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So let us do a quick run through. It is intended to just sort of refresh your memory. And if there

are any doubts or clarifications, something in the notation, just ask. We can spend a few minutes.

So roughly lecture 12 was where we were introducing the noble identities, started looking at

polyphase decomposition, that is more or less start of, end of quiz 1 and the start of the portions

after quiz 1.

(Refer Slide Time: 00:32)

Then we talk about the DFT filter banks and their properties. And then the 2 channel maximally

decimated filter bank, the various solutions. Actually we have looked at 4 different solutions.

(Refer Slide Time: 00:54)



So the task for us now is to quickly review the items from lectures 12 onwards. So lecture 12,

then lecture numbers may be slightly shifted but more or less this is the sequence in which we

covered. Lecture number 12, we looked at the structure of a multiplexer and a demultiplexer,

okay. And the form of the demultiplexer that is most convenient to us is the following form. Let

me take the case of M=3, downsample by a factor of 3, advance operator downsample by a factor

of 3.

This is also downsample by a factor of 3, okay. So if you were to write down the, if this was X of

n and X of 0 was going on the upper branch, then X of 1 will come on the lower branch, X of 2

will come on the second branch. Then the next time instant, it will be X of 3, X of 4, X of 5. This

is what we also refer to as the blocking operation, creation of blocks. Notice that these are non-

overlapping blocks if you downsample by a number less than 3, then you will get overlapping

blocks.

And this is what we designated as a serial to parallel converter of dimension M. One in M out

and this is a notation. So if you see serial to parallel with M, it is the one with the delays. Of

course,  you  can  have  demultiplexer  which  works  with delays.  Then the outputs  are  slightly

shuffled and again it is interesting to see what comes out if you replace the advance operators

with the delay operator.



And then on the other side, if you want to look at a multiplexer, a multiplexer operation which is

most convenient for us, again I will take the case M=3, 3 parallel streams connected or added

with a delay operation. So this is a summing node upsample by a factor of 3, a delay and notice

the arrows going upward. This is a summing node. So this is the form of the multiplexer that is

most convenient.

And again if you feed in X of 0, X of 1, X of 2 as a block, what would come out would be X of

0, X of 1, X of 2 which is the logical sequence in which we would expect the data to be present.

And  the  notation  for  this  is  M inputs,  we  refer  to  this  as  a  parallel  to  serial  converter  of

dimension M. So again this is the standard definition. Of course, you can mix them up a little bit

and get slightly different outputs, okay.

(Refer Slide Time: 04:37)

So if you were look at the movement of the demultiplexer switch, then what you find is that if

you have this structure with the advance operators, then it is going in the clockwise direction.

Otherwise, you will find that it is going in the anticlockwise direction. So this is a useful form

because for example if you wanted to compute the FFT with non-overlapping blocks, this is what

you would do. You would do a serial to parallel conversion, downsample by n, so that would

give you non-overlapping sets of blocks and we have looked at that type of.

(Refer Slide Time: 05:13)



So let us move on. A couple of other results from lecture 12. We said that the interchanging of

multirate  blocks  upsampling  by  a  factor  of  L,  downsampling  by  a  factor  of  M,  these  are

equivalent under certain conditions that L and M are prime. So more importantly, more than the

result is the ability to show these results mathematically, okay. So let me just write one side of it.

So if this is X of n, let me call this as X1 of n, this as Y1 of n. X1 of Z would be X of Z power L

because it is the upsampler.

Y1 of Z is the downsampler. So it is 1/M summation K=0 to M-1 X1 of Z power 1/M WM raised

to the power K, okay. W is the DFT twiddle factor, e power -J2pi/M. And this can be written as

1/M summation K=0 to M-1, substitute for X1 of Z from the previous equation. So this would be

X of Z power L/M WMKL, okay. And similarly we get an expression on the right hand side and

make an argument that they are the same, alright.
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So now if we then move on to the next important result, that would be the noble identities. If you

have downsampling, sorry, a filtering block, so H of Z power M followed by a downsampling by

a factor of M, then you can interchange the two provided we replace H of Z power M with H of

Z. And similarly the upsampling also can be replaced and the ones on the left hand side are the

more efficient implementation.

(Refer Slide Time: 07:50)

Along with this, we also looked at another important result which we referred to as the time

domain representation of the filtering in the context of multirate blocks, time domain description.

So this is not an LTI system because we have shown that the upsampler and the downsampler are

time variant blocks. However, we are able to write the input and output in terms of something



that looks like a convolution and the interesting results are presented here.

So if I have the anti-aliasing filter H of Z followed by a downsampler by a factor of M, okay, so

if this was X of n and this is Y1 of n. We have shown that Y1 of n can be written as summation

K=-infinity to infinity X of K h of Mn-K, okay. So make sure that you can get the same results.

Second result, if we have X of n which is going through an upsampler by a factor of L followed

by the interpolation filter, H of Z, Y2 of n.

In this case, we have shown that Y2 of n is summation K= -infinity to infinity X of K h of n-KL,

okay.  So  make  sure  that  we  got  the  correct  relationship.  And  the  third  one  which  is  the

combination of upsampling and downsampling,  a fractional sampling rate conversion. So if I

have upsampling by a factor of L, followed by filtering, followed by downsampling, again the

choice of the filter that is sitting in the middle depends on the values of L and M, whichever one

is larger will determine the value.

And in this case, if this is X of n, Y3 of n. Y3 of n we showed is summation K=-infinity to

infinity  X of K h of Mn-KL. Basically it  is  a combination  of 1 and 2.  So this  is  a way of

representing  the  input  output  relationship,  not  strictly  convolution  but  in  the  form  of  a

convolution type operation, okay.
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Move on to lecture number 13. I am sorry, yes, so again, lecture number 13 may have started a

little bit earlier. But probably the important result is the combination of polyphase decomposition

and the filtering which is associated with sampling rate change. So anti-aliasing filter followed

by  the  downsampler,  we  cannot  take  advantage  of  the  Noble  identities  except  if  you  do

polyphase decomposition.

So type 1 polyphase decomposition is says write H of Z as summation K=0 to M-1 Z power -K

EK Z power M, okay. So apply it and then use the Noble identities. What we should get the

equivalent structure for this should be downsampling by a factor of M, delay downsample by a

factor of M, dot, dot, dot, a delay downsample by a factor of M. This would be E0 of Z E1 of Z,

again all the arrows are to pointing to the right.

This would be EM-1 of Z and all these outputs get added together, okay. So that would be the

way you take advantage for, and likewise the same principle also applies if you wanted to do

upsampling by a factor of L, followed by the filtering to remove the images. Then you would do

a polyphase decomposition with L polyphase components.

There is  a type  2 polyphase decomposition  which we have used not  in the context  of these

sampling  rate  conversion  but  we have used it  in  the  context  of  filter  banks.  So let  me just

introduce it here itself. So H of Z can also be written as summation K=0 to M-1 Z power -M-1-

K*RK of Z power M.

So this is actually RM-1 of Z power M+Z inverse of RM-2 Z power M+, dot, dot, dot, all the

way to Z power -M-1R0 of Z power M, okay. Now if I were to just write down the type 1

polyphase decomposition, this would be E0 of Z power M Z inverse E1 of Z power M, dot, dot,

dot, Z power -M-1 EM-1 of Z power M, okay. So actually you can then map the equivalences

between the polyphase components.

I think somewhere between lecture 13 and 14, we also looked at the computational savings. If

you do this, so let me, most probably it was part of lecture 14. We showed that the computational

savings if you do the polyphase part is a factor of M than over the case where you did it in the



direct  form  without  any,  taking  any  advantage  of  the  fact  that  you  are  downsampling.  So

computational savings. If I am doing for a factor of M, is approximately a factor of M, so huge

advantages when you are sampling, making a sampling rate change of large magnitude, okay.

(Refer Slide Time: 15:44)

We also said that the application of the Noble identity cannot produce unimplementable blocks.

So Noble identities have to be applied carefully. So for example, this is not permitted. Z inverse

followed  by  a  downsampling  by  a  factor  of  2,  though  mathematically  is  Z  power,  sorry,

downsampling by a factor of 2 Z power -1/2, no, this is not allowed. So this is not allowed, okay.

And likewise we cannot do it for the upsampling also.

So upsampling by a factor of 3 followed by Z inverse if I did the Noble identities brute force,

then I would get Z power -1/3 upsample by a factor of L and this again is not permitted, okay.

Because basically fractional delays are not realizable. Then we introduce the notion or started to

introduce the notion of filter banks and there was an important result from decimation. Because

these filter banks ideally would like to have maximal decimation.

So when can you decimate a signal by a factor of M and not have any aliasing. Basically no

aliasing present. So we showed that if you had a spectrum, some complex spectrum. If this width

is 2pi/M or less, okay, less than or equal to 2pi/M, then this signal can be downsampled without

aliasing.  So  basically  the  downsampled  signal  does  not  have  any  aliasing.  Important  result



because what will happen as you will get production of M-1 copies, they will be separated by

2pi/M and because the bandwidth is actually less than 2pi/M, these images will not overlap with

each other.

Now this was a very important result which took us to the notion of filter banks. And notion of

filter bank starts from having a prototype filter and then producing other filters by shifting this

one. So if this is H0, then H1 is here, H2 is here likewise and if these had pi/M as their boundary,

as their cut off frequencies, so if this was -pi/M to pi/M, the green filter would have pi/M to

3pi/M.

Notice that both of these will not cause any aliasing. Similarly the blue filter also will not cause

any aliasing  when downsample  by a  factor  of  M. So this  was  an advantage  and there  is  a

particular name for filters that are, filter banks where filters are derived in this fashion. They are

basically called the DFT filter banks. The reason for the name is that these are shifted by 2pi/M

which is the same as a DFT twiddle factor.

So H0 of Z is your basic filter or prototype filter, H1 of Z is H0 of ZWM. And H, let me use the

same colours, blue is H2, H2 of Z is H0 of ZWM squared and so on, okay. So you basically get

M-1 filters.  If  you  were to  write  it  down in terms  of  the  polyphase  components,  it  is  very

attractive, H0 of Z type 1 polyphase components, K=0 to M-1 Z power -K EKZ power M and

then apply the DFT filter bank constraints. We get the following result that the, where is my

figure, okay.
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So this is what emerges from the, so if were to apply the polyphase decomposition and apply the

DFT filter  bank property, then what I would get is a delay chain followed by the polyphase

components followed by the transpose conjugate of the DFT matrix. I believe lecture 17 was

where, we were at this point. So lecture 17, we also looked at the properties of the DFT matrix

belongs to the property or belongs to the family of unitary matrices with suitable normalization.

So the notation is W.

We usually talk about an N*N DFT matrix. So the elements of this matrix are W subscript Ni,j.

So I is the row index, j is the column index, okay. So it will be e power -j2pi/N*i*j, that would

be your entry inside the matrices. And we have shown that through the properties of roots of

unity that W dagger*W=N*the identity matrix which implies that W inverse is nothing but the W

dagger/N which is precisely the definition of the inverse DFT, okay.

We said that the recognition of the filter banks and the computation of FFT actually have a very

strong linkage and that linkage was established through the following analysis where we said that

the computation of a DFT requires you to do a serial to parallel conversion, step I, followed by

the DFT matrix.
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And then we computed  the transfer  functions  between the input  and each of  the output.  So

basically if you were to think of it as the spectral analysis, then the DFT coefficient X0 is the

output of A of X of n passing through a filter whose response is given by this expression, 1+,

wait, wait, wait. Yes, 1+Z+Z squared + Z power M-1.

So basically if you pull out the appropriate factor, you can show that this is nothing but the

rectangular window and likewise you can then show the transfer function between X of n and the

second output to be a same filter shifted to the right by 2pi/M and this would be the X of M-1. So

this would be X of M-1. So the last but 1 filter. So we say that spectral analysis using the DFT

can also be interpreted as a DFT filter bank.
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And may  be  a  few statements  in  this  regard  would  be  helpful.  Again,  I  am sure  you  will

remember it once you look at the expression. So the DFT, iDFT, does not matter, both of them

can be interpreted as filter banks operation or spectral analysis using the following prototype

filter, using H0 of Z 1+Z inverse Z-2 Z power M-1, okay. So again it is a rectangular, this is the

prototype filter.

And then all the other filters are DFT shifted versions of it. It is a very useful interpretation.

Because this also says that my spectral analysis using the DFT is not a very precise one because

the frequency response has got side lobes and the height of the side lobes if this was normalized

to 0 dB, this will be at -13 dB and it lead to some erroneous interpretations of the spectrum. And

the first 0 crossing happens at 2pi/M, okay.

Now if I wanted to get better spectral resolution in the sense that I do not want spectral leakage,

then we said the way to do it would be to introduce windowing, okay, that would help us reduce

the spectral leakage. The introduction of a window more or less would do something like this. It

would make it a little wider but would make the side lobes much less. How would this actually

look like in the DFT structure?
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What would happen is, you would introduce a multiplier here. What colour would be a good one

to use? So basically call this as alpha 0, alpha 1, all the way to alpha, have to erase something

here, okay. And last one would be alpha n-, I am using M, sorry. M-1, okay. So the windowing

helps you with avoiding spectral leakage. Now if you say that I want to have reduced spectral

leakage and better spectral resolution, then the only way is to expand the size of the DFT.

And  one  way  to  do  that  without  increasing  the  DFT matrix  size  itself  is  to  replace  these

coefficients with the (()) (28:00) – (()) (28:31) (Corrupted Audio) that would be a way to do the

spectral analysis. Again we mention that this is an important observation. Now in addition to this,

there was one more result I believe which was highlighted. I would like to just use the same

figure.
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Maybe I will copy it and then, rather than just keep over-writing it, okay. So let us work with this

one now. We can also look at the scenario where the output has a downsampler by a factor M,

okay. If this is M, take this as N, okay. The role of the downsampler is to reduce the overlap

between the subsequent blocks. So if you take N=1, then what you get is just a sliding block

where you have an overlap of M-1 samples between successive DFT computations, okay.

If  you  take  N=M,  then  you  get  non-overlapping,  strictly  non-overlapping.  And  of  course

anything between N=1 to M, would  be  various  degrees  of  overlap  between the,  probably a

popular one would be N=M/2, okay. So that will give you sort of 50% overlap, non-overlapping

blocks, okay. So again the same structure, the interpretation is that we are trying to do a spectral

analysis.

We think of it either as a DFT or we can think of it as a DFT filter bank where you have a

prototype filter and then all of the other filters are part of the DFT filter bank. And you know

how to  improve  the  filter. You can  think  of  it  as  a  windowing.  You can  think  of  it  as  the

polyphase  components  rather  than  as  constants  to  be  polynomials  and  therefore,  get  the

advantage of the filters, okay.
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Let  me  move  on  quickly  because  the  next  step  was  the  interpolated  FIR  design  and  the

interpolated  FIR  design  said  that  we  could  design  filters  taking  advantage  of  the  cascaded

implementation. So H of Z can be implemented as G of Z square*I of Z. And this would be the

interpolation  filter  which  removes  the  unwanted  images  that  are  present  in  G of  Z  square,

interpolation filter, okay. So basically the underlying principle is multistage implementation of

the sampling rate conversion, implementation of either upsampling or downsampling. You can

take advantage of this, okay. 

A filter that is commonly used as interpolation filter is the cascaded integrated comb filter which

is nothing but the rectangular window 1+Z inverse+Z power -M-1 1-Z power -M/1-Z inverse.

You can apply it for upsampling or downsampling. You can cascade many of these filters and

then  still  take  advantage  of  their  computational  efficiencies,  okay.  So  that  pretty  much

summarizes the parts on the multirate part.
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Now  moving  quickly  into  the  filter  bank  portion  of  it.  The  first  step  was  to  look  at  the

transmultiplexer. The transmultiplexer has the synthesis filters in the beginning followed by the

analysis  filters. We took the case where C of Z=1. So therefore, nothing is happening in the

channel. What is happening is that upsampler produces copies of the spectrum.

The synthesis filters are picking out the desired responses of the, desired copy of this, of the

input signal. We showed the analogy to the OFDM transmitter. OFDM transmitter has an iDFT

followed by upsampler followed by a delay chain. The upsampler followed by delay chain is

nothing but a parallel to serial converter and then we wanted to analyze what the iDFT actually

was doing.
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And we showed that the iDFT is nothing but a filter bank which is exactly the prototype filter,

the rectangular window. This second one, second filter is, basically you get a DFT filter bank

from this. So the OFDM transmitter is doing exactly the transmultiplexer operation with these

F0,  F1,  FM-1  being  part  of  a  DFT filter  bank  where  the  underlying  prototype  filter  is  the

rectangular window, okay.

(Refer Slide Time: 34:31)

Then we move on to the special case of the 2-channel filter bank. The 2-channel filter bank we

have  H0  and  H1  as  the  analysis  filters,  downsampling  by a  factor  of  2,  then  followed  by

upsampling by a factor of 2, then the synthesis filters. Very important that we are able to analyze

it in detail and get the expressions. We represent output X hat of Z in terms of a T of Z*X of Z.



And another term which is a transfer function for X of -Z.

Now X of -Z is the aliasing copy or the alias version of the input signal and the goal would be to

get rid of any contribution of the X of -Z. So the alias cancellation constraints, more or less

universally consistent would be F0 of Z=H1 of -Z. F0 should be a low pass filter. H1 is a high

pass filter. So if you take -Z, is the shifted version which will become a low pass filter. So it is

intuitively that is a sanity check.

Similarly, F1 of Z is H0 of -Z with the minus sign. The minus sign is deliberately to get rid of

cancellation, okay. So given this, we are guaranteed that the T of Z can be written as along with

the QMF of constraint can be written as H0 squared of Z-H1 squared of Z, okay. Now the rest of

the exercise was to see how to get rid of the magnitude and phase distortions in T of Z.
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So the first step was to look at a type 2 linear phase filter. Type 2 linear phase filter has got even

order, no odd order, yes. So even symmetric, okay. So it is N is odd, has even symmetric, yes. If

you  then  write  down the  expressions,  we get  Te of  j  omega  is  magnitude  H0e of  j  omega

squared+H0e of j omega-pi whole squared. And we said that this could be implemented through

the optimization of the stopband energy and a flatness constraint.

So that would give you complete elimination of phase distortion but the magnitude distortion



could have some minor ripples, depends on the order of the filter and how well you have done

the optimization. The second option was to look at the polyphase decomposition and then show

that T of Z actually comes out to be Z inverse e0 of Z squared e1 of Z squared and if we could

implement the filter H0 as the sum of 2 all pass functions, which we said was possible. We did

not actually prove it but we said that for a class of elliptic filters with appropriate constraints, we

could do this factorization.

The  important  things  to  know that  it  exists.  Then  we  could  get  rid  of  aliasing,  get  rid  of

magnitude distortion but phase distortion would be present. Third method where we actually did

the  all  pass  decomposition  of  the  filter,  we  showed  that  under  very  specific  constraints  of

symmetry and order, we could get the transfer function to be A0, not A0 of Z squared. It is A0 of

Z+A1 of Z. Sorry *A1 of Z. So that again was case where aliasing was cancelled, magnitude was

removed but phase distortion was present, okay.
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Then we came to the fourth element where we said that the QMF of constraint, we are going to

apply it slightly differently. And for that, we wanted to go back and look at some other results

that were available to us. And that was the property of the Mth band filter. Let me just quickly

mention it so that we will have that result handy for us. The Mth band filter.

An Mth band filter has the following property that when you add the shifted versions of that



filter. So 1/M summation K=0 to M-1 H of ZWMK, if this is equal to a constant, then we call H

of Z as a Mth band filter, okay. So we showed that Nyquist filter satisfiez this property. Nyquist

filters  which  are  used  in  our  interpolation  are  actually  the  ones  will  satisfy  the  Mth  band

property.

Now in addition to this, we also showed that if you had a set of filters which are defined as

power complementary, H0 of Z H1 of Z HM-1 of Z as power complementary, this basically

means that summation K=0 to M-1 mod HKe of j omega magnitude squared=constant or 1, okay.

Now maybe I should have used a slightly different, let me call this as G. Then G of Z is the, the

reason we show this side by side is if I have a Mth band filter.

So by the way this can be written as summation K=0 to M-1 HK~ of Z HK of Z=1, that is the

para-conjugate representation. Now if we can represent or show that there is a Mth band filter G

of Z which can be factorized in the form of H of Z*H of Z, okay, there is a specific name for this.

This is called a spectral factor of H of G of Z. Spectral factor of G of Z because magnitude Ge of

j omega=magnitude He of j omega magnitude squared.

So  basically  it  is  like  taking  the  square  root  of  the  magnitude  response  but  under  certain

conditions you can take it that basically means that your amplitude response must be strictly non-

negative and we showed how by lifting the amplitude response, this is possible. Now take this to

the case where we wanted to be just the half band filter. S half band filter factorized into this

form basically gives us a new way of designing the 2-channel filter bank.
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The  aliasing  cancellation  constraint  followed  by  an  alternative  way  of  implementing  the

quadrature symmetry. H1 of Z is the para-conjugate of H0 of -Z. So para-conjugate with the

minus sign. If we, and we showed how to get out to design this filter by designing a half band

filter and then lifting the amplitude spectrum. If we do this, then we showed that the overall

transfer  function  comes  out  to be Z power -N or in  other  words,  we have achieved perfect

reconstruction. So this is the option that gives us perfect reconstruction. 

Of all the 4, this would be the one that would be the most attractive because it achieves this first.
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Now in the process when we talked about the all pass functions, we did derive the all pass lattice.



I believe that was lecture 25. I will just write that down as the last point. We showed that there is

a lattice structure where the order of the filter GM, with M lattice stages, can be related to the

transfer function with M-1 lattice stages in the following way, GM-1 of Z/1+KM*Z inverse GM-

1 of Z.

And of course, a very interesting property is that if GM-1 is the causal stable all pass and mod

KM<1,  then  GM-1  of  Z  will  also  be  a  causal  stable  all  pass.  And  likewise  if  and  only  if

relationship, so if you impose that constraint on GM-1, then automatically this one also becomes

the same. So basically we showed that there are structures which will give us structurally stable

all pass filters.

Now this was more in the context of showing that you can get all pass filters which we can show

to satisfy the factorization of a filter. But again having studied perfect reconstruction, maybe

these are limited in terms of their use in the filter bank context. But of course, all pass filters

have got several other applications for which this would be a very useful tool as well. So the

properties of an all pass, that is the last point I just want to mention, all pass.

So this would be causal stable all pass. They belong to the class of functions which are termed as

lossless, input energy=output energy. If it passes through an all pass filter, there is a maximum

modulus  theorem.  This  is  very  important  in  proving the  properties  of  the  lattice,  maximum

modulus property. We know that the all pass has got magnitude=1 on the unit circle H of Z=1 on

the unit circle.

The maximum modulus theorem derived from complex variable theory of analytic functions says

that this is strictly less than 1 for mod Z>1 for mod Z<1. Again we have used this property

without proof but it is standard result, the maximum modulus property of analytic functions. And

of course, there is a third property which we did not explicitly used but they exist for all pass

functions that if you have an all pass function.

Usually you write a transfer function in terms of magnitude and phase. Here the magnitude=1.

So I can actually write it as e power j phi of omega and if you differentiate d phi of omega/d



omega, d phi of omega is a real valued function, can be differentiated. We can show that strictly

less than 0, that means it is a strictly decreasing function, monotoned decreasing function if all

poles are inside, strictly inside the unit circle, okay.

Under this condition, inside mod Z=1, okay. And I believe that was the span of what we have

covered between quiz 1 and quiz 2. And most general form of an all pass filter, Hap of Z is

denominator polynomial Z power -N B~ of Z. This also says how will be the poles and 0's of an

all pass function. Basically you will get the reciprocal conjugate as the, if you have a pole, you

will get a reciprocal conjugate as the 0.

And because of,  if  you want  to  impose  the condition of real  coefficients,  then you will  get

complex conjugate pairs. And of course, the reciprocal conjugate pair will also be present, okay.

So this is just the material that we have covered in the class. Of course, if you have any doubts

on assignment 4 or anything that we have covered in the lectures, please stop by between 5 and

6, TA’s and I will be there. Thank you.


