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Great, good morning. Let us begin a last lecture of the course we will today we will cover the

applications of Multirate signal processing and let me begin with a quick review of what we had

covered in the last lecture. 
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We are trying to look at quantization and whether any multi rate techniques could help us in the

aspects  of quantization,  the conventional  way is  that  you sample  at  or just  above Nyquist  a

quantize the signals based on the number of bits of precision that you want. And then apply the

coding scheme and then give out a value that is proportional  to the quantized value,  so this

particular model gives us a way of characterizing the quantization noise.

And that would be as an adaptive impairment, so you think of quantization as a additive process

where you add a error term or a noise term that gets added that gives you a perturbation of the un

quantized signal, now yesterday we went through the lecture and we showed that when you have

a B+1 bit representation, B+1 bit 2s complement representation, that is one of these standard

forms that is used, and we derive the signal to quantization noise ratio.



The representation, so the SQNR can be expressed in the following way it was 6.02B+10.8-20

logarithm base 10 of the ratio of the maximum or full scale divided by the standard deviation of

the input signal. So one observation is that this is a design choice, you have to choose how much

you want to choose your full scale, design choice, and the design choice is controlled by your

desire to minimize the probability of clipping. 

So, you want to minimize the probability of clipping, the reason is probability, the clipping gives

you a very nonlinear a distortion of very severe form of distortion, probability of clipping, you

want to capture most of your signals within the range there for which you have designed your A

to D, now clipping is nonlinear, is quantization nonlinear as well? You quantize A you get a

certain value if you quantize B you get a certain value.

Add them together and quantize you will get the something totally different, so it is not linear so

quantization itself is a nonlinear operation, so quantization is to begin with nonlinear, but we

have come up with a linearized model where we said it is going to be in the range of operation in

the, what we call as the nominal operating range that is you are not in the clipping zone, we have

made it in additive impairment. 

So, basically it is something we can analyse, there is a properties of linearity, super position all

those would hold, so in the nominal operating range we have modeled it as a additive impairment

and like, noise like impairment and which is very advantageous because in communication this is

something, we do all the time and we have several tools by which we can assess the impact of

these impairments.

So, this is the broad framework that we have worked with. I thought I could write down equation

or  just  do  one  example  just  to  strengthen  what  we  had  already  done.  Example  for  the,  so

supposing  you  are  told  that  you  have  a  12  bit  A to  D,  uniform  2’s  compliment  uniform

quantization rounding using 2s complement comma 2s compliment, what is the expected SNR

SQNR. First thing to keep in mind is that B+1=12.



The number of bits totally available to you is = 12 implies B for all the formula has to be B = 11

so the approximate SQNR from our expression will be 6.0 2* 11-1.25 if I have chosen the, this is

assuming that we have chosen the full scale as by sigma X=4 then you will get this 1.25, if not

you would have to recalculate that, so this comes out to be about 64.97dB, we can say that it is

about 65dB that is what you will get a 12 bit quantizer with 2s compliment, uniform step levels

and so to add to this we said that you could in, just make sure you are okay with this 65 dB that

is roughly the range that you will get.

(Refer Slide Time: 06:35)

Now  look  at  the  oversampling  element,  over  sampling  element  says  I  am  going  to  do

oversampling by a factor of M at the input, so the quantization will happen like before, basically

quantization noise gets spread out and then we use a low pass filter with the appropriate down

sampling to get the get back to the Nyquist rate or as close to Nyquist rate. And we said that

there is a advantage that we can we can get with the over sampling rate.

And that over sampling rate based expression, yesterday we derived, let me just write that down

for you so that we can build on this equation. So in this particular case the quantization noise

expected value of Xde of n whole squared comes out to be 1 by 12 of the original expression

Delta squared by M was the original expression and because of the, sorry delta squared by 12

was the original expression and 1/M is the modified expression.



Okay so 1/M is the new advantage or the new factors that we have brought in so effectively this

is = 1/12 M Xm/2 power B whole squared, which you can a rewrite the equations. Yesterday we

did a expression in terms of log based 10. I am going to do it slightly differently so just sort of

get a different perspective. I am going to take logarithm based 2 for this expression so 2 power

2B= basically rewrite this. 

It is 1/12 M Xm squared divided by, if I call this the power of the signal de, so this is divided by

Pde this is a new equivalent representation of the previous expression now taking log base 2

logarithm base 2; I get 2B= – log base 2 of 12 – log base 2 of M- log base 2 Pde+2 log base 2 of

X of m, and I am going to take across the other side just for – 1/2 log base 2 of 12- 1/2 log base

2 of M – 1/2log base 2 of + one half and 2 will cancel log base 2 of X of M. 

Okay now I am going to put a tick mark on those things that are constants that is a constant this

is the constant this is the constant so basically, I want to relate B and M given this scenario the

relationship between B and M says B = -1/2log M, so if I set them equal to 2, log base 2 will be

= 1 B will be = the new value of B will be B = B old–1/2, correct whatever was the expression

we call it as B old then – 1/2, so this is what we said yesterday.

That a doubling of the frequency translates into a reduction of 1/2 bit so B is the number of bits

of a precision that you need to achieve a particular error variance and if you have M=1 you can

go back to the original equation now if you have the new, with the oversampling, it becomes so

similarly you can you can substitute, and you can find out what is the corresponding level, so M

= 4 basically you will get B old – 1.

And every multiple of 4 subsequently you will get an additional reduction of 1 bit, so again what

we are trying to work towards is; so if I ask you to tell me what is the, what would you get if M

was = 256 of course you can plug in and do it, but you can write it as 4 times 4 times 4 times 4

times 4, 4 power 4 each of these would contribute 1 bit this is 1 bit 1 bit 1 bit 1 bit, add all of

these together with the overall minus sign. 



So, B will be = to B old – 4 bits you have reduced your precision requirements by 4 because you

have increased your oversampling by a factor of 256. Now it turns out that this is good it is good

to know that multi rate can give you a benefit of course we want to ask the question can we do a

little bit more so that was where we ended the last class. 
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So, we said that as long as the input error is white, this is the best that we can do the only way

that we could do is to color the input signal and we said that this would be a way to do the

coloration and our goal today is to actually to derive this result and to build on that. The overall

picture  that  we that  we want  to  have is  this  block is  very important  for us in terms  of our

understanding.

The lower block is the equivalent discrete time representation, so this is a C to D block will

assume that we would have done an oversampling by some factor so which means that at the

other end we would, this would not be the we will have to do the down sampling, incorporate the

down sampling so the down sampling will be a low pass filter with Omega C=Pi/M whatever has

been your oversampling at this point.

So, if  you have over sampled by a factor  of Ts,  then we would do the corresponding down

sampling by a factor of M and this is my output signal since its comes out of a down sampler, the

notation used by Oppenheim Schafer that I have used the same; is a combination of Xda for n,



‘a’ stands for the input signal, the analog signal that means its signal component, the other part is

Xde of n whatever is the error introduced by that.

So,  just  an  indication  this  represents  the  signal  component  at  the  output  other  one  in  the

quantisation noise component at the output so now an A to D converter : is it an analog device is

it a digital device or is it a mixed signal device? What does the, input is an analog output is a

discrete time signal so obviously it has to be a mixed signal device now where is the mixed

signal boundary for us in this case? 

So, if you were to look at it as the input at this point where the analog is taken in and then at the

output the discrete time comes out or if you have to take it in so essentially what we are doing is

we are doing some modifications inside the mixed signal portion of it, we will do a discrete time

equivalent and then say that okay ultimately it is not just purely discrete time it is going to be a

mixed signal element.

So, for the purposes of analysis we are using the lower block diagram and we will build on that.
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So, the task that I had given you was to obtain the transfer function between the input and the

output  so let  us  write  down a general  result  which helps us uniformly and so if  I  have the

following setup where I have H of Z as my forward transfer function and this is an additive node



input is X of n and I have a transfer function G on the lower branch which is the feedback

branch.

And you would have seen this many times in the control discussion that the feed forward transfer

function, feedback transfer function and the output is Y of n, so the overall transfer function Y of

Z divided by X of Z is given by H of Z divided by 1+G of Z H of Z but if the - sign was not there

you will get 1 -G of Z  H of Z so this is the general form, so now go back to this figure and do a

transfer function between the input signal.

Let this be the point at which we are interested in X of n to the output Y of n, we have not done

the down sampling we have not done the filtering post band, basically just this portion of the

transfer function so what we will do is for the signal component, here is the signal component,

please keep the diagram as your reference and verify that the forward transfer function H1 of Z is

given by 1 over 1-Z inverse.

And the feedback portion is given by G1of Z which is Z inverse the feedback portion so the

signal transfer function Y of Z divided by X of Z is given by 1/ 1-Z inverse divided by 1 +1 / 1-Z

inverse times Z inverse which gives us a transfer function which =1 that is a signal component,

now move over to the noise component apply the same technique obtain the forward transfer

function H2 of Z in this case, notice that there is no other gain term for transfer function is 1, G

of Z the feedback portion it  should be back to the point where the input signal entered the

diagram so this will be = G2 of Z which is Z inverse divided by 1- Z inverse and Y of Z divided

by E of Z, assuming there is no input X. I am just doing the analysis for this comes out to be 1–

Z inverse just apply that, okay now we are ready to invoke super position.

So, invoking superposition between the two linear inputs, one is X of n and the other one is E of

n so the output must be the output due to each of those inputs so Y of Z, if I call this as H

subscript x of Z and this 1 as H subscript e of Z so Y of Z = Hx of Z times X of Z+ He of Z times

E of Z that comes out to be X of Z + 1 -Z inverse E of Z; so the input output between the

whatever was the structure that we have implemented says that there is no the transfer function

between the input X and output is 1, so there is no modification of the input signal but the error



signal got multiplied by 1- Z inverse so what type of filter is this? If you sketch this 1-Z inverse

basically says that a 0 at omega = 0 so it looks like a bowl, so this is frequency this is Pi this is 0,

–Pi this is magnitude He e of j omega magnitude, so if I multiply my error signal has got a

spectrum which is flat.

If you multiply by this transfer function the resultant now that is going to be showing up at my

output is the original flat spectrum multiplied by a high pass spectrum which means the energies

in the low frequencies have been eliminated and the high frequencies components are still left,

there so the insight  is  that  this  type  of a transfer  function removes the low frequency noise

components 

Low frequency portion of the quantization noise, important to also highlight; the signal is lying

in the low frequency portion so which means that effective signal to quantization noise ratio is

now  going  to  improve,  signal  lies  in  the  low  frequency  portion  of  the  spectrum  so  the

combination of these two says I am going to see a benefit in SQNR. So how much of a benefit

and how will we leverage it that is something we will like to quickly quantify and so is this

okay? 

What we have done; basically analyzing the transfer functions showing that the output is an input

X of N+ a transfer function times E of Z
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So here is an equivalent diagram if you would like to draw it down, draw, so the continuous time

signal X a of t which passes through C to D converter oversampled let me just put a little note

there that it is over sampled and let me also indicate oversampling factor as M. Then at this point

it becomes a discrete time signal X of n over sampled. I need to add noise to it previously it was

a white noise signal.

We now have the white noise components still present e of n that is still the old assumptions, you

know sample to sample uncorrelated, but it is passing through a filter 1-Z inverse which is going

to introduce the colouration so this is where the colouration is going to occur. Colouration as I

mentioned,  also means  that  there  is  sample  to sample  dependence  which is  what  is  built  in

basically there is memory into the; so we will call this as e hat of n. 

Now these 2 get added together and it passes on and then eventually will go through a low pass

filter with cut off omega C= Pi/ M then down sample by a factor of M and that will be our output

X d of M; sort of a simplified diagram but it is very helpful to visualize what is happening. Now

very quickly what is the type of colouration that we have introduced e of n = e of n - e of n -1

like a first order difference is what you are doing.

So, if I were to write this as a filter He e of j omega this will be =1– e power - j omega, do a little

bit of simplification e power - j omega/ 2. What you will get within the bracket is 2j sin omega/2



and we have a result which tells us that the spectrum of e hat; power spectrum e of j omega will

be = the power spectrum of the input signal as S subscript ee e of j omega times modulus of He e

of j omega magnitude squared.

So when I pass white noise through a filter, the resultant power spectrum comes out to be the

magnitude square of the filter because the power spectrum of the, so this is = sigma e squared

modulus 4 times sin squared omega by 2. Basically it is the magnitude square, so now if I want

to find out the total power; the power spectrum. So if I wanted to find the total power at the

output Pde, the general formula is 1/2 Pi integral - Pi 2 Pi.

The power spectrum of S e hat e hat e of j omega d omega but Pde is not measured here it is

measured at the output, at the output what did we do? We already restricted it to Pi/M so actually

these limits are not correct this should be – Pi/ M to Pi/ M so please substitute for S ee do the

integration and verify that what comes out at this point is delta squared by Pi sigma e squared =

delta squared by 12.

So, that is where the delta squared is coming so delta squared Pi squared/36 M cubed, so please

do verify this result just a very simple integral, M cubed so maybe it is helpful for us to write it

as a delta squared/12, delta squared/12*Pi squared/3M cubed. Now delta squared, delta squared

itself, delta itself =X of M subscript M / 2 raise to B and now if you write the log base 2 equation

that  we did in  the beginning of  this  lecture,  what  you  will  get  is  2 B = 2 times  logarithm,

logarithm based, log Base 2 of 12 with a - sign – there is a Pi squared/ 3 –, no there is a + log

base 2 of Pi squared /3 just make sure I do not make a mistake in this equation, because yes there

is a + log base 2 Pi squared / 3 and of course the other 2 parts - log base 2 of P de and a + 2 times

log base 2 of Xm. I hope you can look at it and just verify there is a -3 log base 2 of M -3 log

base 2 of M.

And just take the 1/2 to the other, this 2 to the other side so all of these things will get a factor of

1/2 so this becomes -1/2, this becomes 1 half, this becomes one half, this cancels, this becomes

-3/ 2. The key result; what is the link between B and M? Previously it was - 1 half a log of log



base 2 of M now it has become -3/2 so for every doubling of the input of the sampling rate you

are not going to get a half bit improvement.

You are going to get 3/2 bit improvement. So that is a significant jump because that tells me that

actually we can also start to see a fairly significant advantage and that is something that we can

definitely leverage so the additional term, the benefit that we get is that it is going to be 3/2. 
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So  every  doubling  of  M,  doubling  of  M  will  correspond  to  a  improvement  of  3/2  bits

improvement, so it is as if you had 3/2 additional bits in terms of the quantisation so, example : if

I have M = 64 which is 4 times 4 times 4 what I should expect is that first, of a factor of 4 gives

me  3  bits  +  3  bits  +  3  bits  previously  they  were  all  contributing  1  1  1  now they  are  all

contributing 3 3 3 that should be = 9 bits of improvement correct?

That is what you would get, except that if you go back and look at the equation a little bit more

carefully there is a term that was not there before and that term is actually, M is reducing the

number of bits needed and this term was actually increasing the number of bits needed. So,

basically go back and look at that 1 half log base 2 Pi squared by 3, that additional term do not

overlook that additional term is 1 half of logarithm based 2 pi squared/3.



That comes out to approximately .86, so you gained 9 bits you lost .86 bits so effectively what

you will get is a if you take it as .9, effectively it is a 8.1 bit improvement and you achieved this

with a simple first order noise shaping of the type 1 – Z inverse. Very simple, of course then you

say why not second order? Why not 3rd order? Why not 4 th order? Yes, that is what you should

ask that is a right question to ask. 

So, let us do everyone is okay with this? The improvement but there is a scale factor that kind of

pulls down the gain a little bit but the net gain is still very substantial so you achieved a very

significant, I mean you can go from 8 bits to 16 bits just by increasing the sampling rate. 
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So can we do 2nd order noise shaping? I will leave this as an exercise for you to verify but

basically the structure is like this. You pass it through a C to D with oversampling, followed by

the A to D conversion with the noise shaping so the noise shaping now is going to be in the

following form, + sign 1 – z inverse that is the first integrator so if that gave you a first order

transfer function, you expect that there should be a second integrator that will give you a second

order transfer function, which is actually correct. There are two in series, with a + sign with the

error entering into the picture and of course now we are to design the feedback taps correctly.

The feedback taps are Z inverse so that looks exactly like a first order right? The latter part looks

like a 1 st order quantizer embedded inside a 2nd order so basically you have a embedded inside

another feedback mechanism so effectively.



So, if you take this to be Y of n and this to be X of n like before please go through the analysis

and obtain the transfer function and please verify that what you get is Y of Z=X of Z again no

change in the input signals component +E of Z*1–Z inverse whole squared so which then says

that my modified spectrum S e hat e hat of e of j omega will be equal to sigma e squared that is

the white noise. 

Now what is inside the bracket is 2 times sin omega/2 previously it was a factor of 2, now it is

raised to the power 4 so just to give an intuitive feel. In one case you saw sin squared omega/2 in

the other case you are going to see sin power 4 so if this is sin squared omega/2 then this is going

to be sin power 4 because it  is  less  than 1 so it  is  going to  be good rise  much slower but

eventually it will reach the same, so this is sin power 4 omega/2 all the way from 0 to Pi. 

So, effectively what did you do to noise? You pushed it out further so in the region of interest it

was further reduced so if you were to draw the spectrum if this is the input spectrum the 1st order

noise shaping push the noise out with a certain slope, you did not, you cannot remove the noise

all  you  have  done  is  you  have  sort  of  a  distributed  it  in  a  non-uniform way,  the  uniform

distribution would have been something like that. 

What you did was you did it in a non uniform fashion and therefore it got pushed out, these are,

the 2nd order noise shaping does it even further so effectively what you see within the signal

portion of it is going to be advantageous for us, so basically what is the portion of the noise that

is going to affect your now is only this portion which is substantially less than what you would

have to deal with if you had either gone with the no noise shaping or with the 1st order noise

shaping and this is where now why not 3rd order 4th order 5th order. it just you know get this

thing as flat as possible. Control theory people will tell you unstable, which means you are the

region in which this thing will, there are certain inputs for which you may become unstable so up

to second order we can guarantee stability once you go beyond 2nd order there are restrictions in

terms of stability. 



So you have to also keep in mind the issue of stability, so n >2 we need to keep the, you have to

study the stability and you also have to restrict your input signal to a sharp, more a shorter range

so again what is the, to study and ensure stability. So, we say that up to second order we can do

the noise shaping with the guarantee of stability so then what people said was if I still want to get

higher order noise shaping what will I do? 

I do second order noise shaping and then on that I will do a second order of noise shaping so

basically shaped noise and basically you can do so basically it is a cascaded second order noise

shaping which you can do of course and you can achieve the benefit of that. So let me just sort of

say that that is a start at least initiating point for you to start thinking about some very interesting

applications of a multi rate signal processing. 

Okay of course there are many more applications I had a thought of at least 2 more applications

but  given  the  time  constraint  maybe  I  will  just  restrict  myself  to  1.  “Professor  –  student

conversation starts” yes (()) (40:01) yeah, say that again, correct so yeah so the way you feed

your, the point at which you feed, where you take the second order noise shaping is not at the

output of the signal. So, you basically take the error and do a shaping.

So, basically you keep working on the error signal so the way you construct the higher order is

not on the input signal itself but on the error so you take the difference take the error and then try

to shape it even further okay good “Professor - student conversation ends”. 
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So, let us very quickly look at just one more example supposing I have to design a high order

FIR filter, again these are the cases where you will encounter very often, so let me just give you a

construct for you the scenario. The signal is a signal sample at thousand Hertz and you have been

asked to design a low pass filter with a cut off of 20 hertz, pretty sharp cut off so omega C is

equal to Pi/25.

And  you  are  asked  to  design  a  filter  with  good  stop  band  attenuation:  60  dB  stop  band

attenuation and you want to have a flat pass band in the range 0 to 20 hertz so basically you want

to have and you cannot just start dropping all the way from the omega = 0 hertz. So, you want to

have a flat pass band as much as possible you want to have a good stop on attenuation and this is

a tough filter design problem.

So, you give these to your math lab filter design problem it will say that the filter order typically

will be N>1500 and it will say out of memory and it will return back saying I cannot design this

filter; so here is the trick or multi rate signal processing to the rescue so you tell the program well

do not worry about it. I designed something which is a little bit easier for us to do so this is 1000

hertz sampling frequency a half the sampling frequency is 500 hertz.

And we say that okay design a filter with a cut off around 200 hertz, with reasonable flat pass

band and you do a cut off over here so this is around 200 hertz you design you write down the



specifications and the algorithm does a calculation and let us say that it came up with an estimate

that it is 168 and basically you are allowed a reasonable transition brand you are not made it you

did not make it very tight.

So it can come up with a filter order equal to 168, but this is not the filter you want what you

want is a filter that will cut off at 20 hertz. You remember the IFIR technique, what did we do?

We will up sample by a factor of 10 which means that it will compress the spectrum from 200

hertz to 20 hertz your pass band will become 10 times sharper, the transition band, so effectively

the strategy that we had was that you will design this filter H1 of Z which is corresponding to

this 168 tap and then you would follow it up with an upsampling by a factor of 10 and then you

would have another filter which will remove the images when you sampled by a factor of 10.

This  is  the  one  that  removes  the  images,  it  removes  the  unwanted  images  now this  is  the

underlying technique that we need to do, but here is a very clever way to do it. 

And I will leave you to sort of go through and make sure you are so first step you want you have

got your filter out that is 168 lengths the filter length is 168, N is order and N plus one equal to

168. The length is 168 so this is length. Take a 168 point DFT. What will that give you? It will

give you the frequency response of the filter with values from 0 to 167. The last one will be 167

and 168 of course will map back to 0, the DFT coefficients. 

Now this is the sampling frequency that is 1000 hertz now at what frequency you will get the 200

hertz cut off, so 500 hertz basically corresponds to 84 and 168 by 2, that is 500 hertz I write the

frequencies in orange 500 hertz, so 200 hertz will be approximately, you divide that by two point

five, somewhere around 33 so your filter response we have these sorts of things up to 33, around

33 and then you expect to see something some small values.

You get to see some small values that is your stop band this is what you would see 168 points

you took out 168 point FFT. These are alll, the pass band, so this corresponds to pass band and

the rest is the stop band, now what I want you to do is pay close attention to what we are doing.

so basically take these samples from 0 to 84, 0 to 80 take these samples. Take those 0 to 83 that

is the 84 samples 0 to 83 and the last 84 to 167. 



But leave a gap in between and the gap that is in between is exactly 1680 -168, that is =1512

samples, these 1512 samples are all the, I am going to set them to be equal to 0, visually okay?

What did I do? I took a 200 hertz cut off filter with a sampling rate of 100 hertz I designed a

computed the filter of 168 taps took the DFT. The DFT will have sort of mirror image symmetry

and I have separated it out and inserted some number of zeros.

And exactly so that I will  now get,  this  will  become sample number 1680 this  will  become

sample number 0 so effectively what we see is these samples and then towards the end you will

see again these samples now, 33/1680 into 100 hertz is = what? 20 Hertz right? Exactly, one 10th

of what it was before because you now expanded it by a factor of 10 from 168 we went to 1680

so which means that 33: if it corresponded to 200, the same 33 will now correspond to a 20 hertz

so what you do is take the inverse DFT of this, but now it is not 168 point inverse DFT it is 1680

point inverse DFT
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And what you will get is 1680 tap filter with omega c corresponding to 20 hertz and satisfying all

of the requirements, all the specifications the stop band attenuation you already satisfied right

you  when  you  designed the  168 tap  you  already specified.  So  effectively  what  is  the  trick

involved, previously what did we do? You up sampled in the time domain you inserted 9 zeros

and then you passed it through a filter in the frequency domain what was it going to do? 



It  is  going to have these 10 copies of the signal and this  low pass filter  would remove this

unwanted symbols. What does, what did you do here? You did not even allow those copies to

come in, it is the same as saying the copies came in when I inserted the 0s but I interpolated with

the  ideal  low pass  filter,  there  is  no  trace  of  any small  bump or  anything.  Everything  is  0

perfectly is 0 so which means that this is effectively like interpolating with an ideal filter. 

If I did an ideal filter that is what I will get, it did not cost you anything basically it was one

inverse DFT and a design and you incorporated 2 techniques that we have learned, one is the

interpolated FIR technique the 2nd one is design using the FFT to your advantage so that you do

not have to actually do the physical interpolation. It sorts of comes out as an inherent advantage

into the system. 

So, this is a starting point for us to start saying you know the whole tool kit of multi rate signal

processing has got a very rich ways of helping us in all of our designs. So, you always try to see

up sampling will compress the spectrum I can exploit, the down sampling we will go this way, so

you kind of always keep looking at ways in which you can exploit the techniques that you have

learned to your advantage. 

So, in a nutshell what the course is all about is to say that the signal processing is built on a

foundation where you have a fixed sampling rate, to that tool box you add the flexibility to

change the sampling rate input-output and, what are the implications when you down sample?

What are the implications when you up sample? When you insert 0s? what is; So, once you have

this additional tool box then you start to see that okay. 

In Communications,  and for this  application  I  need a  filter  here is  an advantage,  I  can take

advantage of it. If I did not have this notion of multi rate signal processing I would at this point

give up and say well 1500 tap filter I cannot design right and or you would have to go through

some extremely complicated process to design it, but whereas this one says hey I can design it

through a 2 step process which was sort of almost trivial.



And will give you the advantage that we are looking for. Thank you very much. That is the end

of the course and we really thank you for the way in which you have participated and wish you

all the very best.


