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Hello, everybody. My name is Ramkrishna. I am from the Department of Electrical 

Engineering IIT, Madras. So, welcome to the third module of the lecture series on Linear 

Systems Theory. So far in the previous in week 2, we have covered some basics of linear 

algebra starting from vector spaces to norm vector spaces to what is the linear 

transformation and how a linear transformation essentially has matrix representations and 

all this we need because we want some nicer tools to analyze systems at hand you know 

which we write in the state space form. 

So, we next continue our discussion on the properties of matrices and vector spaces. First 

we will just look at some very basic types of matrices. Much of this would not be surprising 

to you; some of them might be even like intuitively clear. So, we just run through those 

definitions just to maybe make the slides or the or the course of it self contained. 
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So, we all know about square matrices where the number of columns and the rows are the 

same. Rectangular matrix would be of size m x n, where m can be less than or even greater 



than n. So, we can have matrix which are which has more number of rows and columns 

and vice versa. So, even though much of our analysis would be restricted to square matrices 

and therefore, we will spend a little more time on looking at properties of those. 

So, first is the identity matrix. So, we will denote it as I n which means it is like a n cross 

n identity matrix. So, typical 𝐼ଶ  would look like ቂ
1 0
0 1

ቃ and then we just write to memorize 

this notation symmetric matrices A will would be equal to A transpose and I think we all 

know about the definition of for transpose of a matrix is. Similarly, we have skew 

symmetric matrices where A is the negative of A transpose A or simple example would be 

something like this is a is a skew symmetric matrix. You can just look at the substitute and 

then and look at it in terms of each elements of the matrix. 

Diagonal matrices where so, the by definition it says 𝑎௜௝ will be equal to 0 for all i ≠ j. So, 

here 𝑎௜௝  essentially is would represent the each of the element of a matrix. Say for 

example, if i take a 2 x 2 matrix, this would be 𝑎ଵଵ, 𝑎ଵଶ, 𝑎ଶଵ, 𝑎ଶଶ  and by the definition of 

diagonal 𝑎௜௝  would be equal to 0 whenever i ≠ j. So, this here i is not equal to j, i is not 

equal to j and therefore, 𝑎ଵଶ  would be 𝑎ଶଵଶ  would be 0, and then the diagonal matrix 

would just look like this and like very straightforward. It is nothing really to explain much 

here. 

Some more definitions of what is lower triangular matrix again by definition it says 𝑎௜௝ =

0, whenever i < j. If i just look at this, what are the cases when i is less than j? That is this 

one. So, a matrix lower triangular would be something like this. Or, in general, if i have 

larger matrix as a diagonals here so, lower triangular matrix would mean that all entries to 

the right of this diagonal if you going call this right direction is 0 all other the this is the 

actual definition. 

Similarly, in an upper triangular matrix 𝑎௜௝  would be 0 for all i > j. So, this is a case when 

𝑎ଶଵ  would be equal to 0, and the upper triangular matrix would look something like this 

𝑎ଵଶ or 0 here and 𝑎ଶଶ  and we are not really worried about what is sitting on the diagonal. 

And, in an upper triangular matrix, you will have all the entries to the left of the diagonal 

are 0. So, this is lower triangular and this is the upper triangular. 

And of course, the last thing is an is that of an orthogonal matrix where 𝐴் is the is the 

identity of appropriate dimensions. So, whenever we just the identity, we will make sure 



that we are working with the appropriate dimensions; specifically when I need n I will say 

𝐼௡  is the n x n identity matrix. 
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Something which is important and we will revisit this concept lot of times in during the 

next few weeks of lecturers; one is called the change of basis. If you remember a bit of 

state space analysis; if you do not remember does not matter, we will do it all over again. 

Change of base is essentially means how do I change or it is a direct implication on how 

do I change from  controllable canonical form to an observable form or a diagonal form or 

so on. Or given any state space representation, how do I go about deriving one of those 

canonical forms and the basis of that or the mathematical tool for that is what we call as 

the change of basis. 

And, what is basis? Well, basis if I look at the standard basis for two-dimensional space it 

was ቂ
1
0

ቃ , ቂ
0
1

ቃ and what we also did a little example is that given a vector space 𝑅௡, the basis 

may not be unique at and therefore, we have to emphasis how what is the thing that causes 

the change of basis, how do I go from a set of standard basis to some other or basis right. 

So, we will spend some time on that and also as the lecture progresses today and further 

this week’s contents, we will try and slowly relate to the state space representation of 

systems as and when needed as and when which is it might be a little obvious, just to make 



a little link the of the kind of tools that we use here and how they are actually going to help 

us throughout the rest of the course. 
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So, what is change of basis? It refers to a transformation which transforms coordinates of 

a vector from one basis to another basis. Its transformation I am talking of linear spaces 

and this transformation therefore, essentially we will look like matrix ok. And, why can 

we do this or why is this important is because the set of basis vectors are not unique, and 

this actually is helps us a lot that the set of basis vectors is actually not unique. I mean 

throughout our coordinate geometry, we just look at the standard basis right and their I am 

not sure if we ever encountered situations where we have to write in different basis. But, 

here it is very very important. 

So, the think which will exploit or try to analyze more is the property that a vector space 

can be represented using many different set of basis vectors. As I said easier this have their 

own advantages especially in the course, this is not just very abstract think that we are that 

we are going to learn. But, this is something which has direct implications on the control 

related concepts that we will do later in the course. 

So, what represents now the change of basis or how do I go from one basis to other? 



(Refer Slide Time: 08:16) 

 

It actually turns out to be a very very simple exercise. So, let us start with two different 

basis. So, how do two basis relate well I just take two arbitrary basis: one of them could 

be the standard basis for  𝑅௡, that could be any of those right. So, so the transformation 

exists independent of what will. So, let us let me just take two basis B and C with their you 

know their individual basis being from 𝑏ଵ till 𝑏௡ that the n vectors which represent or 

which are set of ordered basis for this vector space V. Here it is like because we have n 

this could be like 𝑅௡. 

So, 𝑏ଵ till 𝑏௡; so, this means at any vector in 𝑅௡   can be written as a linear combination 

of this vectors 𝑏ଵ till 𝑏௡. Same vector can also be written as a linear combination of this 

basis vector 𝑐ଵ till 𝑐௡ and if you remember what we did for the basis vectors right. So, we 

were talking of linear dependence, linear independence and 𝑏ଵ to 𝑏௡ will form a set of 

basis if any vector can be written as a linear combination of this vectors. 

So, let start with x vector x with its own coordinate representations 𝑥ଵ. So, what was the 

coordinate representation to given x? I will have if I can write this as 𝑥ଵ, 𝑥ଶ all the way till 

𝑥௡. This is a coordinate representation of a vector which can also equivalently be in that I 

am writing this as 𝑥ଵ say the basis vector is 𝑏ଵ till 𝑥௡𝑏ଵ ok. So, let x be this coordinate 

vector sorry b a vector with coordinate representations 𝑋஻  and 𝑋஼   at the same vector can 

have different coordinate representations depending on what basis we choose ok. 



What does it mean in when I write the write it on explicitly? So, this vector x with 𝑋஻ as 

a coordinate representation with respect to the basis B can be written like this right  𝑥ଵ
௕, 

where  𝑥ଵ
௕ till  𝑥௡

௕ are the individual coordinates for this 𝑋஻; similarly, with 𝑋஼ . So, this x 

can be written as  𝑥ଵ
௕ 𝑏ଵ till  𝑥௡

௕ b n. The same vector in the basis C can be written in this 

way where ok. So, what changes? This is the basis change the coordinates will also change. 

So, I will have 𝑋஼  written as  𝑥ଵ
௕ all the way till the 𝑥௡

௖ . 

Now, these two are the same vectors if I draw it on the sheet I think they will look at the 

same. We can just do it said by yourself that these two are essentially the same vectors. 
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So, in matrix representation I can write this 𝑏ଵ𝑥ଵ all the way is of something like this ok; 

similarly, with this one. Let me call this matrix which already called this by this is B and 

this is C. So, what I have here is B𝑋஻, the vector 𝑋஻ is C𝑋஼  that in standard if I just write 

it in terms of matrices. 

And, now, look at this matrix, it has n independent columns similarly with this matrix 

right. It has also n independent columns because 𝑏ଵ till 𝑏௡ are linearly independent. Why 

are they linearly independent? That comes from the definition of the basis. So, now, once 

this matrices are full rank right so, this the rank of this will be n, the rank of this will also 

be n. So, I can interchange terms and write 𝑋஼  as 𝐶ିଵB𝑋஻ or I can also do the do the 

reverse and I can also write 𝑋஻ as 𝐵ିଵC𝑋஼ . 



So, what does this answer me? So, I have a vector 𝑋஼  this one right. So, this things what 

is the matrix that transforms from 𝑋஼  to 𝑋஻ and so, 𝑋஼  is written in this basis 𝑐ଵ till 𝑐௡; 

𝑋஻ is written in this basis 𝑏ଵ till 𝑏௡. So, what is the matrix or what is the transformation 

that takes me from one to the to other that is simply this one ok. So, let me call this as P 

and this would simply be 𝑃ିଵ and we all we know of why these are invertible matrices 

because of this n independent columns. So, what is this P? P represents a linear 

transformation f from V to V which depends on the set of basis vectors B and C right. 

So, so, look at these right. So, so these are the set of basis vectors for B, these are the set 

of basis vectors for C right. So, this two coordinates of the vectors 𝑋஼  and 𝑋஻ can be 

related via their basis vectors given by this little relationship and it is a straight forward 

derivation right. A one of them is a standard basis say, let us say B is a standard basis and 

P is simply 𝐶ିଵ because B is just the identity right. So, it will just be ቎

1 0
0 1
0
0

0
0

቏ all the way 

till 

0
0
0
1

 this is the standard basis. So, let me call this as B. So, is conversely you see the 

standard basis then P = B and this is like a straight forward then to derive. 

So, what we understood this how to go from one basis to other basis and this is this will 

be useful lots of also help to kind of memorized at such things actually happen. And, again 

this transformation f from V to V is has a matrix representation P right. So, this is a this f 

is essentially has this matrix representation P. 
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Let us let us do a small example. It is pretty easy if you look at the basis B this is the 

standard basis as here and C is given by this basis; you can check why these are basis right 

as a as a little exercise. These are actually linearly independent and so on. So, what is 𝑋஼  

when 𝑋஻ is ቂ
−2
1

ቃ ok? So, we just make use of this formula 𝑋஼  is 𝐶ିଵB𝑋஻. Whereas, this 

B is just the identity is I am just looking at 𝐶ିଵ𝑋஻. 𝐶ିଵ can be computed easily to 

beቂ
7 −3

−2 1
ቃ and multiply this by ቂ

−2
1

ቃ. 

So, this will be -14 -3 is -17 and this will be -4 plus 1 is -3. 

Student: (Refer Time: 15:40) (Refer Time: 15:42), it is 5. 

And this will be 4 plus 1 is 5 and this is very very trivial exercise and you can just draw 

this two vectors on a on the graph and check, they are actually the same and you can do a 

little more not really difficult, but something which involves computing a one more 

inverse. So, instead of B being identity I just give you B matrix which is like this. So, there 

is nothing really special in this in the slides or in this in this example. 
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Let us do something which we would come across a lot of times and this concept called 

the similarity transformation. 
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So, let us start with two square matrices two n x n matrices and by definition and we will 

see why what this definition means and where this possibly even comes from. So, two 

matrix are said to be similar if there exists a non-singular well be need that to be invertible 

matrix P such that B is 𝑃ିଵA P, but P is called the modal matrix where we will see how 

that comes from. 



Now, this arise because a linear transformation can be represented by different matrices 

for different choice of basis as we saw here right. So, we had two basis and you know. So, 

say for example, here if this coordinates had a basis given by the matrix B, this coordinates 

or this vector has a had a set of basis vectors represented by this matrix C. Such a thing we 

are doing some kind of a special case of this one. 

So, we so this similar matrices represent the same linear transformation. So, whenever I 

say linear transformation, I am just talking your of some matrix A with different set of 

basis B. 
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So, so what how do we like write derive this a matrix is similar to itself right so, what is a 

similarity transformation between P and P? So, I like I say that this is just the identity right 

so, that P equal to. So, take a matrix A and a what is P the P turns out to be identity this is 

just trivial ok. So, second is if A is similar to A then B is similar to A. So, let us say that 

B =𝑃ିଵAP, that is you can even write A as now P B𝑃ିଵ ok. 

If I just want to write so, I will just call this 𝑃ିଵ to be Q and then, I can write a due relation 

like this 𝑄ିଵBQ. Then all those properties have associatively if A is similar to B, B is 

similar to C then A and C are also a similar. So, A is similar to B then they have equal 

rank, of course, they have equal determinant they also have equal traces right. So, so we 

just do some things here so, why this is important first from the control point of view. 
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So, most of our of our examples would look like this. So, if I just say I have a system 𝑥̇(t) 

is Ax(t) a standard state space representation that we will substantiate a little more later. 

Now, suppose I were to write this in some other; these are all coordinate representations 

right 𝑥̇(t) which have the states. These are essentially coordinate representations where x(t) 

belongs to certain say n-dimensional space. 

Now, let me just call something that x = P z ok. So, I this is the omit the arguments in time. 

So, these are all this is P, this is t then 𝑥̇(𝑡) =P𝑧̇(t). Now, what is the 𝑥̇? 𝑥̇ is Ax(t) = P𝑧̇(t). 

So, now, what I want to say is a given my system dynamics in x how would they look in 

z? So, z dot and this is always an invertible transformation that is what that was a necessary 

condition. 

So, this 𝑧̇ or P𝑧̇ is Ax (t) or P 𝑧̇ is A, what is x in terms of P? So, I will get AP z(t) or in 

other words 𝑧̇(t) is 𝑃ିଵA Pz(t). So, this is much similarity transformation right which 

transforms my dynamics in certain given coordinates x to some other coordinates z. Now, 

all properties if we remember vaguely of stability or related to the sorry to the matrix A 

right. 

So, say for example, so, here I just said that well these are these are equal rank equal 

determinant equal trace many one of these would be easy. So, equal rank is like easy to 

find out. So, a very important concept I would always look at is what is the implication on 

stability and if you remember stability had something to do with Eigen value, some the 



basic properties of the matrix had even if I look at in terms of my characteristic equation, 

the poles and so on. 

So, how do the poles of the system relate in x to the poles of the system in z? So, let us let 

us quickly do this x. So, how do I how do I find those? So, I have |λI-𝑃ିଵ𝐴𝑃| is the 

determinant of this is my characteristic equation in said coordinates ok. Now, this will give 

me a set of Eigen values and I were to if I were to look at. So, what I want to establish is 

the Eigen values which come from this matrix 𝑃ିଵAP and how they relate to the originals 

so to speak A matrix. 

I can write this, then as |𝑃ିଵλP- 𝑃ିଵ AP|. We can do this is equal to 𝑃ିଵ; so, inside I will 

have lambda minus A sorry, this two make it consistent and as I just put  |λI-A|P ok. Now, 

this is equal to |𝑃ିଵ||λI-A||P| and this is |λI-A|right. So, the solution to the characters 

equation would just be do equate this to 0. So, if I equate this to 0, it is as good as equating 

|λI-A| to 0 and therefore, the Eigen values of the matrix A are the same as the Eigen values 

of 𝑃ିଵAP. 

So, the much of the properties remain invariant right, that means this is kind of intuitive 

also why this properties should remain invariant right ok. So, now what does similarity 

transformation or how do this relate directly to a to a change of basis right? Are there is 

there nice interpretation of this of this 𝑃ିଵ𝐴𝑃? So, let us do a little scenario here. 
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That is why let me take space x could be of whatever dimension and say it has the 

coordinates 𝑋஻ with 𝑏ଵ till 𝑏௡ being its is basis vectors, the same x has another coordinate 

representation 𝑋஼ with being 𝑐ଵ  till 𝑐௡  being it is a basis vectors ok. So, what we saw is 

that. So, if I if I just what to rewrite this formula here that 𝑋஼  is P𝑋஻ ok. Let us rewrite 

that here that 𝑋஼  = P𝑋஻. 

So, it would be mean that this P is a transformation which goes this way the certain on this 

way is correct P𝑋஻ will be 𝑋஼  here ok. Now, assume also that I have another space say Y 

which could be of a different dimension say and has its some vector representation here as 

a 𝑌஼  some vector representation here as 𝑌஻ with its own set of basis right or whatever they 

could be you can just write whatever notations you want for that say ok. 

Now, we know say a suppose there X is some transformation which goes takes from takes 

me from X to Y and let me call that transformation to be say some A ok. This 

transformation should also exist here right. So, this both this basis are Y, this is X, this is 

X and this X the X on the on top has some basis representations 𝑏ଵ till 𝑏௡ with a certain 

vector the 𝑋஻ similarly over here the X on the bottom has vector representation 𝑋஼  with 

some basis vector 𝑐ଵ till 𝑐௡ ok. 

Now, if I just look at A as a transformation from this X to Y may be over here right with 

this under this basis. So, we always define the transformation with basis. So, let me call 

this you just associated to see. So, it will not notationally correct, but let us see how. So, 

this is how it looks like. So, maybe I will just call it say 𝐴௖. There also exists a similar 

transformation from X to Y under this basis. So, let me call this 𝐴஻. 

So, the question is how does 𝐴௖ relate to 𝐴஻? So, now I know this I can also define 

transformation which goes from 𝑌஻ to 𝑌஼  via some matrix Q. But, I can just do whatever 

I can even define this where it because this are just. So, if I can write 𝑋஼  in terms of 𝑋஻ I 

can also write 𝑋஻ in terms of 𝑋஼  sorry, 𝑋஼  here not C here whatever is notation right. 

So, I can just go from here till here. Now, look at this carefully. So, I can always write 𝐴஻ 

as P𝐴௖Q right. So, this is transformation which takes me from this basis till this basis and 

it is it is a same of me going from this to this via 𝐴஻ is the same as me going via this route. 

So, I take go from here till here, then jump from here to here and then jump from here to 

here. These are exactly the same. 



Now, a special case of this could be when I am just take a different color when X and Y 

are the same. And, so, so this case X and Y can be can also be of different dimensions. So, 

not need on necessarily be just this is an 𝑥஼  and n here this can be a different number also. 

So, if X equal to Y so, what will be this one? So, this is this is X, this is also X. So, so with 

the similar changes over here. 

So, if I can go from 𝑥஻ to 𝑥஼  via this matrix P then I am going again so, 𝑦஼ this is all 

everything is now X right I can go from here till here via 𝑃ିଵ and therefore, I can write 

this as P𝐴௖𝑃ିଵ and then equivalently I can also write 𝐴௖ in terms of 𝐴஻. So, what we saw 

here in terms of so first we try to answer the question of what is the relation between 𝐴஻ 

and 𝐴௖ when 𝐴஻ and 𝐴௖ are respective transformations from X to Y which respect to some 

basis function basis vectors. 

So, see so, we can also have a little similar interpretation of the similarity transformation. 

So, 𝑃ିଵAP would also be similar to writing it as P. So, some other matrix 𝑄ିଵ𝐴௖𝑄  right. 

So, and this is always invertible is what we know all right. 
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To conclude talked about change of basis and how these are related to something called 

the similarity transformations and it essentially means writing down my given dynamical 

system or a control system in terms of in a new coordinates we will see we will use this 

very often in during the course. So, in the next lecture, we will talk about invariant 

subspaces and slowly introduce the concept of Eigen values and Eigenvectors. We would 



have studied this earlier, but we will just give a slightly different interpretation to this, the 

basics remain the same. So, we will see that in the in the next lecture. 

Thank you. 


