
LDPC and Polar Codes in 5G Standard
Simulation of Uncoded BPSK and BER versus Eb/No plot Generation in

MATLAB/Octave
Professor Andrew Thangaraj

Department of Electrical Engineering
Indian Institute of Technology, Madras

So for this it is common to use the editor that comes in the interface so we will write a script

in MATLAB okay, I am going to start typing hereso we are ready to start typing the little

program so if you remember the communication system bits are going to get generated, they

are going to go through this BPSK mappers, 0 to plus 1, 1 to minus 1 and then we are going

to have noise getting added and the receiver does the thresholding at 0 right.

(Refer Slide Time: 01:04)

So that is the simple system but to make theoretical plot you just need to evaluate the Q

function right so you do not need anything more beyond that, so let us say the first conversion

is for rate and Eb over N not and all that so the way I usually like to write my code is to first

define Eb over N not in dB okay so this could be let us say 4 dB okay and then the rate okay

the rate is 1 okay.

So how did I get these two things Eb over N not could be anything else you just have to fix

that you can change it to any other number okay the rate is 1 because I am doing uncoded

BPSK okay so this is 1 bit per symbol okay, so tomorrow if you do coding we might change

this parameter R but for now R is 1 okay so once you do this I know my formula for Eb over

N not.

(Refer Slide Time: 02:06)

Eb over N not is 1 by 2 R sigma squared so from that formula I can find what sigma should

be so for that it is useful to first convert Eb over N not to from dB to actual value okay so

maybe I will write a quick little description here and then show you how that works okay, so

Eb over N not is 1 by 2 R sigma squared so sigma is square root of 1 by 2 R times Eb over N

not now remember we are going to have Eb over N not in dB, so Eb over N not is actually 10

power Eb over N not in dB divided by 10 right.

So if you have Eb over N not in dB you divide it by 10 raise to the power 10 you will get Eb

over N not okay so you can plug that back in okay so if you do that you will get the value for

sigma okay so from Eb over N not in dB right so which is 4 or 5 or something we can go to

sigma, sigma is the noise variance of the noise that you add okay so this little formula one

needs to do.

You can do it in multiple ways depending on your taste and how you like to program so

maybe I will write like this, I will do an explicit conversion from Eb over N not to Eb, 10

power Eb N not dB by 10 and then you can do sigma equals sqrt 1 by 2 by R by or if you do

not like this you can write 2 into R into Eb N not okay, so that gives you the value for sigma

so this is most of the battle done okay so all these are useful conversions, we should do that in

the beginning so some sort of a setup for either the simulation or the theoretical plot that you

might have okay.

(Refer Slide Time: 04:05)

So now if you remember the value for bit error rate as a function of, value for bit error rate as

a function of Eb over N not is given by this formula right it is just Q of square root of 2 times

Eb over N not right so once I have Eb over N not, I just have to plug it into this and get my

value for bit error rate but I know my Q is implemented as 0.5 erfc of x by root 2 so if I

combine those two, I will get my value okay.

(Refer Slide Time: 04:34)

So let me just write that down once again okay so BER is Q of square root of 2 times Eb over

N not okay and what is Q? Q is 0.5 erfc of whatever is inside the argument of Q you have to

divide by root 2 so this root 2 will be cancelled so you simply get Eb over N not okay so this

is a little formula that one might want to remember and let us type into my MATLAB code

okay.

So how do I find bit error rate, bit error rate theory okay, this is the theoretical formula is 0.5

times erfc of sqrt of Eb N not that is it okay, so we can do a little display here, display Eb N

not dB and BER th so this will just show you what the two values are and let us try to run this

so if you run it you might have to save it so let us save it I am going to save it into my folder

that is available here and make a little sub folder here maybe that is not easy to so I will just

leave it in this folder itself okay, so the title I will give as, I will just call it BPSK okay.

(Refer Slide Time: 06:46)

So that is just a file we have and now we are ready to run it and to run it maybe we should

run it from the command line, you can also run it from the thing but let us run it from the

command line, there it is and if you check what is in the directory or I need to go into this 20

dot directory okay so you can see my program BPSK sim.m we can try to run it, let us see if

there are any errors, there are no errors and as expected if you remember 4 dB in the plot

gave you around 10 to power minus 2 and you can see that that is panning out here, 4 dB is

10 power minus 2.

(Refer Slide Time: 07:48)

So maybe we should check on the theoretical plot for let us say 6 dB. 6 dB is around 2 to 3 so

let us 2.5 into 10 power minus 3 right so that is the plot so that is let us see if that comes

about in our BPSK sim so if I want 6 dB I have to go back to my editor and change the Eb

over N not to 6 dB and then save it you can come back to the command window and then run

it again you will get 2.4 into 10 power minus 3 so that is close enough and that is how I

generated this plot.

So if you want to for instance get all these numbers together you can make some simple

modifications to the editor, you can make the Eb N not dB as a vector and maybe you might

want to make some small changes here and there to make that work out but this is very basic

piece of code to do that okay.

So now how do I verify the BER theoretical with the BER simulation okay so if you

remember I have mentioned you can write some simulation to actually transmit the messages

count the number of errors and divide by the total number of bits and to find the bit error rate

let us do that next and then compare the two okay.

So for that I need to know how many bits I am going to send, let me fix it at 10 thousand

okay so if some number you can play around with you can change it if you like and then first

I will need the message vector okay so I will need to generate 10 thousand bits of message

because it is rate 1 uncoded BPSK, to generate random bits the current code in MATLAB is

to use this command called rand i so I am going to do that for the message.

(Refer Slide Time: 09:54)

rand i 0 okay so 0 1, 1, N so this will generate for me string of random binary 0 and 1 values

of length N, vector of length N of this, so I will illustrate this a little bit before I run it but let

me finish up my coding and then you can go back and see it so now I need to know so this is

number of bits of message, this is generate random message and the next thing I do I have to

do BPSK right.

So I have to take my message to plus 1 and minus 1 every time I have a 0 and the message it

should become plus 1, 1 should become minus 1, there is usually a little device that are used

so let is call it s, s is 1 minus 2 into msg okay so this is BPSK bit to symbol conversion okay,

so you can check what it does, if msg is 0, I am going to get plus 1, if msg is 1 I am going to

get minus 1 okay so this is quick and dirty way to convert this BPSK modulation into a

simple MATLAB line of code okay.

So I have my symbol vector, now I need my received vector R okay so that is my

transmission, the r is going to be s plus Gaussian noise, Gaussian noise with sigma as the

standard deviation so MATLAB has this utility called rand n which will generate Gaussian

distributed random variables and how many of them do I want? N of them okay, so this will

generate N, rand n generates unit variance distribution values from that distribution so you

multiply by sigma to get variance of sigma square okay so this is r and then now you can run

your thresholding device, so this is AWGN channel.

And then now we have to do a thresholding right, so if r is greater than 0, I am going to say

the transmitted symbol was plus 1 or the transmitted message bit was 0 okay and if r is less

than 0, I am going to say the transmitted symbol was minus 1 and the transmitted message

was 1 okay so the way to again do this very easily, the message cap which is m cap which is

what is decided on the other side is to simply say r less than 0 okay so this is the threshold

okay.

So what will happen here is whenever r is negative this condition is true okay and true means

1 in as a number if you want to compare it as a number true means 1 okay and if r is positive

this condition is false and false is 0 okay, so this quickly does a thresholding at 0 and gives

you the bit that you want okay so have a message and a message cap and now I can compare

message and message cap, message is what I sent, message cap is what I received so I can

compare and how do I compare? Comparing is not too bad, you can do it in multiple ways

but one can get a DER sim from the comparison okay.

So I am going to see if msg is not equal to msg cap okay, so this will generate wherever they

are not equal it will generate a 1 and wherever it is equal it will generate a 0 so you can add it

all up, this will give you the number of errors and you divide by N, this will give you the

error rate okay.

So whenever you do Monte Carlo simulations like this it is good actually to have the number

of errors separately stored so you might want to have that also, I will tell you why you need

this, so let us store that in one variable and then divide to get the error rate and when you

display it is good to display BER sim and the number of errors and the end okay, so in one

shot you get a glimpse of what has happened, the Eb over N not in dB, the BER theoretical,

the BER that you got from simulation and errors and N okay.

(Refer Slide Time: 15:12)

So this is my little code, let me save this okay so this does simulation and theory, what I am

also going to do is show you some of this commands just to give you a sense of how they

work okay so let us go to the MATLAB command window, so I showed you this code rand i

so rand i, I call it m, rand i of let us say 0 1 and then 1, just for illustration we will use some 8

okay.

(Refer Slide Time: 15:52)

So you can see it generated a random bit, if you run it again it will generate another random

bit, a 6 sequence of random bits you can keep changing this every iteration will be different

etc. so this produces a random number generator okay so just has sequence like this okay so

now once I do that, I can transmit my BPSK conversion work like that right so you can see

how this is working 1 goes to minus 1, 0 goes to plus 1 okay.

(Refer Slide Time: 16:04)

And then we have the noise getting added, maybe I should show you the noise separately, the

normal, so this is normally distributed random variables you can keep changing that, it will

change, this is all variance one, so if you want to see sigma squared so you have to multiply

by sigma okay so this is noise like that okay so I wanted to get r is s plus this okay and this is

r okay and so if you remember I had this m cap which is so you can see what had happened

okay just for comparison maybe you need to see s and then this okay.

(Refer Slide Time 17:04)

So you see minus 1 was transmitted, minus 0.92 is received, minus 1 was transmitted minus

1.4 is received, minus 1 was transmitted minus 1.4 is received so on okay so that is the

corresponding number that were received, so now we have this m cap which is r less than 0

and you can see it goes back to the bits okay so you can compare with m, you have the exact

same m that was transmitted okay so this is r less than 0 is a convenient device for BPSK, is

that okay?

(Refer Slide Time: 17:28)

So we did this for a very small case and if you now I am going to run my BPSK sim if you

remember that was for Eb over N not of 6 dB and then we are expecting 2.4 into 10 power

minus 3 as the bit error rate, I was doing 10 thousand bit simulation, let us see what we get,

okay sorry, put sum okay so now the display is not that great so maybe we should do a format

short g which will make it a bit better and maybe we should get all of these guys in the same

line, so let us move this around so there you go.

So this is Eb over N not 6dB this is the theoretical bit error rate expected 2.3 into 10 power

minus 3 okay it has so many accuracy and then 0.003 is what I got in simulation, there were

30 errors out of 10 thousand okay so you can see there is not an exact match but close enough

but this kind of 30 is, this maybe not a very significant number so what you can do if you

want maybe better accuracy is to modify this and you run for a larger number okay so you

run it for 100 thousand let us say okay.

(Refer Slide Time: 19:05)

This computer is quite powerful and this program is very simple, it has enough memory so a

100 thousand is not a big deal but if you have a small computer not too much memory then

you might have to think about how much you can run it for but you can usually run 100

thousand very easily and you can see the accuracy sort of improves and comes closer to 0.2

and then you can do more simulations if you like, some values will be closer around 0.002

okay.

(Refer Slide Time: 19:22)

So now the reason why this number of times you repeat the thing is very important is

supposing I run it only 100 times okay so what will happen is if you run it only 100 times this

will keep giving you a number which you cannot trust okay so you see it gives you 0.01

sometimes it gives you 0 okay, the 0 or 1 error while the prediction is 0.0002 so that is why

the number of errors you get in your simulation is very important.

(Refer Slide Time: 20:00)

So typically when I run simulations I like to simulate for as many blocks as needed so that the

number of errors is at least 100 okay so in your simulation that is always a good number to

keep in mind, if you do that usually it is very good so that is why if you see, if you make it

100 thousand okay or 1 lakh as we call it here, it usually is pretty good for this Eb over N not

okay for the Eb over N not of 6 okay.

Now if I change this Eb over N not to 10.5 for instance okay notice what happens and if I run

this okay so 10.5 Eb over N not, I know my bit error rate is going to be around 10 power

minus 6 and you can see the problem here, it goes to 0 right, 10 power minus 6 bit error rate

you are simulating only 10 power 5 and you are getting 0 so what should you do, you should

do something slightly smarter and for that it is usually good not to keep increasing N.

So of course you can keep increasing N to some 10 power something but that is not very nice

because the reason is this is using storage of N okay so this works for small N, for large N

this is not going to work very well so what you can do is you can make a loop okay you can

make a loop and have a cumulative N, so that is also very nice thing to do, so maybe you

want to keep your N as thousand okay, number of bits of message per block okay.

(Refer Slide Time: 21:24)

So you repeat the block multiple times okay so how many time do you want to repeat for i

equals 1 colon let us say 100 okay and then you have to end this somewhere here okay, it is

still not ready to finish this so you repeat in blocks of thousand a hundred times okay so this

way your memory is not very high okay your memory every time you create this vectors you

are only creating thousand vectors but you are repeating it hundred times so you don’t need

too much memory and you can still overall simulate for a very large number.

But here it needs little bit of careful work here so what you should do is you should have this

n errors which is equal to 0 in the beginning and you have to keep adding up here, is that

okay and finally when you divide so what I like to do usually is I also like to have a variable

called N blocks which is hundred and then I put N blocks here okay and then I divide by N

and I further divide by N blocks to get my overall BER sim.

So this way my simulation will be little slower because it is doing a loop and loops are not

that fast in MATLAB but I am not using so much storage and they can increase my N blocks

to as higher level as I like okay so for instance I might make my N block as 10 thousand okay

so now overall I would be simulating 10 power 8 bits but I will be using only a memory of

thousand at a time okay.

So this will not be very slow in at least in this computer, I believe this will run pretty fast and

then if you look at it I am counting my total errors right, initially my number of errors is 0

and for every block I keep on adding the number of errors that I get, finally I divide by N, the

number of bits in per block and number of blocks also so overall this is a valid way to do my

simulation.

(Refer Slide Time: 23:26)

So let us go and run this now, so you see it took a little bit of time but it was printing it as N

so maybe I should change what I am printing here to N into N blocks, was to show you how

many bits are being simulated, let us go back and run it again it was pretty fast so it is not too

bad these days so 1.08, still the number of errors is only 12 so maybe you want to increase

the block further and was not too slow so maybe we put it one more 0 there so that way now

we should get enough behavior.

So now we notice they delay, there is a little bit more of delay but still finally you get the

answer comes pretty good, 10 power minus 6 is the bit error rate you expected 10.5 dB you

got 111 errors out of 10 power 8 transmissions, so there was lot of transmissions were needed

to generate the errors but you did get 111 errors and you got a bit error rate simulation of 1.11

into 10 power minus 6.

(Refer Slide Time: 24:41)

So this is a basic setup in the BPSK simulation, okay so now like I mentioned we will keep

this with us throughout so we will keep many elements in this things of N blocks and

repeating over N blocks and rating a message, converting it into BPSK, sending it over but

except before after the message is generated we will put in our coding block here okay where

will the coding block come.

Encoding will come here and then before you to this threshold you would not do the

threshold you will do a decoding here, okay we will introduce some code for encoding and

decoding and you can simulate error control code as well and now you have to modify a lot

of things right so you want to modify rate here for coding you have to modify all of that and

then we can see how this works okay.

So we will do this as we go along but this is the simulation, so what I am going to try and do

is show you maybe a comparison on how easily will this same program run on Octave so let

us try that, it is usually pretty good but personally I use MATLAB because we do have a

license of MATLAB we have not had a reason to, so I am going to open the file that we had.

(Refer Slide Time: 26:13)

On Octave it seems to open, so let us not try the very ambitious version, we will try 6 dB and

we will try a number of blocks is 100, let us see okay so let me save this and let me here also

I should go to that okay it does not seem to like it, okay so now we are on, so let us run this

BPSK sim here okay, so it ran pretty fast so you that it gave you 244.00024 so maybe we can

also run 10.5 then we needed 10 power 8 right okay, so this will give you 10 power 8 so save

it, go to the command window and then run again (())(27:40) of time, okay but it manage to

finish us well.

You can see there were 116 errors this time and then the bit error rate, theoretical and bit error

rate, the simulation one agree in Octave as well okay. So this is sort of true generally you can

write in MATLAB and then the code more or less works with very little change in Octave as

well but remember I was using just basic commands, I was not using any advanced package

based MATLAB commands, usually you do not have to, these kinds of commands are pretty

good as well okay.

So that is the end of this lecture, hopefully you have learnt enough from this, you will be

expected to at least, so this code will be made available to you, you can take it and then you

will be expected to run it, produce some results and then answer some assignments based on

that okay so we will expect that you can do this, so that is the end of this lecture so in the next

lecture I will start talking a little bit more about error control codes, how to build encoders for

them, how to build decoders for them and then we will have to write some code for doing

encoding and decoding, we will do that after we learn about error control codes, thank you

very much.

