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Good morning, let us begin, the plan for today’s lecture is to introduce some applications of

multi-rate of signal processing, I mean understood and studied the tools over the last 38 lectures,

the last 2 lectures that are today's and tomorrow's lectures will be focused on how do we use

these tools and some of the novel ways in which we can think about it. 

(Refer Slide Time: 00:37)

So, just quickly summarise what we have completed as for as lecture 38 is concerned.

(Refer Slide Time: 00:40)



We wanted to transmit a wideband signal through a frequency selective fading channel that was

the context and the way we said was that we would introduce redundancy at the transmitters,

remove the redundancy at the receiver, 2 types of redundancies that we could introduce, zero

padding or cyclic prefix.

(Refer Slide Time: 00:58)

Once we introduced the cyclic prefix, the input output relationship got related by means of a

square matrix which is a circulant matrix.

(Refer Slide Time: 01:09)



And we use the properties of a circulant matrix in terms of its diagonisability, using the DFT and

IDFT matrices with the diagonal elements being the DFT coefficients of the channel; channel

response, so basically what we could do at the receiver at the transmitter is to produce a signal

which for which you have taken the IDFT.

(Refer Slide Time: 01:33)

So, when you pass that through the channel, then what we get is a very elegant, very simple

structure which is given by;  it looks like a set of parallel  channel though they were actually

interleaved, they were transmitted through ISI channel what it looks like is a are of very clean

parallel channel with different SNR’s which are controlled by the coefficients themselves and

this is actually doubly advantageous.



Because you can also do water filling based on these channel coefficients and then when you

look at the other end, if you want to bring all of the signals together, then we can look at them as

a scaling which will give you the resultant received signal, equivalently we can also think of it as

parallel  channels all  with equal gain but with different noise terms, different noise variances

means different SNR.

So, again you can think of it as scaling of the signal with all of them having the same noise

variance or same signal power with the noise variances being modified, okay, so this is; this was

the beauty of OFDM and it has become one of the most widely used transmission techniques and

I believe it will be used in as we move forward as well.

(Refer Slide Time: 02:53)

So,  today  we  move  into  the  applications  part,  where  are  the  areas  where  multi-rate  signal

processing is  being  used and what  are  the  ways  in which we can can leverage,  so the first

application that I would like to take up and the first of 2 applications this in the context of signal

quantisation, as you know in our practical implementations of any communication system, we

would have to restrict the signal to a finite number of bits in terms of its representation.

So, anytime we have such a situation where we have a finite number of bits for representation,

we have the quantisation of a signal, so x hat of n being the quantised signal which to which you



pass a unquantised signal x of n, Q represents the quantisation operation, okay and the number of

bits of operation, the scaling of the signals all of these are incorporated into the quantisation

process.

Again, the notion that we have from our basic understanding is that the signal spectrum, if I were

to look at the sampled signal spectrum, so the sampled signal spectrum at this point we are able

to draw as – pi to pi, this is the sampled signal spectrum assuming I have an sample rate at

Nyquist rate, this is the next copy and so on, so this is 2pi, right, yes, this is 2pi, okay, so this is

the spectrum when there is no quantisation noise.

Then, we posed the question, how does quantisation noise enter and where do I have to keep

track of it  we say that okay, quantisation noise is something that we cannot avoid when we

quantised, we go through, I am sure you have gone through the analysis of quantisation noise, we

say that the quantisation noise has certain statistical  properties, okay and we will go through

them but by and large, the spectral properties of quantisation noise.

It is very random in nature, it is uncorrelated so therefore, it is spectrally white, so we think of

quantisation  noise  has  something  that  goes  from  –  pi  to  pi,  some  wiggles  basically,  it  is

something that has a flat spectrum, almost flat spectrum, okay now depending upon how many

bits of precision we have used, we will have more or less quantisation noise and if you have used

less bits of precision, then what we would end up with is increased quantisation noise, okay.

It is still flat but it is increased in, now this is the problem that we encounter with quantisation

and it is always a worry for us is that no, have I quantised a signal too much that I am not able to

recover the or get enough of the information, so here is the visualisation of the process, I have a

continuous time signal, I do not know whether I call xa of t or xc of t continuous time signal, the

process that we have been studying so far is an ideal conversion from continuous time to discrete

time.

We pass it through a C to D converter with a specified sampling period Ts, this gives us the

discrete time representation x of n with infinite precision,  then comes the quantisation block



where we have to impose the condition for storage of a transmission, we have to quantise and the

quantised signal is now, what we have to deal with which is x hat of n, okay and of course, the

quantised  signal  is  what  we would encode into a  form,  it  could be 2’s complement  our 1’s

complement whatever form you want to encode.

So, maybe you can think of another block either which is included with the quantiser or with the

encoding operation so basically, we have obtained a B bit representation, which is a quantised

version of the original signal, okay, so this is the framework, now we go back and now, the

question that being posed is does multi-rate signal processing even help and if so, how and how

do we leverage it, so that is the context of today’s discussion, okay.

So, the first thing is that we must all be comfortable with what is the normal or conventional

quantisation, I was checking with the faculty who teach DSP, they said sometimes it is taught,

sometimes it may; we assumed that it is taught in communication; communication people say

that okay, we think it assumes is taught in DSP, so in case, it has not been taught, this is the part

that we are focusing on.

(Refer Slide Time: 08:15)

So, basically we would like to look at a uniform quantiser, this is the most common one, uniform

quantised  with  rounding,  okay we will  assume  that  we have  fairly  large  number  of  bits  of

representation, what is large; 10, 12, 16 bits of representation, so which means that you have



sufficient  number  of  levels  to  represent  the  signal,  so  very  quickly  what  does  the  uniform

quantiser to do it for every input signal, it produces a corresponding output signal which is a

finite number of representation; bits of representation.

So, the levels, if you were to look at it are marked off by some uniform step sizes, okay we will

call it as delta and mark it uniformly on the x and y axis, so basically this is and we say that

anything between, so this is delta; 2 delta 3 delta – delta, okay, so anything which is in this, sorry,

anything which is in this range, we will denote between – delta/ 2 and delta/2, we will denote as

0, anything between delta/2, 1.5 delta is denoted by the next quantisation level.

So, then we go up to the next quantisation level and so on, okay, similarly we have the negative

side as well and once you have drawn sufficient number of levels, you can leave it, so basically

this is the quantisation; uniform quantisation that is happening all the bins are equal value and

then you have quantised it to some levels, so this is signal where there are positive and negative

signals permitted, we would like to have a representation in terms of the number of bits.

So, the standard convention that we use is we assumed that we have a B + 1 bit representation

and I will clarify that in a minute, why we want to do that so, B + 1 bit binary representation, the

+1 denotes the sign, okay, so it is actually a B bit quantisation in each for positive values and for

the negative values, binary representation and again I am assuming that this is familiar to you

just sort of giving you the key elements.

So, one bit for the sign and the B bits for the amplitude representation, okay that is what we have

done and typically, we would like to represent these values in a range from -1 to 1 basically, we

assumed that the signal is scaled by its maximum amplitude and if you were to think of the bits

of representation, so it would be treated as B0 dot that means that is the one that denotes the sign,

then we have B1, B2 all the way to Bb, upper case B, okay.

So, it will be –b0 times 2 to the power 0 that is 1 + b1 times 2 to the power of -1 +b2 2 times 2 to

the power of -2, this is 2’s complement representation, the final value is b subscript b 2 to the

power of –b, this is 2’s complement and you would have studied other forms of representation,



all are fine since this is more of an analysis of the quantisation error, we do not really spent too

much time on this element, okay.

So, 2’s complement representation uniform levels from a range of values,  okay, so typically,

what you will find is that if we have 1 level denoted as 0, then this is; this could be a typical

representation,  so  if  I  have  a  3  bit  representation,  so  basically  we  are  looking  at  a  3  bit

representation, so 2; one of them will be the signal, the polarity of the signal, the second one, the

remaining 2 bits are the levels.

So,  this  is  how  we  could  have  a  representation  0,  0,  0  representing  the  0  value,  zero’s

representing the positive values, so I have level 0, 1, 1, 0 and 1,1 so if I were to do it on a scale

on a +1 to -1 scale, this could be given the level 1/4, this will be 1/2 this would be 3/4 and then

go to the negative side, the first value in 2’s complement 111 that would be -1/4 110-1/2, 101 is

-3/4 and 100 is -1.

So, typically this is how you would see the quantisation and noticed that there is in terms of the

negative values there is one extra value, okay you go slightly more on the negative side than on

the positive side, again if you have enough number of levels, this is not an issue, so again it is a

point to note that are invariably the quantisation will have one extra level on the negative side

than on the positive side when we do the 2’s complement representation, okay.

(Refer Slide Time: 14:14)



So, what is the step size; the step size that we have worked with that is the delta, step size delta,

there are 2 to the power of b +1 bits, right that those are the number of levels that we can get and

I go from a positive maximum value to a negative maximum value, so xm is the extreme range

of my signal, so if my signal lies in this range xm to -xm and I want to quantise this into the

number of bins that are available to me.

So, this would become 2 times xm that is the range that I have to quantise and I have 2 power b

+1, so this is the; so this delta is often related to or denoted as x of m divided by 2 to the power

of  b  and  so  this  is  a  and  but  you  know  where  it  comes  from  because  of  the  b  +  1  bit

representation, so the quantised signal x hat of n which has been quantised with the b + 1 bit

representation can be actually recovered or you can be related to the maximum value xm, right

that is the peak value.

And the quantised signal has been represented in the range; once you have scaled your signal by

xm, then you can quantise it in the range -1 to +1 that is xb hat of m or if you want to think of it

as a scaled signal, take x of m to the other side, so you take your discrete time signal scale it by

the maximum magnitude and then quantise it because now it is in the range +1 to -1 that is x b

hat of n, okay.



So,  I  think  the  quantisation  framework  is  clear,  it  is  a  uniform quantiser,  it  is  a  rounding

quantiser, so basically once you go past the half level, you are going to be quantised to the upper

level that is where the rounding element comes, so here is a general statement that the errors that

you  will  see  in  your  quantised  signal,  if  you  were  to  write  your  quantised  signal  as  the

unquantised signal x of n + e of n.

Some error sequence which is; we can say that typically, e of n has a range of values, it typically

goes from –delta/ 2 to less than delta/2 provided you have not reach the sort of the upper level,

the extreme levels, if you have reach. If you have cross that then it is clipping but in the range of

the quantiser, this is typically satisfied so, this is a good way to look at the signal, okay so some

statistical assumptions about e of n which helps us in the quantisation or in the analysis of the

quantisation is that e of n is an uncorrelated sequence.

It is basically from sample to sample, it is an uncorrelated and it is a very reasonable assumption.

Because if you were to look at the signal that is varying like this at a given point in time, this is

the sample value, the quantised level could be here, okay, the next instant of time the sample

value  that  could actually  be on a quantised  level  itself,  the next  instant  of  time it  could be

sampled here but it could be quantised to a higher level,  so basically, you can see that from

sample to sample, there is no necessity or there is no underlying correlation.

So, we make the following statements and assumptions that first of all that the error sequence e

of n may be positive, negative 0 and it is uncorrelated to the signal, is uncorrelated to the signal,

it helps, it is a very helpful assumption, it is uncorrelated to the signal, okay that is the first signal

x of n, the second element; e of n is a white noise process that means, it is uncorrelated from

sample to sample, okay and you can also think of this as a sample of a wide sense stationary

process.

That means, whatever things like mean, variance and other parameters are not dependent on time

they are constant, so that is another aspect, so e of n, we consider it as a sample sequence from a

wide sense stationary random process, a sample sequence from a wide sense stationary random



process RP; random process, okay and the last assumption that the quantised value; quantised

value of e of n is uniform that is the probability is uniform.

The PDF of e of n is uniform, okay these are the assumptions so in other words, the PDF being

uniform says that the error goes from – delta/2 to delta/2,  the probability is that all of these

values  are  equally probable,  so I  have a height  of 1 over delta  that is  my PDF; probability

distribution  function  of  the  error  signal,  so this  is  the  probability  of  e  of  n  of  e,  okay. So,

basically this is the framework, this is what you would have used to analyse.

(Refer Slide Time: 20:33)

So, using this framework, please verify that these are the results that you would have shown or

derived the mean value is 0, uniform both positive and negative values straightforward to show,

second one is the variance of the error, okay this one says I go from – delta/2 to delta/2, the

variance means I have to do e squared, PDF is 1 over delta times de, this comes out to be delta

squared/12, okay.

So, this is also result that is well known delta itself we have said is can be written as x of m

divided by 2 to the power b or you can write it as 2 power -b times x of m, so this can actually be

written  as 2 power -2b x of  m squared divided by 12, okay, so here comes  the first  major

equation or the outcome of this analysis, which is very useful tool for both communications and

signal processing engineers, signal to quantisation noise ratio.



This is not channel noise, this is quantisation noise, okay so on top of it, the channel may add but

right now at the very representation stage itself there is some noise being introduced, so signal to

quantisation noise ratio defined very similar to what you would do for the signal to noise ratio

basically, it is 10 log based 10 of the signal power sigma x squared divided by sigma e square,

okay sigma x squared representing the signal before that is the signal x of n.

And sigma e squared and if you go ahead and substitute for this from the previous expression,

this becomes 10 long 10 of 12 times 2 power 2b times sigma x squared divided by xm squared,

sigma x squared/ xm squared, okay, so now what is xm; the maximum value that it can achieve,

sigma x squared is the variance of the or the power of the signal right, sigma x, so that is a very,

very important element just to that you are feeling comfortable with it.

For a sinusoid, if the peak of the sinusoid is x of p, what is the RMS value; sigma x will be 1/root

2, so there is a relationship between the extreme value and the RMS value and that is what we

are capturing here, so now if you were to write down this equation, this would be 10 times log

based 10 2 power 2b +10 times log base 10 of 12 -20 times log base 10 of xm/ sigma x, okay I

have deliberately inverted the ratio and written it, okay.

So, simplify this equation, what you should get is the following, it should be 6.02 times b +10.8

the other term -20 log base 10 of x of m/ sigma x, okay so the key question is how have you;

how are you going to design your quantiser, you have to tell what are the range of your quantiser

and of course, how many bits you are going to do, so if I choose my range to be xm and I will

chosen the b +1 bits as the representation.

This is the equation that tells me what my signal to quantisation noise ratio is, okay now usually

for most signals, we can sort of specify, okay how do I set these up these limits, so you can say

that for example, you can say that I will chose xm to be = 4 times sigma x basically, 4 times

sigma on this side, 4 times sigma on that side, so that is the range that I want to cover, so if you

take some assumption like this, you have bound to capture most of your input signals.



Of course, there could be occasionally an input sample that has got that goes outside but by and

large, you have captured it, you can do 3 sigma, 5 sigma whatever it is, keep in mind that the

larger that you want to keep x of m, it is going to reduce your SQNR right because that means

that with a finite number of bits that means your quantisation error is going to be more because

you have a larger range to cover.

(Refer Slide Time: 25:46)

So, this is an important choice, now one of the common choices is 4 sigma, therefore, if you

make that assumption, then we have 20 log of 4 which comes to be 12.04, so if you go back and

substitute your SQNR, now has the following 6.02b -1.25, this in dB, okay, so very cleanly you

have now linked your SQNR to the following result, okay, so this is where you get that thumb

rule which says 6 dB per bit, okay.

Many times you will see people saying, oh, how many, what is the quantisation noise you want;

quantisation noise, if you say I want to get 96 dB, there will say 16 bit representation, how did

they get it, how did they without even computing everything because they say okay, if I have 16

bits of representation, the SQNR will be of the order of 16 times 16, 16 times 6 and that is the 96

dB, okay.

This is where that 6 dB per bit rule comes and so if you want to go from 64 dB SQNR to 96 dB

SQNR, you know exactly what you have to do in terms of the; so this is the quantisation noise



and issues, so again up to now nothing knew nothing different, so the key question is; can multi-

rate techniques make any difference, multi-rate DSP help or can it do something and surprising

result which says that if I use multi-rate DSP, I can reduce the number of bits of representation.

And I can still maintain the SQNR, okay, now you may say to what extent can you reduce the

number of bits of representation; the answer comes out be, I can go down to 1 bit representation,

so 1 bit representation if you want to think of it in terms of the conventional approach, if this is

your signal spectrum, remember we drew those lines, okay this is the quantisation noise if you at

16 bits, this it will go up here.

One bit means you are pretty much you are swamping your signal with noise, so almost nothing

you can do with the but so with the conventional method, if you go down to 1 bit quantisation

nothing can help but with multi-rate the claim is that it can go down to 1 bit, so here is the first

step; the first step is over sampling, okay, so let me just give you the flavour of it, does a since

this is more of an application talk.


