integral version of A. Now, this scalar case is actually obvious to like relate.  
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So, in general well if I am also talking of a time varying case or whatever I will just have 

instead of 𝑒஺௧, I just have some straight transition matrix which is called Φ(t) which has 

its own set of properties. Now, couple of things we already derived over here right like 

sorry, I go over here. So, in general what will the state transition matrix is satisfy ok. So, 

just these are the properties, but and you can relate them to each time to the to this special 

case of state transition matrix which is 𝑒஺௧ ok. 
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So, Φ(0) = 1 what does it mean that the state response at time t = 0 is equal to the initial 

condition. So, if I start at t = 0 and I measure at t = 0, I always be at that same point. So, 

the transition is just the identity like what takes me from x at t = 0, to x at t = 0 that is 

identity ok. 

Now, Φ(−𝑡) is simply the 𝛷ିଵ(𝑡), physically what does it mean this is the response of an 

unforced system before time t equal to 0 maybe calculated and this can actually be 

calculated from the initial conditions, because what is my solution; solution I always wrote 

in terms of Φ(𝑡)  sorry, x(t) is Φ(𝑡)  assuming that the initial time is 0 times x at 0 ok. 

Now, I just look at what is x at -t this is simply Φ(−𝑡) 𝑥଴ and this is 𝛷ିଵ(𝑡) 𝑥଴ right, 

assuming that we could actually derive this thing ok, it also in some way resembles this 

one. So, I just leave that for you to derive for its this is again in the same steps as what we 

did in the first two; in the first two lines of or the first proving the first two statements ok. 

And 𝛷ିଵ always exists, again I do not need to prove why that is true, but it is kind of 

obvious on the statements that we have made the since the beginning of this lecture. And 

similarly Φ(𝑡ଵ) Φ(𝑡ଶ) = Φ(𝑡ଵ + 𝑡ଶ) ok, this also you can prove fairly easily ok. 

What does this property tell me, with this property the state response at any time t may be 

defined from the system state specified at some other time then 𝑡଴. For example, if I do 

not know what is the at say that at time t = 0, but I had no at some t =𝑡଴ ok. So, how do I 



find that; so I do not know this information, I do not know what is x at 𝑡଴, but I would 

want to, but I know what is x at some arbitrary time 𝑡଴ ok. 

So, I just use the properties which I know earlier. So, Φ(t) I can write it this way ok, and 

then I can use this property to rewrite ok. So, I can use the second property to rewrite it in 

this way and then the third property we just plug in here as Φ(t-𝑡଴)x(𝑡଴)ok. 

So, it is just rewriting the first two properties and then making use of this. So, with this 

property again I repeat that if I do not know what is x at t = 0, but I know something at x 

equal x the value of x at some time t naught. Can x will compute x(t), well the answer is 

yes and I just make use of a property which is kind of beautifully looks like this.  
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So that concludes the lecture – 1, where we started off with scalar differential equations 

unforced and saw the unforced response and generalized that to an n-dimensional state 

space system and defined the concept of state transition matrix and listed out few 

properties, which will be useful for us ok. One thing before I conclude is the following 

right. 



(Refer Slide Time: 21:13) 

 

So, what we did in some of our previous lectures was about the diagonalization right of a 

matrix ok. So, let us see I am given a matrix A, which looks like this൤
𝜆ଵ 0
0 𝜆ଶ

൨ ok. It is easy 

to verify that 𝑒஺௧, in this case is simply a matrix which looks like this ൤𝑒ఒభ௧ 0
0 𝑒ఒభ௧

൨.  

Now, I know that if A is not in a diagonal form, I can convert it into a diagonal form; A 

into a diagonal form ok. Now, let us say I can convert say x =Pz. So, 𝑥̇ = A x =,P𝑧̇, I just 

do 𝑃ିଵA Px =  z. Now, I know that I can convert this into a diagonal form ok. 

Now, let me call this D ok, this D is 𝑃ିଵA P and I wish to find what is 𝑒஺௧ or the in other 

words I can also write A as P D𝑃ିଵ, where D is a diagonal matrix ok. Now, it turns out 

this is a little proof actually a small proof 𝑒஺௧ = P𝑒஽௧𝑃ିଵ, which is easy for me to prove 

or easy for me to compute. So, this is actually a more computationally efficient way of 

computing 𝑒஺௧, where the diagonalization ok, this actually will be z here ok. 

So, let us see if we can actually prove this. So, I know that x(t) = 𝑒஺௧ x(0) ok. So, what is 

z(t) what is the relation between z(t) and x(t) I know that z(t) can be written as in terms of 

x as so this is z = 𝑃ିଵx. So, I have 𝑃ିଵx(t) is on the right hand side I have 𝑒஽௧; what is 𝑧଴, 

𝑧଴=𝑃ିଵ𝑥଴. Coming again from here, so this implies that x(t) = P𝑒஽௧𝑒ିଵ𝑥଴, sorry they said. 

So, this is P𝑒஽௧𝑃ିଵ𝑥଴ ok, so this is a little proof of how I can compute.  



Now, 𝑒஺௧ when I know that I can diagonalize the matrix A. Similar expressions also exist, 

when I have when I cannot diagonalize A matrix, but I have the equivalent Jordan form of 

the a matrix, so that was a little illustration of why the kind of tools we learnt in the 

previous 2 weeks of lectures were actually useful. 

So, we will in the next lecture do solutions to equations which have input in them or we 

will look at in other words, force response of scalar LTI systems and then we go to n-

dimensional systems and also have a little bit of introduction to discrete time systems, so 

that just coming up shortly. 

Thank you. 


