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Module 2.1A
Electromagnetic principles - Faraday's and Ampere's equations

In this chapter we will review the principles of electromagnetic. You might have taken a course

in electromagnetics and vector algebra before I suppose. So this would be only a review just to

remind you those principles that you have learnt already.
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This is the outline of this chapter. It is divided into 5 modules. Each of these models will be

approximately 20 minutes to 30 minutes of lecture time. First in module one, I will consider

Maxwell’s  equations.  Maxwell’s  equations  will  be  presented  in  the  form of  Faraday’s  law,

Ampere’s Law, Gauss’s Law and boundary conditions. We will look at the derivation of these

equations.  This part  is  very much required.  If  you would like to  know how electromagnetic

fields, that is electric fields and magnetic fields are interacting with circuits, the circuits can be in

the form of parallel lines or power conductors above the ground or it can be traces on a printer

circuit board or it can be component leads.

We will consider uniform plane waves or transverse electromagnetic waves in different media.

This is a special case of electromagnetic fields in which electric and magnetic field vectors are in

a plane perpendicular to the direction of propagation. We will look into baby equations, we will



consider  intrinsic  impedance  of  the  medium,  that  is  the  ratio  of  electric  and magnetic  field

perpendicular to the direction of propagation. We will look into the pure dialectic and the lossy

media, the finite conductivity specially we are interested in the behaviour of metals when plane

waves are falling on the metals.

Then we will look into the concept of skin depth, that is how much the electric and magnetic

fields can penetrate a metal or a conducting media. This section is very much important when we

discuss  shielding,  shielding  of  electronic  circuits  using  a  metallic  enclosures.  Then  we will

consider  transmission  lines  in  module  3.  Here  also,  the  solutions  for  travelling  waves  on

transmission  lines,  we are actually  considering  quasi-TEM waves but  we are  presenting  the

equations in terms of circuit parameters like inductance, capacitance, et cetera. Specially we are

interested in termination in load as well as termination in another line.

That  is  when  the  impedance  of  the  transmission  line  are  different.  We also  will  consider

transmission line impedance in front of a boundary. This part is important whenever we need to

consider transient analysis of transmission lines or grounding conductors. In module 4, we will

look into electric and magnetic fields from dipoles. We have cases in which component leads or

tracks  on  a  printer  circuit  boards  are  causing  electromagnetic  disturbances.  So  we  need  to

calculate how much will be emitted from this.

So we will see that any of this can be modelled as combinations of small electric dipoles and

small loops. We will find the especial for radiation field, specially the maximum radiation field.

And we will also consider wave impedance. Specially how wave impedance is different between

electric and magnetic field when you are close to the source. Then in module 5, we will do

several numerical examples.
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First we consider the illustration of line integral which will come in several of the Maxwell’s

equations. Imagine a vector field in space all around here. Here the bar above F indicate that it is

a vector, that is it has not only a magnitude but a direction also. Consider a path A to B and a

small section of this path which can be indicated as a vector dl, the direction of this path is

tangential to the small section dl and that is indicated by a unit vector and a hat symbol is shown

for a unit vector.



Now this vector F and unit vector dl form an angle theta. Now if you take the dot product of

these 2 vectors, then we get the component of this vector along line F cos theta. Now let us see

what is the meaning of the line integral indicated by a path C from A to B of the vector F. It is

defined as line integral of a vector F along a path C from A to B is the summation that is the

integral of the product of the tangential components of the vector, that is F cos theta and the

differential path length dl along the path.

Now you have to remember that both F and theta can vary along the path. They are not, they

need not be constant. That is why, you need to have this integration or summation. Now if the

path C is closed, then it is called a closed line integral which is denoted by the integral symbol

with a circle as well as a subscript C F dot dl so this is the clothes line integral.
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Now let us look at the meaning of the surface integral. This is the Cartesian coordinate system

and there consider a small elemental surface area DS and DS can be represented as a vector and

that is equal to the area of this small elemental area multiplied by the unit vector representing

that area. And the unit vector is perpendicular to the small elemental area, perpendicular to that

surface. Now there is a vector field F in space. Then dot product of vector F and the unit vector is

F cos theta and the surface integral of F dot dS that is surface integral of a vector field F across a

surface S is defined as the summation or integral of the product of the vertical component of the

vector to the surface F cos theta and the area of the differential surface dS.

So you are multiplying the component of the vector field F along with unit vector with the small

elemental area, then summing it up all along the area. We need to do this summation or integral

because both F and theta can vary across the surface. If surface S is closed, it is a closed source

integral denoted by F dot dS and with this symbol, like this.
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Now look at Faraday’s law. Here, concentrate on this illustration. You can consider it as a closed

plastic bag or a balloon where only one side is open. Now this is the open side. Now there is a

magnetic flux density vector field B. Now there is a electric field vector field E, electric field

intensity. Now what Faraday’s law is stating is that if you sum up all the component of the E

field along a closed path and multiply it by this small elemental length, that is if you take the line



integral of E along the closed path, then that is equal to the surface integral of the magnetic flux

density vector.

That is, if you look at a magnetic flux density B coming out of this small elemental area and if

you multiply the normal component of that with the elemental area, you get the net flux coming

out of this limited area. So you are summing up all those kind of fluxes coming out of the body

of the plastic bag. Then you take the time derivative of that, a kind of flux coming out and that is

also called EMF. So line integral of the electric field along a closed path is equal to the rate of

change of total flux coming out of the area enclosed by this path.

Now the direction of the induced currents should be in such a way that the magnetic flux induced

due to that current induced should be pushing the change in the original flux enclosed by the

closed path. So this is called Lenz’s law. So we are using Lenz’s law in finding out in which

direction the EMF should be, the polarity of EMF.
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Now for that, consider this diagram, a simplified diagram where B is assumed to be increasing.

Now this increasing B should be producing an EMF in such a direction such that the current



produced  should  be  producing  an  induced  magnetic  flux  density  or  magnetic  flux  that  is

opposing this original flux.  So using the right-hand rule,  the magnetic flux has to be in this

direction. So this is opposing the original flux. So this is the correct direction. So that is how you

take care of this negative sign.

Now in this case, the increasing flux is in the other direction. So here, to oppose this flux, you

have to have a polarity like this for the induced EMF. Then only it will produce a current in this

direction and that induced flux will be opposing this original flux. So in the modelling of the

magnetic field interaction, you will be using this principle.
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Now let us look at the units here. E is in volts per metre and B is in Weber per square metre. So

Weber per square metre is also called Tesla. So these are the SI units.
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Now this is an illustration connecting the Faraday’s law or magnetic field interaction with mutual

inductance that you are familiar in circuit theory. Now imagine some sort of a current somewhere

in space. So this current is I subscript G. So this current is inducing some flux in a closed path.

Now this is a imaginary path, this path need not be made of conductors or anything but of course,

if you want to measure something, then it will have a conductor here. Otherwise you know even

if you take an imaginary path in here, Faraday’s law is true.



Now in the case of a circuit in the form of a closed path, the mutual inductance M between this

and this is defined as M is identical to rate of change of total enclosed flux here to rate of change

of the current. That is d phi by DIG. So this is the definition of mutual inductance. Now you can

do some algebraic relation. You can do like this because this is the total derivative. So MDIG is

equal to D phi. Now you take the time derivative on both sides, M DIG by DT equal to D phi by

DT.

So rate of change of flux from Faraday’s law, we have seen that it is just like a EMF, a source of

voltage. So this is the Faraday’s law. So D phi by DT can be equated to minus D by by DT in

surface integral of B dot DS. So you can see that Faraday’s law of magnetic field interaction can

be modelled as a series voltage source if  you are involving a circuit.  So this  phenomena of

magnetic field interaction can be replaced by a voltage source. So the direction of the voltage

source need to be determined by Lenz’s law as we have seen before and this voltage source VI is

given by M DIG by DT. So we have reduced the magnetic field interaction into a voltage source,

series voltage source with the circuit. This you will see in the discussion of crosstalk or magnetic

field interaction.
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Then we come to Ampere’s law. So look at this picture. So here also imagine a plastic bag with

one side open. Now there are several vector fields here. One is the electric flux density field D,

then we have the free current field J, current density field J. So these are you know some of these

are entering the plastic bag and going out of it, it can be in any direction, you can imagine. If you

look at this equation, here this is a line integral along this path which is enclosing the surface as,

then this total current density and the vertical component of the current density coming out of

this.

So if you have current density coming out here and the small elemental area, if you multiply it by

that, then you get this small current coming out. So you add up all those small currents and that

is given by this. So these are the free currents, total free currents coming out of these surfaces

pluss now all the electric flux density is coming out, the vertical component of that multiplied by

the small area. Actually this is the displacement current in the Maxwell’s equations. So rate of

change of d row DS is the displacement current ID.

So H is given in amperes per metre. So the line integral of the magnetic field intensity vector, H

around a closed contour C or magnetic motive force or MMF is equal to the sum of the total

conduction current and displacement current that penetrate the surface S bounded by the contour

C. So this is Ampere’s law. So if a



(Refer Slide Time: 20:41)

Now look at Gauss law. Imagine a closed path. So it can be your plastic bag or balloon where the

and is tied up. So you do not have any open end. It can be of any shape. So you have several

magnetic flux density fields coming out on the closed path and going in again or just going

through it.  You can have charges inside, positive charges and you can have negative charges

outside. So there will be electric flux lines connecting these 2 charges. Now what Gauss law is

stating is that total electric flux density coming out is equal to the charge contained within that

closed surface.



That is, you are summing up all the electric flux density lines multiplied by small elemental area,

summing it  up.  And so,  it  is  the  total  electric  flux coming out.  That  is  equal  to  the charge

contained within this  [Inaudible 22:17]. It does not matter where those charges are. Sum of all

those charges together will be equal to Q. So this is Gauss law. The net electric flux D through a

closed surface equal to the net positive charge enclosed by the surface. Now unit of Q is in

coulombs and D in coulombs per metre squared.

Now instead of electric flux density, if it is magnetic flux density, then we will see that closed

surface integral of B dot DS equal to 0, that is because we do not have any magnetic monopoles.

We do not have any positive magnetic pole or a negative magnetic pole. So that is why this is

always magnetically equal to 0.
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Now let us look at the circuit implication of Gauss’s law of electric field interaction and how we

can tie it up with a mutual capacitance between 2 metallic bodies. Consider 2 bodies, one is

charged to  plus  Q positively  and the other  is  charged to  minus Q negatively  and there  is  a

potential difference between them expressed by V subscript 12. So the capacitance between them

in circuit theory is defined as C12 equals rate of change of Q with respect to rate of change of V.

So this is the definition of capacitance, mutual capacitance.



This is the total  differential,  you can do this algebraic manipulation.  Then you take the time

derivative on both sides, then you will see that DQ by DT is nothing but the current I. So it is

like a current injection already you can see that. So tie it up with the Gauss law. What Gauss law

state is that closed surface integral, so you can take a closed surface along this. Closed surface

integral of epsilon E which is nothing but D for a linear material, dot DS equal to Q and take the

time derivative on both sides, so this is current injection.

So rate of change of field in relation to conductors can be modelled as a current injection. So

electric field interaction can be modelled as a current injection. So this electric field is created by

these charges here. So look at this current source IC. IC is nothing but C12, DV by DT, rate of

change of voltage. It is this one. Now SI units, capacitance is in coulombs per volt comes from

here or we can call it as Farads, the electric permittivity epsilon has the unit Farads per metre.


