Linear Systems Theory
Prof. Ramkrishna Pasumarthy
Department of Electrical Engineering
Indian Institute of Technology, Madras

Module - 03
Lecture - 16
Tutorial
Linear Algebra

Hello everyone. In this video, we will have a tutorial session on the topics covered in
module 3 of this Linear Systems Course. So, we will do one mathematical problem

followed by 3 different proofs, which we have actually looked into during the lectures.
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So, the first problem is as follows. Let V be a vector space R? and we are given two basis

for R%, B which is vectors B]and [i] and C which has vectors B] and [;L] and let small v

be a vector [;] as per standard basis.

So, we are asked to find V with respect to basis B and similarly V with respect to basis C,

and also the change of matrix, a change of basis matrix P to go from basis B to C, ok. So,

now, how can we find out the coordinates of this vector [;] with respect to the basis? So,

when we say coordinates we can write them as a linear combination. So, I can write [2] as



a linear combination of the basis B. So, I will say b, B] + b, [13}]’ ok, where b, and b, are
the coordinates of V with respect to the basis B. Now, we can actually find out b; to be -1

and b, to be 1, you can verify this. So, which implies I will have V2 =[_11]. So, this is the

representation of vector [g] with respect to the basis B.

So, what about C? We will do the same thing with C. ¢; B] +cy [;L]and we will get ¢; to

be 2 and ¢, to be -1, which implies V¢ = [_21] So, this is the vector V with respect to the

basis C.

Now, we are asked to find out the change of matrix change of basis matrix P to go from B
to C. So, this we have actually looked into a formula during the lectures which was given

by C~1B, where C is the matrix containing the basis vectors as columns and B is the matrix

1
containing the basis vectors of B as columns. So, now I can get B ;}] [; i ok. And

this will give me you can do the inverse by yourself. I will just give you the final answer -
1 by 2 is actually the determinant 4 and 6, ok. So, you can verify this inverse and

multiplication. So, this is my change of basis matrix to go from basis B to basis C, ok.
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So, this is the first question, going to the second question. It is actually a proof given two

Eigen values 4, and A,, which are said to be distinct of a 2 x 2 matrix A. So, now, we have



to show that the corresponding Eigen vectors V; and V, are linearly independent, ok. So,

we are asked to show this. So, you will go through the proof.

So, to show linearly in the linearly independent vectors we will start with a linear
combination as follows a,v; + a,v,= 0, where a; and a, belong to R. So, I am taking two
scalars and writing the linear combination and saying it to be 0. Now, if v; and v, are
linearly independent then a; = a, = 0. So, this is what we need to prove to show that v,

and v, are linearly independent.

Now, we know that v; and v, are Eigen vectors. So, I can write of A. So, I can write
Av, = Av,, similarly Av,=4,v,. So, consider this. A times the linear combination
a,v; + a,v, will obviously be 0 because we assumed that the linear combination gives us
0. So, now, we expand it, and then I substitute this into this equation which will give me

a;A4v; + a,A,v, = 0. So, we will say this is equation 1.

Now, I will consider another equation and just multiply A; with the linear combination
which will again will be 0 and will be a;4,v; + a,A,v, will be 0. So, I will call this
equation 2. Now, what if I subtract 1 from 2?7 I will get the first terms will get cancelled
out, so I am writing only the second terms in both the equations, which will give me

a,(A4 — A,)v, = 0, ok. So, this is the equation we get.

Now, we know that 4; — A, # 0 because that is the assumption that we started that they
are distinct and then also v, # 0 because it is a Eigen vector and it cannot be 0. So, the
only way that this equation can become 0 is a, being 0. So, now if a, is 0 and I take this
and substitute in the linear combination then I get a;v; to be 0 and v; obviously, cannot
be 0, so it again implies that a; should be 0. So, now, this proves that a; and a, are equal
to 0, and hence v; and v, are linearly independent. So, this is the end of the proof. Now,
you can actually prove this for any number of n Eigen distinct Eigen values and

corresponding Eigen vectors. So, this can be extended to any number.
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So, now we will prove the Caley Hamilton theorem which was introduced during one of
the lectures of this week. So, Caley Hamilton theorem says every square matrix satisfies
its own characteristic equation, ok. So, this is what the Caley Hamilton theorem says. So,
let us assume A an n x n matrix which has the following characteristic equation. I will call
it P(A). It is an nth degree polynomial. So, I say its A"+a,,_;A""1 1 +so on, a, = 0. Ifit is

obviously, the |A-Al,|, ok. So, I will just put this as equation 1.

Now, what we need to prove is that P(A) which is A™ + a,_;A" '+ soon, a; A + apl, =
0. So, this is what the Caley Hamilton theorem says and we will prove this. So, so the
proofs will actually take the adjoint of the matrix A -Al,. So, this actually contains powers
of A from 0 to n - 1, and can be written as follows. Highlight, adj( A-Al,,) is equals to, |
will take some coefficients B,,_; A"~ 1 + B,_,A""2 + so on up to By, where B,,_y, B,,_5, By

are all n x n matrices. So, this [ will assume denoted by as equation 2.

1

Now, if we take the formula for A1, A™1 = madj(A) and I can send |A| to the other side

and write it like this. So, I took A™1, I put A to the other side now because it is a matrix
there will be I, here. So, the same thing I can write it in terms of A-Al. So, I will say A-AL
this is the matrix times adj(A — Al) is the |A-Al|,. So, now, in this equation I will substitute
1 and 2, in adj(A)and |A-Al|. So, then I will get something like this. This is equals to A™ +

ap_1 A"t + apl,,, ok. So, what we now do is we compare the coefficients.
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So, when we compare the coefficients I can write. So, you can actually check for yourself
that when I do this multiplication this A gets multiplied with this whole thing and then A 1
gets multiplied with this whole thing, and then all there are all powers of A on both sides
going from A™ to A° I can say. And then I just equating all the coefficients on both sides

and this is the set of equations that I get.

Now, what I will do is I will multiply these with powers of A. The first equation I will
multiply it with A™, the second I will multiply it with A"~ and last I will multiply it with
A® which is just identity, ok. So, now when I do this, I will and add up all the equation.
So, multiply with powers of A and add all the equations. So, when you add all the equations
actually all the terms on the left hand side get cancelled and will be left only with the terms
on the right hand side. And what are those terms on the right hand side? The first term will
be A™ because A™ is getting multiplied with I,, and the second term will be a,,_; A"~ and
so on ayl, because A° is just I,, and because all the terms on the right hand side got
cancelled, I can just assume it to be 0. So, now, this is what the Caley Hamilton theorem

says and we were able to prove it.

So, going to the next proof it is another theorem which says two square matrices are similar

if and only if they have the same Jordan form, ok.
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So, we will try to prove this. So, in the first part we will take the ‘If” part, that is we assume
that they have the same Jordan form. So, if [ write it in terms of matrices. If [ take J;, ok.
First I will write down some notation and then go to the proof. So, let A and B be n x n
square matrices and let /; and J, be their Jordan forms. So, which means that [ can write
A as some PJ; P~1 and similarly B as some QJ,Q ! and you can actually see that P and Q
have the generalized Eigen vectors of A and B as their columns. So, this is what was
discussed during one of the lectures when the Jordan forms were introduced and how can

we convert a matrix to its Jordan form. So, that is what P and Q will be.

So, now, we will go to the proof. So, the if part we assume that that is given that the Jordan
forms are same which means /;=/,=J, and then I can rewrite the equations A = PJP~! and
B = QJQ1. Now, I can write J to be P"AP and then substitute this in B, I will get
QP IAPQ™1. So, if I take this to be R or say I will say R inverse, I can write it as R"*AR.
Now, this implies that if I am able to write B as R"*AR, then A and B are similar matrices

with this R is the model matrix.

Now, we are done with one side of the proof by assuming that we have the same Jordan
form and we are able to prove that they are similar matrix. What about the other side? So,
if we take the square matrices to be similar, so this is say part 1 of the proof. Part 2 of the
proof says that A and B are similar which implies I can write B is some R"1AR, ok. So,

now, so if they have separate Jordan forms I will assume them to be J; and J, to begin



with. So, now, I can again say that A = PJ; P~ 1. I already have that B=R"*AR and I will
substitute A in this, which implies B=R~PJ; P"1R which is equal to Q/,Q ! because that

is coming from the Jordan form of B.

Now, if I compare these two J; and J; are Jordan forms, so obviously, R~*P = Q which
implies that J; =/, and I can again call it J. So, then they have the same Jordan form. So,
this brings us to the end of this proof. So, we have covered 1 problem and then 3 proofs in
this lecture. So, there is proof some more like these which you can work them out and we

will try to put them out as an exercise during the course of this week.

Thank you.



