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So, before we deal with rectangular matrices, let us just talk a bit about some one other 

special matrix; we introduced them a little earlier just as definition of what are called as 

symmetric matrices. 

(Refer Slide Time: 00:33) 

 

So, these are matrix which are equal to their transpose A =𝐴். And this comes with some 

nice properties, something which are easy to check is every square diagonal matrix is 

symmetric. If I add two symmetric matrices I will again get a symmetric matrix. If A is 

symmetric 𝐴ଶ, 𝐴ଷ and all higher powers of A are also symmetric. And similarly if 𝐴ିଵ 

exists it is symmetric if and only if A is symmetric ok. 

So, take a invertible A, if A is symmetric 𝐴ିଵ if at all it exists will be symmetric. Useful 

property which I not prove but, this is interesting thing to note that all eigen values of a 

symmetric matrix are real. And this is one of the properties which will also explain later 

in the course. But I will leave this for you to do this proof as a little exercise; if you cannot 



do it just let me know whether this is an interesting proof. So, eigen values of all symmetric 

matrices are real and the eigen vectors are orthogonal to each other right. So, if so we know 

the definitions right. 

So, there you take the dot product and then get you 0. And lastly every symmetric matrix 

is diagonalizable and of course, its eigen vectors this is a (Refer Time: 02:13) thing we 

will think that and its eigen vectors are linearly independent. This is nothing really special 

to say about here ok. 

(Refer Slide Time: 02:22) 

 

We now introduce the concepts of eigen decomposition and singular value decomposition. 

Singular value decomposition is essentially when you have a rectangular matrix. 
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So, the eigen decomposition is one which decomposes a square matrix A into its set of 

eigen values and vectors. So, what does it mean? That if I can write a matrix A as ED𝐸ିଵ, 

E is a matrix with eigenvectors of A, as its column D is a diagonal matrix with eigen 

values of a as its diagonal elements. Its a it looks very singular to what to what we studied 

in diagonalization its just a little alternate representation. And this eigen decomposition 

of course, is possible if and only if the eigen vectors of A are a linearly independent.  

So, how does this help us? Well, as usual we were talking of computing higher powers of 

A. So, 𝐴 would simply be E 𝐷𝐸ିଵ. So, interesting question is what happens when A is 

a rectangular matrix? So, the answer to that will be by introducing the concept of single 

singular value decomposition ok. 
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Before we do a singular value decomposition, let us first define what are singular values 

of a matrix. And I will, usually associate this with a rectangular matrix, A belonging in to 

𝐴௫ right. So, if I have a rectangular matrix, its maximum rank can be the minimum of 

m and n. So, let us say I just call this rank of A; let me call this as some number r, which 

can add best be the minimum of m or n. What is easy to check is that  A𝐴் is a square and 

a symmetric matrix. Similarly A𝐴் will be in 𝐴௫. And this will also be a symmetric 

matrix right this is easy to check ok. 

So, let us start with this and say that, I have 𝜆ଵ to 𝜆 let them denote the nonzero eigen 

values of A𝐴். And from the property of symmetric matrix, I know that this all will be 

real eigen values ok. So, I start with a matrix A right, which is a rectangular matrix. Then 

I compute this matrix A𝐴் which is symmetric and of course, square which goes without 

saying all its eigen values are real ok. Now the singular values by definition are the square 

roots of eigen values of A𝐴், so 𝜆; here are the eigen values of A𝐴் ok. And the 

remaining singular values will be zero, let us see if we can work out pretty simple example. 

So, I take a matrix A; which isቂ
3 4 0
0 0 0

ቃ and the rank of A and I can trivially check it to 

be 1 ok. Now what is A𝐴் is simply this multiplication, ቂ
3 4 0
0 0 0

ቃ. I have 3 4 0 and all 

other 0s. So, this will be 9 plus 16 is ቂ25 0
0 0

ቃ. So, singular values here would just be the 

square root of this of eigen values of A𝐴் would just be the diagonal matrices, 25 and 0 



right. And then you can just compute the singular values by this these numbers ok. So, 

there will be one nonzero and the other will be 0 singular values are positive the square 

root of 25 will be plus and minus 5 right.  

Student: We taken only one.  

The positive one ok. 
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So, given a matrix how would I go about finding its singular value decomposition or what 

does it even mean by singular value decomposition? In the diagonalization I had a 

transformation E D or 𝐸ିଵ where that the matrix D was just a collection of the eigen values 

on the diagonal and everything else was 0 ok. So, what does what does this just mean in 

terms of a rectangular matrix? So, let us do a little derivation here, (Refer Time: 07:57) I 

have written ok. 
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So, I start with A from R m cross n my question is there is its a m by n matrix, again the 

rank of A is equal to r, which is less than or equal to the minimum of these numbers m , n 

ok. Now the definition here says that A can be written as U and some S and 𝑉் ok; where 

this U and V are such that U𝑈் is the identity and V𝑉் is the identity.  

So, this U𝑈் would be the m dimensional identity and this would be the n dimensional 

identity equality here these are also called as unitary matrices ok. Now suppose that I can 

write or S as ቂ
𝑆 0
0 0

ቃ (Refer Time: 09:31) like. So, this will correspond to the r non zero 

singular values and then the remaining would be would be 0 ok. 

So, this thing I can write down now as, so I have [𝑈ଵ 𝑈ଶ] I have ቂ
𝑆 0
0 0

ቃ. So, now, this 

has dimension m this is r and this is m - r. And similarly here so, I will have 𝑉ଵ and say 

some 𝑉ଶ with its transpose. So, V of n this will be r and this will be n - r. So, again I can 

rewrite this as 𝑈ଵ𝑆𝑉ଵ
்and then there is a reason why I am doing this why I am I assuming 

that there are r nonzero singular values and in the remaining are are 0. So I know these 

two things, so an immature thing to also check is 𝑈ଵ𝑈ଵ
் would be the are dimension 

identity similarly V 1 with 𝑉ଵ
் would be also the r dimensional identity ok.  

Now coming back to this matrix A; let me take this A𝐴் right, this is what how I defined 

you know the singular values. That these are the singular values are the square roots of 

eigen values of A transpose A transpose is A square matrix. So, this will be 𝑈ଵ, call this 



as 𝑆𝑉ଵ
் ok, multiplied by the same write 𝑈ଵ𝑆𝑉ଵ

் and the entire transpose of this. So, this 

will be ok, I just do all the math; this will be 𝑈ଵ𝑆
ଶ and 𝑉ଵ we can transpose. So, this will 

be 𝑈ଵ
் ok. 

Now, if I multiply this by say I have A𝐴்𝑈ଵ is 𝑢ଵ𝑆
ଶ ok. So, now, this is let me call this 

some matrix A; this is A set of vectors right A, 𝑢ଵis some 𝑢ଵ again the same, 𝑆
ଶ ok. Now 

if I write down each element it will look as A; so, you call this small 𝑢 𝑢 is 𝑢𝑆
ଶ  ok.  

So, see whatever is the ith diagonal entries I; so, i going from 1 to r. Now this has a very 

nice interpretation here right. So, I have a matrix A multiplied by A vector will give me 

again that vector multiplied by the square of the ith diagonal element, which are essentially 

the singular value. So, let me call this the this singular values to be 𝜎ଵ till 𝜎. 

So, I have A𝑈 is 𝑈𝜎
ଶ ok. Now this use or this eigen vectors are called the left singular 

values of A ok. Similarly, I can do with the other thing also right. So, I just take and the 

other so, I have take A𝐴் so, what is A𝐴், this would be sorry not 𝐴்; I take the another 

one 𝐴்A is. So, sorry, I get 𝑈ଵ𝑆𝑈ଵ: 𝑈ଵ𝑆𝑉ଵ
் the whole transpose of this times 𝑈ଵ𝑆𝑉ଵ 

with the transpose.  

And I do all this stuff and I get that A𝐴் with A may be a small 𝑣 would be again this list 

number 𝜎
ଶ𝑣. And this V's which are now elements of 𝑣ଵ to 𝑣 are the right; singular 

values of the matrix A. So, this is a little proof of how you know these things work and 

what is the relation why the what is the relation between the eigen values of A𝐴் and the 

single singular value. 

So, why do we call them as the singular value? So, this is a little illustration of that ok. 

So, let us go back here and then read out what this what the entire steps that we did so far 

mean. So, I take a matrix A I can write it as a product of  3 matrices U S and 𝑉்; where S 

we will consider will consist of all the same singular values along the diagonal which is a 

generalization of eigen decomposition. The diagonal element of S are the singular values 

of A; the columns of U were called the left eigenvectors the column for V are were called 

the right singular eigen vectors of A. Yes, it is again you can just go through this sense 

and relate each statement to the steps which we are followed over there ok. 
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So, when do this see when is the singular value decomposition and the eigen 

decomposition, when are they same well its again easy to check, if the coincide if and only 

if a is symmetric and positive definite you can just you know start from here. And say 

when A is defines symmetric and positive definite then a positive definite would mean 

that all eigen values are greater than 0; that was its the property of the symmetric matrix 

or sign definite symmetric matrix. 

So, 𝐴்A would be 𝐴ଶ and then you can just re rewrite all these steps to validate this 

statement ok. So, the reason I also did this that I just assumed that r, there are only r; 

singular values which are less than the minimum of this number. In the remaining go to 

0, is we can get now a nice interpretation of what we call as the row space and so, the 

column space and the null space of A and relate them directly to the singular values or the 

singular value decomposition right.  

So, the basis for C (A) would just turn out to be the first r columns of U; I will not do the 

write on the details, but I think you can do this similarly the basis for the null space of A 

will be the last n - r columns of V and so on right. So, this you can just verify as a very 

small exercise right ok. 



(Refer Slide Time: 18:25) 

 

So, this kind of concludes the linear algebra tools that I would want to introduce as a some 

basic building blocks or basic tools for the course. And next time we will start directly 

with state space models how do we compute solutions of a state space representation of a 

system that could be. So, we will again deal with linear systems which could be time 

invariant and also time variant, so that will come up soon. 

Thanks for listening.  


