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Hello everyone. In this video, we will have a tutorial session on the topics covered in 

module 3 of this Linear Systems Course. So, we will do one mathematical problem 

followed by 3 different proofs, which we have actually looked into during the lectures. 
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So, the first problem is as follows. Let V be a vector space 𝑅ଶ and we are given two basis 

for 𝑅ଶ, B which is vectors ቂ1
2

ቃand ቂ3
4

ቃ and C which has vectors ቂ3
2

ቃ and ቂ
4
2

ቃ and let small v 

be a vector ቂ
2
2

ቃ as per standard basis.  

So, we are asked to find V with respect to basis B and similarly V with respect to basis C, 

and also the change of matrix, a change of basis matrix P to go from basis B to C, ok. So, 

now, how can we find out the coordinates of this vector ቂ
2
2

ቃ with respect to the basis? So, 

when we say coordinates we can write them as a linear combination. So, I can write ቂ
2
2

ቃ as 



a linear combination of the basis B. So, I will say 𝑏ଵ ቂ
1
2

ቃ + 𝑏ଶ ቂ
3
4

ቃ, ok, where 𝑏ଵ and 𝑏ଶ are 

the coordinates of V with respect to the basis B. Now, we can actually find out 𝑏ଵ to be -1 

and 𝑏ଶ to be 1, you can verify this. So, which implies I will have 𝑉=ቂ
−1
1

ቃ. So, this is the 

representation of vector ቂ2
2

ቃ with respect to the basis B.  

So, what about C? We will do the same thing with C. 𝑐ଵ ቂ
3
2

ቃ + 𝑐ଶ ቂ
4
2

ቃand we will get 𝑐ଵ to 

be 2 and 𝑐ଶ to be -1, which implies 𝑉 = ቂ 2
−1

ቃ. So, this is the vector V with respect to the 

basis C.  

Now, we are asked to find out the change of matrix change of basis matrix P to go from B 

to C. So, this we have actually looked into a formula during the lectures which was given 

by 𝐶ିଵB, where C is the matrix containing the basis vectors as columns and B is the matrix 

containing the basis vectors of B as columns. So, now I can get ቂ
3 4
2 2

ቃ
ିଵ

ቂ
1 3
2 4

ቃ ok. And 

this will give me you can do the inverse by yourself. I will just give you the final answer -

1 by 2 is actually the determinant 4 and 6, ok. So, you can verify this inverse and 

multiplication. So, this is my change of basis matrix to go from basis B to basis C, ok. 
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So, this is the first question, going to the second question. It is actually a proof given two 

Eigen values 𝜆ଵ and 𝜆ଶ, which are said to be distinct of a 2 x 2 matrix A. So, now, we have 



to show that the corresponding Eigen vectors 𝑉ଵ and 𝑉ଶ are linearly independent, ok. So, 

we are asked to show this. So, you will go through the proof.  

So, to show linearly in the linearly independent vectors we will start with a linear 

combination as follows 𝑎ଵ𝑣ଵ + 𝑎ଶ𝑣ଶ= 0, where 𝑎ଵ and 𝑎ଶ belong to R. So, I am taking two 

scalars and writing the linear combination and saying it to be 0. Now, if 𝑣ଵ and 𝑣ଶ are 

linearly independent then 𝑎ଵ = 𝑎ଶ = 0. So, this is what we need to prove to show that 𝑣ଵ 

and 𝑣ଶ are linearly independent.  

Now, we know that 𝑣ଵ and 𝑣ଶ are Eigen vectors. So, I can write of A. So, I can write 

A𝑣ଵ = 𝜆ଵ𝑣ଵ, similarly A𝑣ଶ=𝜆ଶ𝑣ଶ. So, consider this. A times the linear combination 

𝑎ଵ𝑣ଵ + 𝑎ଶ𝑣ଶ will obviously be 0 because we assumed that the linear combination gives us 

0. So, now, we expand it, and then I substitute this into this equation which will give me 

𝑎ଵ𝜆ଵ𝑣ଵ + 𝑎ଶ𝜆ଶ𝑣ଶ = 0. So, we will say this is equation 1. 

Now, I will consider another equation and just multiply 𝜆ଵ with the linear combination 

which will again will be 0 and will be 𝑎ଵ𝜆ଵ𝑣ଵ + 𝑎ଶ𝜆ଵ𝑣ଶ will be 0. So, I will call this 

equation 2. Now, what if I subtract 1 from 2? I will get the first terms will get cancelled 

out, so I am writing only the second terms in both the equations, which will give me 

𝑎ଶ(𝜆ଵ − 𝜆ଶ)𝑣ଶ =  0, ok. So, this is the equation we get. 

Now, we know that 𝜆ଵ − 𝜆ଶ ≠ 0 because that is the assumption that we started that they 

are distinct and then also 𝑣ଶ ≠ 0 because it is a Eigen vector and it cannot be 0. So, the 

only way that this equation can become 0 is 𝑎ଶ being 0. So, now if 𝑎ଶ is 0 and I take this 

and substitute in the linear combination then I get 𝑎ଵ𝑣ଵ to be 0 and 𝑣ଵ obviously, cannot 

be 0, so it again implies that 𝑎ଵ should be 0. So, now, this proves that 𝑎ଵ and 𝑎ଶ are equal 

to 0, and hence 𝑣ଵ and 𝑣ଶ are linearly independent. So, this is the end of the proof. Now, 

you can actually prove this for any number of n Eigen distinct Eigen values and 

corresponding Eigen vectors. So, this can be extended to any number.  
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So, now we will prove the Caley Hamilton theorem which was introduced during one of 

the lectures of this week. So, Caley Hamilton theorem says every square matrix satisfies 

its own characteristic equation, ok. So, this is what the Caley Hamilton theorem says. So, 

let us assume A an n x n matrix which has the following characteristic equation. I will call 

it P(λ). It is an nth degree polynomial. So, I say its 𝜆+𝑎ିଵ𝜆ିଵ 1 + so on, 𝑎 = 0. If it is 

obviously, the |A-λ𝐼|, ok. So, I will just put this as equation 1.  

Now, what we need to prove is that P(A) which is 𝐴 + 𝑎ିଵ𝐴ିଵ+ so on, 𝑎ଵ A + 𝑎𝐼 =

0. So, this is what the Caley Hamilton theorem says and we will prove this. So, so the 

proofs will actually take the adjoint of the matrix A -λ𝐼. So, this actually contains powers 

of λ from 0 to n - 1, and can be written as follows. Highlight, adj( A-λ𝐼) is equals to, I 

will take some coefficients 𝐵ିଵ𝜆ିଵ + 𝐵ିଶ𝜆ିଶ + so on up to 𝐵, where 𝐵ିଵ, 𝐵ିଶ, 𝐵 

are all n x n matrices. So, this I will assume denoted by as equation 2.  

Now, if we take the formula for 𝐴ିଵ. 𝐴ିଵ =
ଵ

||
adj(A) and I can send |A| to the other side 

and write it like this. So, I took 𝐴ିଵ, I put A to the other side now because it is a matrix 

there will be 𝐼 here. So, the same thing I can write it in terms of A-λI. So, I will say A-λI, 

this is the matrix times adj(A – λI) is the |A-λI|𝐼. So, now, in this equation I will substitute 

1 and 2, in adj(A)and |A-λI|. So, then I will get something like this. This is equals to 𝜆 + 

𝑎ିଵ𝜆ିଵ + 𝑎𝐼, ok. So, what we now do is we compare the coefficients.  
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So, when we compare the coefficients I can write. So, you can actually check for yourself 

that when I do this multiplication this A gets multiplied with this whole thing and then λ I 

gets multiplied with this whole thing, and then all there are all powers of λ on both sides 

going from 𝜆 to 𝜆 I can say. And then I just equating all the coefficients on both sides 

and this is the set of equations that I get. 

Now, what I will do is I will multiply these with powers of A. The first equation I will 

multiply it with 𝐴, the second I will multiply it with 𝐴ିଵ and last I will multiply it with 

𝐴 which is just identity, ok. So, now when I do this, I will and add up all the equation. 

So, multiply with powers of A and add all the equations. So, when you add all the equations 

actually all the terms on the left hand side get cancelled and will be left only with the terms 

on the right hand side. And what are those terms on the right hand side? The first term will 

be 𝐴 because 𝐴 is getting multiplied with 𝐼 and the second term will be 𝑎ିଵ𝐴ିଵ and 

so on 𝑎𝐼 because 𝐴 is just 𝐼 and because all the terms on the right hand side got 

cancelled, I can just assume it to be 0. So, now, this is what the Caley Hamilton theorem 

says and we were able to prove it.  

So, going to the next proof it is another theorem which says two square matrices are similar 

if and only if they have the same Jordan form, ok. 
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So, we will try to prove this. So, in the first part we will take the ‘If’ part, that is we assume 

that they have the same Jordan form. So, if I write it in terms of matrices. If I take 𝐽ଵ, ok. 

First I will write down some notation and then go to the proof. So, let A and B be n x n 

square matrices and let 𝐽ଵ and 𝐽ଶ be their Jordan forms. So, which means that I can write 

A as some P𝐽ଵ𝑃ିଵ and similarly B as some Q𝐽ଶ𝑄ିଵ and you can actually see that P and Q 

have the generalized Eigen vectors of A and B as their columns. So, this is what was 

discussed during one of the lectures when the Jordan forms were introduced and how can 

we convert a matrix to its Jordan form. So, that is what P and Q will be.  

So, now, we will go to the proof. So, the if part we assume that that is given that the Jordan 

forms are same which means 𝐽ଵ=𝐽ଶ=J, and then I can rewrite the equations A = PJ𝑃ିଵ and 

B = QJ𝑄ିଵ. Now, I can write J to be 𝑃ିଵAP and then substitute this in B, I will get 

Q𝑃ିଵAP𝑄ିଵ. So, if I take this to be R or say I will say R inverse, I can write it as 𝑅ିଵAR. 

Now, this implies that if I am able to write B as 𝑅ିଵAR, then A and B are similar matrices 

with this R is the model matrix.  

Now, we are done with one side of the proof by assuming that we have the same Jordan 

form and we are able to prove that they are similar matrix. What about the other side? So, 

if we take the square matrices to be similar, so this is say part 1 of the proof. Part 2 of the 

proof says that A and B are similar which implies I can write B is some 𝑅ିଵAR, ok. So, 

now, so if they have separate Jordan forms I will assume them to be 𝐽ଵ and 𝐽ଶ to begin 



with. So, now, I can again say that A = P𝐽ଵ𝑃ିଵ. I already have that B=𝑅ିଵAR and I will 

substitute A in this, which implies B=𝑅ିଵP𝐽ଵ𝑃ିଵR which is equal to Q𝐽ଶ𝑄ିଵ because that 

is coming from the Jordan form of B. 

Now, if I compare these two 𝐽ଵ and 𝐽ଵ are Jordan forms, so obviously, 𝑅ିଵP = Q which 

implies that 𝐽ଵ =𝐽ଶ and I can again call it J. So, then they have the same Jordan form. So, 

this brings us to the end of this proof. So, we have covered 1 problem and then 3 proofs in 

this lecture. So, there is proof some more like these which you can work them out and we 

will try to put them out as an exercise during the course of this week. 

Thank you.  


