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Good morning. Let us begin lecture 22. We pick up from the last lecture where we talked

about  the 2-channel  filter  bank,  alias  free filter  bank and today we will  continue  on the

discussion. I would like to cover some aspects of how do we eliminate amplitude distortion,

how will we eliminate phase distortion. We will also look at how the historical development

happened which came first, how did people actually solve this problem of removing all 3

forms of distortion. 

As I mentioned in the last class, the tools that we have developed in the material covered so

far  one  of  them is  polyphase  decomposition.  We just  want  to  know whether  polyphase

decomposition  is  going to  give  us  any insights  into  the  tools  or  the solution  that  would

eventually be able to satisfy all of these 3, removal of all 3 types of distortion. We also know

that we have linear phase filters and the use of linear phase filters removes phase distortion. 

So again we will explore both of those in today's lecture and then see how we can leverage

these results for our purpose.
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So  the  framework  is  the  2-channel  maximally  decimated  filter  bank.  Again,  the  term

maximally decimated means that your total sample rate, number of samples per second after

the splitting into the sub signals, subchannel signals should be the same as the input rate

sampling rate, sample rate. So you can see that both of these are down sampling by a factor of

two, so therefore you would have the same input and output sampling rate.

Now we showed for this case that the output reconstructed signal or the recombined signal to

be equal to a transfer function which we can write as T of z, T of z is the signal transfer

function and the next one is the aliasing transfer function A of z. Now if A of z is set to 0 then

we get alias free condition.
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And that is something that we had already looked at because there was one choice of transfer

for  the  choice  of  filters  that  showed that  the  aliasing  can  be  canceled  and  again  this  is

something that you can try out. Now if we have succeeded in setting A of z=0, then we can

now start focusing on the transfer function. So if A of z is=0 then we focus on the transfer

function T of z.

And say that  any other  transfer  function  has  got  a  magnitude  response,  has  got  a  phase

response and the magnitude distortion if you want to set eliminated, the magnitude response

must be a constant which basically says it must be an all pass filter. Phase distortion says that

this transfer function must have linear phase and therefore in that condition then we would be

able to eliminate the phase distortion as well.

(Refer Slide Time: 03:04)

We did spend a fair amount of time going through the drawing, how if this the green line was

the input  signal,  H0 and H1 were the 2 filters  that  were available  to us.  Then, we went

through and showed that the aliasing terms which come from the two terms that are in the

aliasing transfer function basically  give you some nonzero value around pi/2 and around

3pi/2 and similarly the other transfer function other component also has got the same.

And  looking  at  the  spectral  occupancy  if  these  have  more  or  less  the  same  magnitude

response and opposite phase they would cancel each other and that is what is the underlying

principle okay. So some elements that I just wanted to emphasize on. So we can get rid of the

aliasing that is point number 1 and the choice of the filters that will eliminate aliasing one of

the options is here.



This may or may not be the only option, so this is a sufficient condition for the elimination of

aliasing and when we eliminate aliasing we get a transfer function LTI system and we can

take care of the magnitude response and phase response. Now I would like to spend a few

minutes on this transfer function so I think it is a very important element in our development

of the theory of the filter banks.
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So X hat of z is=T of z times X of z+A of z times X of –z right,  that is a input-output

relationship for the two-channel maximally decimated filter bank okay. Now supposing we

had the following that T of z corresponded to an impulse response t of n basically it let us say

that the time domain representation of the transfer function is characterized by an impulse

response and in the same way a of n was the inverse z-transform of the transfer function A of

z, supposing these existed okay.

And now I would like you to write down the time domain equation for this. x hat of n will be

T of  z  X of  z  that  means  it  will  be  a  convolution  of  t  of  n  with  x  of  n.  This  part  is

straightforward, t of n convolved with x of n okay my X okay hopefully that does not look

like a star also okay. This is x of n okay second term. Please tell me what this is? a of n

convolved with -1 raised to the power n x of n correct okay good very good.

So now please help me write the actual convolution sums. This is summation over K going

from -infinity to infinity, t of K x of n-K+it will be a of K-1 power n-K correct because I have

x of n-K and this will be x of n-K okay. So I am going to split this in the following form -1



power n -1 power K -1 power -K is same as -1 power K, so that is the thing. So this I am

going to now do a combining of terms.

It is going to be t of K+ -1 power n okay -1 power K a of K this whole thing into x of n-K.

Probably wondering where this is heading towards, I think insight is going to come in just the

next line. So let me take the case of n even. In that case, I can write down a new sequence g

of n, g0 of n which is defined as since n is even it will be t of K -1 raised to the power n is

+1+ -1 raised to the power K a of K.

Similarly, for n odd we will get another sequence g1 of n is summation t of K- -1 power K a

of K okay. So if n even n odd we get different sequences. So we can now combine these

results into a very insightful result which says x hat of n can be written to be summation K

from -infinity to infinity, g0 of K x of n-K if n is even. It is equal to summation over K g1 of

n x of n-K if n is odd.

Do you agree with that? Basically, you get a different sequence when you are dealing with

time n is even and the time when n is odd, sorry, sorry this is g0 of K I am sorry absolutely

correct yeah this is g0 of K okay. So in other words I am glad that you brought it up because

for n is even we have to look at the impulse response being g0 of n and n odd we have to do

another impulse response.

And so the representation of this comes out to be the following. I have two filters G0 of z

which corresponds to the transfer function of g0 of n. The second filter g1 which corresponds

to the g1 of n impulse response, G1 of z both of them producing the output and it is as if the

output sequence kind of goes back and forth you know if it is and it chooses the upper branch

if n is even, chooses the lower branch if n is odd.

And this is x hat of n okay. So I have not done anything about alias cancellation. I have just

let say let aliasing be there and I have analyzed what is my input output relationship okay.

Now here is the key summary statement.  Is my overall  system linear, input and output a

linear  relationship?  Yes,  whether  its  time  is  even  or  odd  linearity  will  satisfy  okay.  So

linearity you can put a tick mark okay.



Okay second one is that is it time invariant? No, it is time varying. So that also you can tick

off, time varying okay. There is one more element which is important in the time varying

aspect. See time varying just says that every instant of time it is a different impulse response

but this one does not have a different impulse response for every instant of time. It is actually

a periodic variation.

So this has also a third element which is that it is the impulse response is periodic okay. So

that also is part of the description. So this input output 2-channel system where we talked

about a maximally decimated system has the following. It is described in the following way.

It is linear; it is periodic and time varying. See we were used to LTI, linear time invariant but

now this is 3 components, this is linear, periodic and time varying okay.

So that is that is what it is and this is insightful for us because even if you go to an M channel

system, you can visualize it as yes it is linear, it is going to be time varying but it is not

arbitrarily time varying, it has got a periodic structure to it which we once you know that

there is some structure to it,  we can always exploit.  That is  the whole premise of signal

processing.

That once you detect a certain structure in your signal, you can then take advantage of that.

So a lot of the theory behind this says okay now we move from LTI systems to a broader

class of systems which are linear time varying systems but they are not arbitrarily varying but

they are periodically varying and that is a very interesting and useful class of systems. Again

as opportunity comes you will have an opportunity to work with that okay.

So now we go back to our original plan of canceling aliasing, removing all of the things that

are unwanted. So that is our focus for the rest of the lecture.
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Now aliasing cancellation let us go back and summarize whatever we know about aliasing

cancellation. Aliasing cancellation says that we have to choose the filters in the following

manner. Choice of filters F0 of z=H1 of –z, F1 of z=-H0 of -z okay. So these were the 2

conditions that were required to be satisfied. This is an important condition and if you want to

just sort of keep reference, the overall equation is X0 of z is=T of z times X of z+A of z times

X of –z, so let me call this as equation 1.

This as equation 2, now there is one more element that sort of became apparent to us from

our discussion when we were doing these graphical representation that was the following. In

order for us to have minimum amount of aliasing that means the H0 of z, H0 of z could have

been like this but in that case if this is H0 then H1 would have to be much wider because if

you remember we said that you cannot have any portion of the spectrum that is not covered

by either of the filters.

Because you must preserve the information, so this would have to become H1. Then, the

lower branch will have a lot of aliasing. So which means that you know that is undesirable.

So obviously when you say that okay minimize the aliasing but you must also prevent that

there is no you know there must be full preservation of the signal then you say that okay H0

must have a pass band edge which is close to pi/2.

Must be close to pi/2, so if that is pi/2 because then you would have minimum amount of

aliasing.  Then,  the  other  filter  would  also  look  like  this  because  that  is  those  are  the

relationships between these 2 filters okay. So what we observe through intuition is that this is



pi okay and if you want to draw the full form this would be all the way to 3pi/2 and then the

other image of H0 would also show up okay.

So this is 3pi/2 and here we have 2pi okay. So this is the so obviously this is not a desirable

form, this  would be the desirable  way you would like to have the filters  cross over at  a

convenient point. Now this was obviously observed very early in our in the study of filter

banks. So the first reference comes in 1976, I think I may have mentioned the name already,

it was by Crosier.

And he said that yes the filters must have must crossover around pi/2 and he went on to say

that there are certain advantages, if these are not arbitrarily chosen but since they have to

have a certain symmetry around them. He said why not introduce them to be actually shifted

versions of each other okay. So if this is pi/2, this is pi okay. I am drawing only from 0 to pi.

The observation that he suggested was the following.

The observation was why not choose H1 of z to be=H0 of –z. Now does that in any way limit

us in terms of the generality of the solution or constraints? Now why would you want to do

that? This one means that you have to design only one filter because in the other case you

have to design H0 and H1. Now you would design, now let us just sort of go back and plug in

and see what does this?

So  by  the  way  pi/2  has  got  a  name,  it  is  called  the  quadrature  frequency.  Quadrature

frequency because it is 1/4 of the sampling frequency, quadrature frequency and now if you

actually draw think of a mirror at the quadrature frequency, H0 and H1 are actually mirror

images of each other because that is what happens when you design one to be the other and

they are satisfying this condition.

So this  quadrature  symmetry,  so this  basically  along with the other  conditions  enforce  a

quadrature symmetry and this class of filters when you have 2 filters which satisfy quadrature

symmetry came to be called as quadrature mirror filters okay. So quadrature mirror filters and

again the historical  development  was from an angle of let  me get rid of aliasing,  let  me

simplify the filter design and so the symmetry came about.



And so this actually came to be used very widely quadrature mirror filters and if you look at

any of the filter  bank literature,  you will  see this acronym QMF and you know where it

exactly  comes from.  Quadrature mirror  filters  started from 2 channels where you have a

certain symmetry around the quadrature frequency and of course the aliasing cancellation

constraint as well.

So now if you combine equation 1 okay and you have this is now equation 3. So 1+2, 3 add I

want to get rid of aliasing with this constraint. Please substitute, you can verify the T of z, the

transfer function will come out to be 1/2 of H0 squared of z-H1 squared of z okay and H1

squared is H1 of z is H0 of - z so this can also be written as 1/2 of H0 squared of Z - H0

squared of –Z. So this is an observation that came from introducing the quadrature mirror

filters.

So if I design it to be a quadrature mirror filter to begin with and choose the synthesis filters

according to equation 2. Then, I get a form that tells me that the overall transfer function now

depends only on H0 because H1 and H0 are related to each other, F0 and F1 are related to H0

and H1 and therefore ultimately you have written the entire expression in terms of H0. Now

the goal is that I have to design H0.

But ultimately what do I need to, what would I like to satisfy? I would like to satisfy T of z to

be=T e of z. I would like it to be all pass, all pass and linear phase or something close to that

okay. All pass and linear phase is a contradiction; you cannot satisfy both of those in the same

except for trivial cases. If you take a delay, it would satisfy right. So but all pass so why

would I want all pass because I want to get rid of magnitude distortion.

So eliminate magnitude distortion and the linear phase is to eliminate phase distortion okay.

So that is what and again it has given us an expression but really has not told us how to solve

this problem okay. So this is where we are, so we said okay. From now on, we will work only

with QMF situation because that has simplified our problem to one level but how do I get the

solutions that are useful for us in terms of the design of the filters.
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So we go back to the tools that we have already developed polyphase decomposition and ask

if this was going to give us any insights in terms of the design of the 2-channel filter bank and

probably the course of this discussion you also get a feel for that this is a somewhat of a

involved problem. It is not a trivial problem, it is not something that we can solve straight

away, we have to basically plug along.

And you  will  see that  there  is  a  fair  amount  of  effort  and attempt  to  actually  solve this

particular  problem.  So H0 of  z,  H0 of z  I  am going to  downsample  by 2,  so 2-channel

polyphase decomposition, E0 of z squared+z inverse E1 of z squared okay. Now the QMF

condition  says  H1 of z will  be=H0 of –z,  so that  gives us a fairly interesting polyphase

decomposition.

It is not a new polyphase decomposition, it is actually the same as before with only a minus

sign, -z inverse E1 of z squared and that is because of the symmetry and the shift that has

happened okay. Now combining these 2 equations, we can write down the analysis filter bank

H1 of z, H0 of z in the following way, 1 1 1 -1 and the polyphase components E0 of z

squared z inverse E1 of z squared okay.

So that is equation 4 if you wish to write it down okay. Now I want you to write down for me

the synthesis filters. So very quickly let us just pencil them down and then write it in matrix

form. F0 of z from aliasing cancellation of choice H1 of –z. So that is straightforward. H1 of

-z is actually equal to H0 of z. So H0 and F0 actually are one in the same filter because of the

polyphase decomposition and the QMF constraint.



They actually map back to the original one, F1 of z is –H0 of –z. This is same as –H1 of z,

H1 of z we already have written down. So this will be equal to z inverse E1 of z squared- E0

of z square okay. That is F1 okay. Please follow along, if I have made any sign mistakes or

something just flag it down immediately okay. So combining these 2 equations, I would now

like to write down the synthesis filters.

Remember  I  told you analysis  filters  always  written as a  column vector, synthesis  filters

always written as a row vector. The reason is you would combine it with a column vector to

produce a single combined signal okay. So this is F1 okay F0 of z F1 of z, so it is written as a

column vector. Let us write down the expressions. So we would now write it down in the

following way F0 and F1 if you look at it.

It has got 2 polyphase components. I am going to write it in the following manner, z inverse

E1 of z squared and E0 of z squared. I will explain in a minute why I have chosen this. If you

write  it  in  this  form  notice  that  the  matrix  that  does  the  combining  of  the  polyphase

components comes out to be 1 1 1 -1 okay and that is an orthogonal matrix. So I would like to

preserve that because that was there in analysis filters.

I want to retain it in the synthesis filters as well. Now the reason for doing this also highlights

one point that we had mentioned earlier. We said that remember that this is type 1 polyphase,

this  is  type  1  polyphase  decomposition  type  1.  What  was  the  type  2  polyphase

decomposition? What would it have been? It would have been z inverse R0 of z squared+R1

of z squared right.

The delays are basically the delays are in a different order as in the type 1. So this is type 2

polyphase decomposition if you go back and look at your notations. Again, we do not use it

too often, so we did not specify too much which basically means that this is being labeled as

R0 of z squared and this has been labeled,  did I get that correct? Yes, and this has been

labeled as R1 of z squared okay.

So basically if I do that correctly yes yeah, so I get the correct representation okay. So now

the key element for us is to use this interpretation. So what I would like to do is redraw the

figure for you. So the 2-channel polyphase decomposition can be to 2-channel maximally



decimated filter bank with polyphase decomposition can be drawn in the following manner,

E0 of z squared E0 of z squared z inverse E1 of z squared.

Now comes the 2 x 2 DFT butterfly okay basically the crisscross operation. The lower branch

comes with a -1, these all the arrows moving to the right. The lower branch alone comes to

the multiplication of -1 okay outputs and here you would have the downsampling by a factor

of 2 okay. Now on the other side, it would be upsampling by a factor of 2 followed by the

synthesis filters.

The synthesis filters if you look at the implementation also have a crisscross butterfly. The

same structure, all lines moving to the right. The lower branch having a multiplication factor

of -1, upper branch is R0 of z squared. Keep in mind this is same as E1 of z squared. The

lower branch is R1 of z squared and then combined with a delay element z inverse added

together output, all the arrows moving to the right and this is X hat of z.

And this is the same as E0 of z squared okay, these are equal okay. So this is the overall

structure that we have obtained okay. Now what you could do is move the downsamplers and

the upsamplers and get a certain amount of insight. What you will find is that these 2 matrices

will cancel each other because they are orthogonal matrices and of course it will give you a

diagonal element or diagonal, it basically becomes our scale factor of 2.

Because when you multiply these 2, you get only diagonal elements with elements equal to 2.

So you will get a multiplication factor of 2, upper branch will be E0 of z, on this side it will

be E1 of z, this one will be E1 of z, this one will be E0 of z okay. So you look at both of them

and you say that well what did I get at the output is something very interesting. Upper branch

and the lower branch give me the same thing.

And of course there is the demultiplexing and multiplexing. Now well that still puts you in a

multirate environment and it is okay wait wait that is okay that is an insight but let me just go

back.
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And say that  under  this  condition  if  we went  back to our  original  equation,  the original

equation if you recall said that T of z what was it equal to H0 of z F0 of z+H1 of z F1 of z.

We are guaranteed that aliasing is canceled here right. So why worry with this downsampling

or upsampling. So I want to sort of work with the non-multirate framework where they say

okay T of z is this.

So this can be written as F0 of z F1 of z the synthesis filters as a row vector with H0 of z H1

of z as the column vector and if you now write down the expressions what you will get is 1/2

z inverse E1 of z squared E0 of z squared a 2 x 2 matrix 1 1 1 -1 followed by another 2 x 2

matrix 1 1 1 -1 and this one would be E0 of z squared z inverse E1 of z squared okay. Now

these two is what I mentioned, they will cancel each other.

You will get 2 0 0 2, it is like an identity matrix but with a scale factor of 2. So that scale

factor will cancel off the scale factor of 1/2 that is sitting outside. So what you will eventually

get is the following. You will get z inverse E0 of z squared E1 of z squared now which was

the same insight that you got from the multirate structure as well.

Basically,  you  know  once  you  move  the  multirate  blocks,  then  upsamplers  and

downsamplers, the two matrices will cancel and then upper transfer function, lower transfer

function come out to be the same and that is exactly what we have got and this is equal to T

of z. So T of z comes out to be the product of the 2 polyphase components and given once

you know H0 you can get E0 and E1 okay.



Now has this given us any further insight? First and foremost, does this hold for all cases?

Yes. This result holds for all cases which satisfy the following. Basically, they must satisfy

the  QMF condition  H1  of  z=H0 of  -z  that  is  the  QMF condition  and  then  the  aliasing

cancellation is F0 of z is= H1 of –z F1 of z=-H0 of –z. This is the AC, AC stands for aliasing

cancellation.

Now if I satisfy these two and then combine it with polyphase decomposition, then aliasing is

canceled and I get my transfer function T of z given by this expression okay. T of z is 1/2 H0

okay, so F0 I still have a problem know, I still have so there is a 1/2 here which is the 1/2 that

has shown up here. Let me just put a question mark here, is this 2 there or not? It is a scale

factor so but nevertheless we need to be careful and consistent with our expressions.

So yeah so I  will  double check it  from the beginning but for now so this  is the transfer

function with the QMF conditions satisfied, the aliasing cancellation condition satisfied and

the polyphase decomposition being applied. Most important in any result is the interpretation

and the insight that you get from there.
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So the transfer function being T of z, T of z being equal to let me write it with the scale factor

for  now, 2  times  z  inverse  E0  of  z  squared  E1 of  z  squared.  Now I  want  to  eliminate

magnitude distortion, phase distortion and see if how I can satisfy those conditions. So in

order  for  the  phase  distortion  to  be  eliminated  or  first  of  all  amplitude  distortion  to  be

eliminated.



If I want to eliminate amplitude distortion, amplitude distortion can be eliminated only under

one condition,  E0 and E1 both are  transfer  functions,  both of them should not  have any

amplitude distortion, so which means that these will have to be delays. E0 of z, E1 of z must

be delays. I will call this as some C0 times z power -n1 E1 of z C1 z power – this is n0 and

this is n1 okay, some two different delays.

That is only a condition under which they will have, so now you may say well can they

cancel each other? Yes, there are certain tricky constraints but remember E0 and E1 do not

have  a  relationship,  you  cannot  really  constrain  them.  They  are  dependent  on  the  filter

themselves. So which means that in a way E0 and E1 are kind of independent of each other. If

you start imposing additional constraints, yes it is possible but in the general case this is not

satisfied.

So because we made the claim that this is true in the general case, so in the general case if

you want to get aliasing cancellation the only option that will be possible is this combination.

So if you satisfy this then T of z becomes some scale factor, basically it will be 2 times C0 C1

and  it  will  be  equal  to  z  inverse  or  z  power  –n0+n1+1  no  2n0  2n1  because  it  is

squared+2n1+1 okay. So this is the overall delay.

Now that it is very good from removing the magnitude distortion but if I now go back and

look at my H0 of z, H0 of z is C0 z power -2n0+C1 z inverse z power -2n0 or in other words

it is C0 z power -2n0+C1 z power -2n1 this should be n1, 2n1+1 okay, it is a combination of

2 delays, H0 of z combination of 2 delays, you can choose those two delays to be at any

location.

So basically an impulse response that looks like this you know basically some combination of

delays and you cannot get very good filters with just a 2 tap of filter, you cannot get very

good attenuation. So yes so this is going to be a highly restrictive case. This is not going to

really satisfy. So yes this is okay but this is a very restrictive case okay, very restrictive. It is a

combination of 2 delays.

Therefore,  I  cannot  get  very  good  filters  to  begin  with,  of  course  they  will  satisfy  the

magnitude constraint being canceled completely okay very restrictive.  So this is the final

conclusion from our discussion. Of course, if you remember we said that how about if you



relate them to each other so that they can cancel and that was an observation that was made

yes so we can look at an alternative instead of choosing them to be delays I can of course

choose E1 of z to be=1/E0 of z.

Am I right? E1 of z is=1/E0 or either way because if you do this it turns out the following T

of z will be=2 times z inverse which means you actually get perfect reconstruction. You have

eliminated aliasing, with one stroke we have eliminated both amplitude and phase distortion

because you were able to write the transfer function as a product of two terms and if you

force one of them to be the reciprocal inverse of the other, the reciprocal of the other then you

will actually cancel them and then you will get a perfect reconstruction.

So if you remember see if I have let us say just 1+z inverse that is a filter that so what will be

the response of this? This is what it will look like right. Basically, this is the filter response.

Now if I decimate this by a factor of 2, this is by the way this is pi, this is pi/2, I will get huge

amount of aliasing correct. I will get a very large amount of aliasing. Now if I do not do any

processing, I will be able to be combined and get it back.

But the minute I do any quantization or something then the reconstruction will be a mess

because the lot of aliasing has scripted. Now that is where the problem lies, I should come up

with a system where even if I have done some processing I should be able to reconstruct with

a fair amount of fidelity right. So that is why I do not want to introduce a lot of aliasing in the

signals to begin with.

Now if I want to impose that then this is not a good filter, I would rather have something

which had like this. This would be a preferred one because that will reduce the amount of

aliasing and then when I do the reconstruction process is done, does a reasonably good job

with that right. So that is why we are saying the combination of 2 delays is not a is a very

restrictive solution from the point of view of designing a filter bank that will handle a general

class of filters, general class of applications okay.

Now let us come back to this option. Any difficulty with this? It becomes an IIR filter right

because the minute you say that this is one of the polyphase components that means even if

E0 of z was a FIR transfer function, E1 of z becomes infinitely long because 1 by this one, so



which means that this filters become IIR. So we were actually interested in working with FIR

filters okay.

So this is an indication that maybe if you relax that constraint that you want to have only FIR

filters maybe there is some interesting solutions that are possible okay. We make note of that

but this has another drawback, any other drawback, one is IIR. Any other drawback? Stability

because I am not guaranteed stability. I may have ended up with something that is unstable.

So it is IIR+stability and I will put a question mark.

There is no guarantee of stability. So yes I cannot do brute force way though it gives me an

indication that maybe your constraint is, you already started imposing too many constraints,

you are asking it to be FIR, you want aliasing cancellation. Aliasing cancellation comes for

free  because  I  know how to  choose  the  filters  but  you  are  asking for  quadrature  mirror

symmetry and you are satisfying this condition okay.

So now as I mentioned in the last class, we will go back and look at the transfer function.

(Refer Slide Time: 44:29)

Look at the transfer function, it is T of z is=1/2 of H0 of z F1 of z+H1 of z sorry this should

be F0 F1 of z, this is my transfer function. Now the thought the process that goes about is that

okay, now magnitude distortion where we try to eliminate, we went so far, it seems to be a

little bit complicated, we split it into polyphase components. We say that okay maybe the

indication to go towards IIR.



So now let us try the other side, let us say that aliasing cancellation is done. I choose the

aliasing cancellation. Quadrature mirror filters condition satisfied. Magnitude distortion I am

going to allow okay. Magnitude distortion allow, magnitude distortion minimize. I am not

trying  to  eliminate.  So I  am not  going to  ask  you  to  make  it  into  an  all  pass  function,

minimize and can I phase distortion eliminate.

Can I do this with FIR okay? So this is the we are basically approaching this problem from all

possible and it is a very good model for how you would do a research problem. You get the

transfer function and then you say okay I changed this parameter, I changed that, I combined,

look at  it  and but you may hit dead ends and was kind of hit  a dead end with trying to

eliminate magnitude distortion.

So for this we say that okay, we will go to the class of linear phase filters and if you would

recall from Oppenheim and Schaffer O and S I call right it is OSB because there is a previous

version  which  is  Oppenheim  Shaffer  and  Buck.  So  if  you  have  the  later  version,  it  is

Oppenheim and Shaffer and Buck okay. In that you can find that there is a classification of

filters that is given to us.

The classification of filters is in the classification is in terms of the order and the symmetry

okay and let me just write it down type 1 is even order, even order and even symmetry okay

and order is defined as if I have H of z=h0+last term is h of N, h subscript n,. Z power –N, N

is the order, N plus 1 is the number of coefficients okay. The number of coefficients is one

more than the filter order.

And so the filter order that we are talking about is N and if that N is even then it is called type

1 and then you have type 2, you have type 3 and type 4. Type 3 and then type 4 please go

through and fill in all of the categories. What is of interest to us is the type 2 case. I will focus

only on that. So type 2 is odd order and it is even symmetry okay. An example of type 2

would be H0+H1 z inverse+H2 z-2+H2 z-3+H1 z-4+H0 z-5.

Notice filter order is 5, the number of coefficients is 6 but because of symmetry you need to

worry only about 3 of them, half the numbers are same. So this is the type of filter that we are

interested in. Let me just write the expression for it and then leave it to you as an exercise for



you to. H0 e of j omega if this is H0 e of j omega and let me just make it + dot dot dot dot dot

dot+h of N times z-N that is a general form.

So H0 e of j omega in this case can be written as e power -j omega N/2 summation K=1. This

is not as important so but if you have a doubt please look it up in Oppenheim and Shaffer.

This would be bK cosine omega K-1/2 okay. What is important for us is that this is a real

valued function. Real valued function, it may be positive or negative okay that is because this

is sum of cosine terms that are getting added, it does not matter.

So all the phase term is captured here and there may be a +pi if the real valued function turns

out to be. So we will call this as some real valued function HR e of j omega okay. So very

important, we can now write it as e power -j omega N/2 HR e of j omega okay. Now please

take this and substitute it into one with all of the symmetries that we have written down and

please verify the following result.

That magnitude T e of j omega can be written as 1/2 of magnitude H0 e of j omega whole

squared+H1 e of j  omega whole squared okay that  is  magnitude response and the phase

response is e power -j omega N okay, so this is you have to show this thing. Please show this

result to show using 1 and 2. So notice that the phase distortion has been removed and now

we have a condition on the magnitude distortion.

And I  know that  H1 is  same  as  H0 e  power  j  omega  –pi  that  is  the  quadrature  mirror

symmetry okay. So now this tells me also a way to actually satisfy the magnitude constraint

also through a design process. So I can design my filter H0 such that this is very close to a

constant C, the magnitude squared response and just a last  point, what does that actually

mean?
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If I have a filter like this quadrature mirror filter, what the condition says is if this is H0, this

is H1, take magnitude H0 e of j omega magnitude squared, so basically square this. Then,

square  the  second term H1 e  of  j  omega  magnitude  squared  and add them together. So

basically I will just draw it for the purposes of squaring. This is the squaring here; this is the

squaring of this term here.

What I get through the addition process is something that looks like this. I want something

that is a constant okay. So it is possible but we have to design the filter H0 with slightly

different constraints. What are those constraints? how do we design them? how do we get

good filters for this is in the next class. Thank you.


