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So, lecture 04, the topics for, to be covered are the following. As always we will do a quick

summary of what we have done in the last class but with a little additional information, so that it

is not just a repetition, some additional perspectives, today's lecture we will look at the process

of  reconstruction  in  terms  of  the;  last  time  we  talked  about  the  filter  that  we  will  use  for

reconstruction.

So, today we will talk about the process of reconstruction,  then from an ideal reconstruction

filter, how do we work, or way towards realisable reconstruction filter, so it is a 2 stage process

by which we get the realisable filter and we will be talking several times about discrete time

processing of continuous time signals, so multiple times we will visit this concept because I want

you to feel very comfortable about going from continuous time to the discrete time where the

discrete time sampling is different.



So, basically in order to get a good understanding of the multi rate systems, we keep referring

back  to  the  continuous  time  and  this  is  a  very  good  example  of  what  we  could  do,  the

relationships between continuous time and discrete time in the frequency domain, what happens

when you go, when you do the process of sampling, when you do the reconstruction, this is a

very, very important framework that is covered in today's lecture.

We will also talk about a, some aspects of how do we develop a reconstruction process, what

happens in a D/A for example if that for an understanding, what we are assuming is that all the

students are familiar with the; with what contents of Oppenheim and Schafer chapter 2, primarily

that would be the definitions of discrete time signals and systems, understanding of the LTI, the

discrete time Fourier transform, it’s properties and basic operations.

We will just refer to some of them in passing in today's lecture that is our underlying framework,

we are focused primary is  on Oppenheim and Schafer chapter  4 for the time being,  written

assignment number 1 and computer assignment number 1 both will be uploaded in a few hours’

time please do take time to look at it and get started, the Tuesday hour is for doubt clearing, it is

not an official lecture but that is the time that the TAs and I will be available to answer any

doubts, okay.

(Refer Slide Time: 02:39)



So, just to pick up where we left of, the; we said in the last class, we made the statement that if

you wanted to look at a continuous time signal sampled at omega s, we will get a band limited

signal when you do the reconstruction process, it will be limited to omega s/2, from –omega s/2

to omega s/2, the ideal reconstruction filter is one that will get rid of the images, notice that the

images will be located at multiples of omega s, this goes from –omega s/2 to omega s/2 and 0

everywhere else.

So, it basically removes all other images except the k = 0 version of the; or the primary image,

now the other aspect is the scaling, so keep in mind that there is a scaling element which is part

and I sure you would have been able to verify that the corresponding impulse response of an

ideal reconstruction filter is obtained like, is basically a sinc function, okay we will come back to

looking at it in a little bit more detail.

(Refer Slide Time: 03:47)

But let us just summarise the or recap all the key results that we have said so far, so the sampling

process Xs of j omega, the spectrum of the sampled signal, we said has a scale factor 1 over Ts

summation k = - infinity to infinity Xc of j omega – k omega s again, this is more sort are very

familiar and comfortable with the expression, okay the scaling factor the multiple, so k = 0 is

your underlying continuous time spectrum, multiples of k + -1, + -2, you get all  the shifted

versions and those are the images that occur during sampling.



Those are the ones that you need to remove when you do the reconstruction process, okay the

relationship  between the continuous time signal,  the sampling  frequency, omega s,  sampling

frequency = 2 pi/Ts and very important relationship as you reduce Ts that means, your sampling

period is reducing, sampling frequency is increasing, okay that is a very important relationship as

I suppose it is obvious from the fact omega = 2pi/Ts that they are inversely related.

What is more important is the corresponding frequency domain interpretation which I would like

you to keep in mind so basically, if I have a signal that has got from –omega0 to omega0, it is the

band  limited  signal,  I  sample  it  at  some  omega  s  that  satisfies  Nyquist  frequency;  Nyquist

criterion, omega s, so there is no overlap of the spectrum and now if I specify Ts dash = Ts/ 1.5,

just for interest, just to see what happens.

So, this basically means that my corresponding sampling frequency, I have reduced my sampling

period, so increase my sampling frequency by 1.5 omega s, the original, so the new version that

we will get us in terms of the spectral representation, the original spectrum – omega 0 to omega

0, so now instead of omega s, it will go to 1.5 times omega s, so basically the spectrum; the

copies of the spectrum now become shifted apart.

So, this is omega s dash that is = 1.5 times omega s, okay, so this is the underlying process again,

being it to quickly relate to what is happening in the time domain to what is happening in the

frequency domain,  very important.  Now, in  the last  lecture  how we did of  some amount  of

discussion on the sampling of sinusoids, okay, sampling of sinusoids, we looked at a case where

there was no aliasing and we did a reconstruction.

We got; looked at the case where there was aliasing and also looked at the reconstruction, so the

statement  that  we  can  make  as  far  as  the  sampling  of  sinusoids  is  concerned  and  the

reconstruction, is that the reconstructed signal; the reconstructed signal depends on the spectrum

that lies between – omega s/2 to omega s/2, it  does not matter whether that was part of the

original spectrum or one of the shifted spectrum that is what we saw in the last lecture.



So, depends on the signal in the range – omega s/2 to omega s/2, in the case of sinusoids with the

aliasing,  we  found  that  what  lies  within  the  spectrum is  also  a  sinusoid  but  of  a  different

frequencies, so that was the observation okay. Now, in terms of the ideal reconstruction filter, we

had looked at this information, so we would not repeat that.
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Now, let me just sort of mention the key observation from the example that we looked at that was

the example of generating CD data, compact disc, generating CD data, I will not redraw the

figure, I am sure you can refer to it, the key principles that we said was we were doing 4x over

sampling, okay, so 4x over sampling was the strategy, so the sampling frequency is 44.1 went to

176.4 kilohertz, okay.

Now, the reason for doing that because we had an analogue anti-aliasing filter; anti-aliasing filter

really was not an anti-aliasing filter because it allowed aliasing to occur, this was actually turned

out to be low pass filter with very relaxed criteria, the cut-off frequency as we mentioned in the

last class, cut-off frequency was actually not omega s/2 but something well beyond omega s/2, in

fact we said you could go as high as 156 kilohertz, okay.

Now that is interesting, I hope you had a chance to look at that and sort of feel comfortable with

it that this is a analog filter that will allow aliasing to occur as part of the sampling process, does

not affect us in the final result because there is a digital filter that follows; there is a digital low



pass filter that is after sampling, digital low pass filter, what was these stop band cut-off for this

digital low pass filter? It was in terms of actual frequency it will be 44.1 divided by 2.

So, this should be 22.05 kilohertz, okay but digital frequency; when you represent it in terms of

the discrete time filter that there is no kilohertz notation, it has to be only radians, so how do I

convert it to radiance, my sampling frequency is 176.4 kilohertz that corresponds to 2pi, okay

that is my sampling frequency. So, now the question is if I have 22.05 kilohertz, what does that

correspond to; pi/4, okay.

So, this is a low pass filter; the digital filter is a low pass filter with cut-off pi/4, -pi/4 okay that is

if you could design and ideal low pass filter but in we are basically remember this is a practical

system, so do I design a low pass filter that looks like this or do I design a low pass filter that

looks like this? Which one is the one that I am allowed to do, so if I want to strictly satisfy the

anti-aliasing property, I have to go with the orange one that is the desired or the desired low pass

filter that digital low pass filter.

Remember pi/4 corresponds to 22.05, if anything outside of that is allowed then I will run into

problems with the effect of aliasing because there is some unwanted signals that are present

because my analogue filter allowed the things to creep in, okay now having designed a low pass

filter which looks like this, practical low pass filter, so the edge, this is 20 kilohertz, you have to

translate it to discrete time; discrete frequencies.

This is; this corresponds to pi/4 that is the filter that we use and the last step that we did after the

digital filtering was down sample by a factor of 4; down sample by 4x, okay, so the combination

of the analog low pass filter; low pass filter plus the digital low pass filter effectively this was my

anti-aliasing filter, okay this is my anti-aliasing filter, the advantage that I have gained through

this mechanism is that the complexity of the analog filter was shifted over to the discrete time

domain.

So, the digital filter could be the sharp filter and effectively the aliasing is not present in the

signal band of interest, okay so again this is an example but it sorts of highlights the important



results that we want to emphasise okay. We also need to make sure that we are formally stating

the relationship, so let me just mention that very quickly before we move on to the rest of the

lecture.
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So, the discrete time relationship, if I have a sequence; discrete time sequence x of n, I talk about

a discrete time Fourier transform which is Xe of j omega and the relationships Xe of j omega is

continuous in omega periodic with period 2pi summation n = - infinity to infinity x of n e power

– j omega n, okay and x of n can be obtained by the inverse transform 1/2 pi integral –pi to pi

because anything outside of a –pi to pi range is a repetition, Xe of j omega e power j omega n d

omega.

Again, this is something that you are familiar with but I needed to write it down, so that we are

comfortable with what is the basic definitions and very often in DSP, we do not really worry too

much about what happened in the continuous time, but we need to be fully aware because we are

going to be going back and forth, so the underlying continuous time signal, so if it is xc of t with

a Fourier transform xc of j omega, let me just write that down for completeness.

Xc of omega is an infinite integral - infinity to infinity xc of t e power -j omega t dt, again you

can see a close similarities, the inverse transform in this case also turns out to be an infinite

integral, it is 1/2pi -infinity to infinity xc of j omega e power j omega t d omega okay so that is



more or less sets the framework of what we are trying to do, then what is left is that the link

between the continuous time and the discrete time.

Remember the link that goes back and forth, one in one way it is sampling, the other way is the

reconstruction process, so the discrete time frequency omega is related to the continuous time

frequency  through the  sampling  period  Ts;  Ts is  2pi  divided  by omega  s,  so  basically  any

frequency omega, continuous time can be mapped to the corresponding discrete time frequency

using this following 2pi/omega s or 2 pi times omega/ omega s, okay it is as if you took the

continuous time frequency, normalised it by omega s, and then mapped it in the range 0 to 2pi,

omega s (()) (16:22) to 2 pi, so again this is the useful relationship simple one but it helps us be

able to map from one domain to the other, now comes an important, it is more of an observation,

so omega s is the sampling frequency, that is the frequency with which the spectrum repeats now

in the discrete time, this corresponds to 2 pi, so 2 pi in the discrete time, discrete, I will just put it

as discrete time, this is continuous time, frequencies 2 pi maps to omega s, okay.

And very often we are interested in omega s/2 because that is the portion of the spectrum that

will  get  reconstructed  so that  means  anything  from minus,  from in  the  discrete  time  in  the

discrete time represented (()) (17:17) of interest, okay, so typically the reconstruction process is

in the range –omega s/2 to omega s/2, this would correspond to in the discrete domain,  this

would correspond to –pi to pi,  we look basically, looking at  one period of the discrete  time

fourier transform, the spectral properties, okay.

And another sort of related observation now, when I go from 0 to 2 pi, where does my highest

frequency occur in the discrete when I am looking at the discrete time representation? It occurs at

pi, so basically an observation that we would note down here maybe to the side is that the pi

corresponds to the highest frequency; highest frequency which basically also says 2pi will wrap

around to DC, okay.

So, again that is just by way of all the different relationships that we have, okay, so I think we are

now ready to take on a new topic in our discussion that is the process of reconstruction.
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Again, it is a subject that you would have studied in basic DSP but our interest is to (()) (18:54)

of this because we will be looking at it multiple times in the context of multi rate system, so the

process of reconstruction so the basic underlying system is that I have a sequence x of n, I must

reconstruct it into a continuous time signal, xr of t and the steps that we would need to take, the

first step is going to be that I need to go from the discrete domain, where I am representing in

terms of numbers, it is a sequence of numbers to something in the continuous time.

So, from a sequence, we need to convert it into an impulse train, okay, then once you have it in

the form of an impulse train, then it is a continuous time signal, let us we call it as xs of t, then

this one has to be, will be reconstructed by removing the unwanted portions of the spectrum, so

this is going to be the reconstruction filter and for the moment, we are going to assume that it is

ideal we will remove the ideal assumptions very shortly.

But for now, we will assume that this has a spectrum Hr of j omega and then based on that we

produce an output which is the reconstructed time domain signal, okay so the inputs that we need

to  give;  one  is  reference  point  which  tells  what  is  the  spacing  between  that  so,  there  is  a

underlying Ts that needs to be specified, when I do the reconstruction process because otherwise,

these are just samples, I could interpret them as one milli second spacing or I could implement;

interpret them as 100 milli seconds between them.



So, we need to specify at what sampling period we are going to do the reconstruction, so writing

it mathematically gives us the best insight, so let us write down the process that we have written

down,  so  xs  of  T,  the  impulses,  so  it  takes  the  sampled  values  x  of  n  and  generates  the

corresponding dirac deltas, t – nTs, notice that Ts sampling period has come in to play and the

shift of the delta function based is depends on the sequence number.

And this is n = - infinity to infinity so and the next step which is the reconstruction step xr of t, if

this is xs of t and this can be related to an impulse response Hr of t, it is an LTI system, so there

is an impulse response, so xr of t will be xs of t convolved with Hr of t, very; Fourier transform

relationship basically, I am looking at the input output of a LTI system, the impulse response

convolved with the input gives me my output.

So, if you write down the expression now, you get a very interesting result, so it is summation n

= - infinity to infinity x of n delta of t – nTs, this function convolved with Hr of t, okay, now I

would like to invoke a result that I am sure you are familiar with, in the continuous time and in

the discrete time but the continuous time property basically says that if I have a delta function

which is; which occurs at a value nTs and I convolved this with Hr of t.

What  do I  get?  Basically,  the impulse  response will  shift  to  the centre  will  shift  where the

impulse occurs, so Hr of t – nTs, okay, so that is the result that is know when I convolve anything

with an impulse function basically, the function is preserved but is only shifted to where the

function occurs, so this then tells me that the reconstructed signal can be very nicely expressed as

n = - infinity to infinity x of n times hr of t – nTs.

And this is a; I am sure this is a not an new equation but I want you to sort of look at it with a

fresh pair of eyes so basically, what we are saying is that the reconstruction has gotten a certain

impulse response, and we showed that the ideal impulse response is a sinc function. Now once

we get to the point where we have written the reconstructed signal as shifted versions of the

reconstruction filter impulse response.
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But each one appropriately scaled by the sample value, okay, so now here is the visualisation,

need to look at it basically, if I were to sketch the hr of t ideal reconstruction filter, it is a sinc

function, it has zero crossings at Ts, 2Ts, 3Ts, 4Ts and so on and in between, the ringing function,

okay, so I have sort of shown you what it should look like this is what you know this is expanded

view just to give you a feel for it.

But basically, the important thing is to look at the response of the impulse of the reconstruction

filter.
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Now, comes the reconstruction process, so if I have which is the sample at time t = 0, I have to

produce a copy of the reconstruction filter which is the red version, so that is the sample; that is

the reconstruction filter centred at t = 0, then at t = 1, it is the blue copy of the reconstruction

filter  and then at  t  = -1 is  a  green copy, so you have the green copy sort  of occurring the

reconstruction filter the red version the blue version, notice at the sampling points all of them (())

(25:27) so that is the very, very important property.

Because what that tells us is when I (()) (25:36) the resultant signal will have same value as the

sampling points, those sample values will not be altered everything in between gets filled it but

the sample values will not be altered and how do I show that so basically, the purple one is the

sum of all the signals, so basically it is the (()) (25:59) whatever of take all the signals that are

following in a  certain window and we will  find that  at  the sampling  points  you are exactly

coinciding with sample value x of n.

And then at all the other points (()) (26:12) signal, so the ability to visualise the reconstruction

process in this manner is very, very important and what happens in terms of the process and why

is the Nyquist property is so important, why is it that we have to worry so much about the zero

crossings? Because if these zero crossings were not satisfied, then the original sample values

would have gotten altered, so that is the reason why, so this is the one of the important criteria

that we will use or we would like to have an insight into, that the impulse response goes through

zero crossings at Ts, 2Ts, 3Ts.

And that is sometimes referred to as the Nyquist property, okay again we use the word Nyquist

so many times on this in this particular discussion, this is a Nyquist filter or filter that has this

Nyquist property in the time domain, okay. Another result may be we write it in the place where

we have written all  the equations, that we would need to, and this is the introduction of the

frequency domain elements in our discussion.

So  far  this  is  the  time  domain  version  of  it,  the  continuous  time  signal  xe  of  j  omega,

reconstructed  to  form a  continuous  time  signal,  right  and in  the  process  we went  from the

discrete time omega to the continuous time omega and then passing through the reconstruction



process, since we know that omega is related to omega times Ts, we can also say that yes, omega

is just a variable whether is the discrete time omega or the continuous time omega.

So, I can very well write this xe of j omega as xe of j omega Ts, am I right because that is the

relationship between the continuous time omega and the discrete time omega, now this is very

important because this as a function with which is periodic in omega with period 2 pi, okay this

is the discrete or the normalised frequency now, this happens to be a function that is periodic in

omega, I have just mapped it.

So,  with  period;  with  period  =  2pi/Ts,  okay  so  the  resultant;  the  reason  for  this  particular

expression is as follows; Xr of j omega, the reconstructed signals spectrum is the spectrum of the

reconstruction filter, Hr of j multiplied by the continuous time representation of the spectrum of

x of n, am I right, basically, the spectrum of the signal at this point and that I can if I; if there is

no loss of information going from x of n into xs of t, then I can write this as x of e of j omega Ts,

okay.

Now, we will come back to looking at this expression a little bit more because, this is a very,

very key result, because what it is saying is there is a continuous time spectrum which has got

lots of replicas. Where did the spectrum come from? The spectrum come from, it came from the

discrete time signal, also got different spectra, so what did I do? I took the discrete time spectrum

(()) (29:59) all spectrum representation, and then I chopped off everything with outside a certain

window, outside of the window that is specified by the reconstruction filter.

So, this equation is a key question and we will come back to looking at this multiple time in our

discussion, okay, so the reconstruction filter is a sinc function or it has got a Nyquist property, it

does not have (()) (30:27) reconstruction filters as well but this property is very important that

you do not change the values at the sampling points, okay and this is the reconstruction process it

basically, it turns out to be a superposition of the several repetitions of the reconstruction filter

impulse response with the appropriate scaling that is very important for us.


