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Let us begin lecture 2 of our course. Today's topics are, we will revisit a few aspects of the C/D

versus A/D.

(Refer Slide Time: 00:25)

Again, this is a familiar topic but I thought I just wanted to mention one more time. Dirac delta,

everyone has studied it probably in your networks and systems course. But worth revisiting the

properties because that is important. We are going to be going back and forth from the analog

domain to the discrete time domain, continuous time domain. Sampling, our discussion in today's

class was going to focus primarily on the frequency domain.

We already looked at time domain sampling and time domain is uniform sampling. And we will

also see how the Nyquist criterion comes from the frequency domain interpretation as well. So

that is another part of today's discussion. What if Nyquist criterion is not satisfied? Then we have

the problem of aliasing. How do you ensure that aliasing is not present? We use something called

the anti-aliasing filter.



So why the anti aliasing filter comes and how multirate signal processing helps you work with

the anti aliasing filter? That is a very key take away from today's lecture. And then of course, we

are always interested in the final outcome. In DSP very often or entire processing starts in the

discrete domain, you do the processing and then you do the output in the discrete time domain.

You really do not worry about converting it back into an analog signal.

In our case, very often we do want to in the application that we are looking at, we are interested

in the reconstruction process. So what is the reconstruction filter? What is an ideal reconstruction

filter? approximations of ideal reconstruction filter and then also in the course of today's lecture a

few interesting examples as well. So let us begin.

(Refer Slide Time: 02:26)

As always feel free to ask questions, as I mentioned in the last class, I will repeat the question

because it has to be audible for the recording purposes. So our, by and large when we say that we

want  to sample  a signal,  the underlying  assumption  is  that  the signal  is  band limited  by its

inherent property. Alternatively, I have to make it band limited. So one or the two, either it is

band limited or it has to be made band limited, then we apply the Nyquist theorem.

Nyquist theorem says that I must be > 2 times the band width of the signal. So keep that picture

in mind that the band limiting process, so the band limited property either has to be inherent or it

has to be sort of forced upon it. Or it has to be created via a filter, okay. That is going to be an



important element in what we will discuss today, okay.

(Refer Slide Time: 03:46)

So then the next aspect of it is the differences between A/D and C/D system. So this is a C/D,

continuous time to discrete time. This is an A/D. So can you link the A/D to the C/D, what is the

part that takes you from here to here? A quantizer. So basically each of these samples instead of

being represented with the infinite precision, do have finite levels. So in other words, you could

think of a C/D block followed by a quantizer, gives you effectively the A/D operation, okay.

Okay. So this is the point that we wanted to mention. So keep in mind that here we do have a

discrete, here we have continuous amplitude in the discrete domain. We do not have any loss of

information due to quantization. Here it is discrete amplitudes. The minute you have discrete

amplitudes, you have lost some information. So that is the very important element. So let me just

spend a few minutes on this.

(Refer Slide Time: 05:35)



Again this figure is from the last lecture highlighting the fact that basically we are talking about

uniform sampling.  Throughout  this  course,  the  sampling  is  going to  be uniform.  Unless  we

specify we are  talking  about  a  C/D converter,  not  a  quantization  part.  Therefore,  that  is  an

important element, we assume this infinite precision. Let me just mention one aspect that I think

is important for us to keep in mind, okay.

(Refer Slide Time: 06:15)

So when we have a quantized signal or a discretized signal, so if the samples are quantized, then

we actually represent it in terms of the original signal + some impairment or noise. So it is the

original signal + quantization noise. It is very important that the reason we keep emphasizing that

we are talking about a C/D is that we really do not want to, at this point, focus on quantization



noise.

Because if you talk about the quantization noise, then we can see that there is a signal power and

there is a quantization noise power, okay. So the minute you start quantizing, you have to then

also keep in mind there is a signal to quantization noise ratio. And the whole subject of A/D is to

achieve as high an SQNR as possible. So that is a branch of study that has important elements by

itself.

However, multirate DSP can play a part in reducing SQNR. So multirate DSP can reduce SQNR.

That part we are interested in, okay. But by and large, since our focus is on the multirate aspects,

except when we are studying about the enhancement of SQNR using the multirate processing.

The rest of the time, we are, more or less, looking at a from a scenario where quantization noise

is not the main aspect, okay.

(Refer Slide Time: 08:45)

So given that picture, then we can now say that the C/D, that is what we are focussing on, is

going to take the continuous time signal, multiplied by a train of impulses, as we talked about

yesterday. The spacing between these impulse is going to determine how finely I will sample the

continuous time signal. So here are some alternate schemes. So this is a scheme where I have a

higher sampling rate because my sampling period has been reduced and of course, if I go the

other direction, I will get the opposite result, lower sampling rate, okay. So this is the starting



point.

(Refer Slide Time: 09:34)

So let us spend a few minutes on the Dirac delta. Again this would be something that I believe

most of you are familiar with but it is important for us to highlight the properties and therefore,

we would like to. So Dirac delta, delta of t is a very unique function. Again each of the branches

of study of who use the Dirac delta have their own perspective on it. There is a mathematics

perspective.

There is a physics perspective.  There is also the engineering perspective.  I will give you the

electrical engineering perspective. So we look at it as a function that is not, that is basically is =0

everywhere other than t=0, okay. It is =0 everywhere, but it is also undefined at t=0. So it is a

function that has to be specified or defined by means of its properties. Because the definition

itself says that there is something undefined about the function at t=0.

So the ways in which we define the Dirac delta are by series of properties and basically we will

use  2  properties,  the  sampling  property  and  the  area  property.  So  the  area  property  or  the

property number 1 ; if I integrate p to q delta of tau d tau, that is I integrate the Dirac delta where

p and q are on alternate sides of 0, of the origin, okay. So assuming that the period of integration

is on either side of where the delta actually occurs.



Then this is equal to 1, okay. And there are several variants of this. One variant that I am sure

you would have seen is -infinity to t delta of tau d tau, basically it is a same integral property. If I

do this, then what we get is actually u of t, the unit step, okay. So for every t, you will get; which

is t, where t is greater than 0, you will get a unit amplitude and therefore that becomes the unit

step.

And interestingly, we also note that any scaling of this delta also scales the output. So it does

have a useful property and that is very important for us. Because we are sampling a continuous

time signal. It has got an infinite levels in terms of amplitude. So the delta function preserves the

amplitude of the signal that it is sampling. So this is property 1. Property 2. So this is the unit

area property.

The second one is the one that we are actually using that is the sampling property. Sampling

property sometimes  also referred  to  as  the sifting property, but  for us  since we are actually

talking about sampling, sampling is the term that we will use. Sampling property, okay. So X of t

* delta of t, basically kills; X of t is some function, continuous time function, kills the function

everywhere except at X of 0.

So this is =X of 0 * delta of t, okay. So it actually retains the Dirac delta property but it is scaled

by the function at X of 0. And similarly, if you were to apply, multiply X of t with delta of t-tau

0, this would sample the function at X of tau 0. Again multiplied by delta of t, okay. This is a

very useful property. Again, this may be very elementary because you have already studied it but

this is important because sometimes when you study the sampling property, it is not stated in

terms of this.

It is actually stated in terms of the sampling property combined with the integral property. So

basically this and this means the same thing. You may have seen it that the sampling property is

defined as -infinity to infinity, X of tau del tau, d tau. And this is =, what is this? You would have

studied this. This is X of 0. Because X of 0 delta of t, if I integrate from -infinity to delta of X of

0 as a constant that comes out integral -infinity to infinity of Dirac delta.



So again you may have seen it in this form, but we are interested in is the sampling property that

the Dirac delta preserves. Of course, the variation of this one is also that -infinity to infinity X of

tau delta of tau-tau 0 d tau=X of tau 0. So basically either way there is a certain property of the

Dirac delta that we need and we are utilizing, okay.

(Refer Slide Time: 15:51)

So now we will quickly develop the view of the sampling process. So let me just refresh your

mind, Xc of t*S of t is the sampled signal. So that is the signal that we are going to be working

with. The sampled signal Xs of t=Xc of t*S of t, where S of t is the periodic train of Dirac deltas.

Summation n=-infinity to infinity delta of t-nTs, where Ts is the sampling period and so basically

these Dirac deltas are spaced at that point, okay.

Now would like to get the representation, the time domain representation is straight forward. So

basically what is happening is that the sampled signal, X of n=Xc of nTs where n is the number

that is n=0,+-1, +-2. So time domain is very straight forward. So basically we are sampling the

continuous time signal. But the frequency domain is also very insightful. So that is what we are

going to be looking at.

So we would like to get the Fourier transform of this signal. So Xs of j omega. So basically we

want to get the Fourier transform of Xc of t*S of t. It is multiplication in the time domain. So in

the frequency domain, it is 1/2 pi the Fourier transform of Xc of j omega that is the spectrum of



the continuous time signal which has been assumed to be either band limited to begin with or

force to be band limited via filtering, convolution with S of j omega.

So the input spectrum, this is already given to us. This is already given and this is what we want

to compute, and again this is a computation that I am sure you would have done in one of the

earlier courses, networks and systems or one of the other courses but it is important for us. So we

spend a few minutes just to get the relevant representation. So I want to get the Fourier transform

of S of t.

So S of t is a signal which we have already drawn. It is a train of Dirac deltas which are spaced at

Ts, 2Ts, -Ts and so forth, okay. And because of its periodic property, it has, it lends itself to

Fourier  series  representation.  So  first  step  would  be  the  computation  of  the  Fourier  series

coefficient, 1/Ts integral -Ts/2 to Ts/2 delta of t e power -jk omega 0 t dt, where omega 0 is my

fundamental  frequency,  that  is  2  pi/Ts,  that  is  my  fundamental  frequency  and  k*omega  0

becomes.

May be it actually even is okay to even change it at this point to omega S because this we have

already defined to  be the sampling  frequency. So my fundamental  frequency is  actually  my

sampling  frequency  and  so  the  Fourier  series  computation  and  all  of  the  Fourier  series

coefficients come out to be 1/Ts. So S of t, in its Fourier series representation, all the Fourier

series coefficients are 1/Ts, summation k=-infinity to infinity e power jk omega S*t.

Basically all of them are complex exponentials. All of them have got the same weight. Just recall

that the Fourier transform of e power j omega 0 t, Fourier transform of this is 2 pi*delta, Dirac

delta of omega-omega 0. So basically that tells me that the S of j omega will be 2 pi/Ts, 2 pi

coming  from  the  Fourier  transform  of  the  complex  exponentials,  summation  k=-infinity  to

infinity delta of omega-k omega S, okay. 

Or in other words, this can also be written as k*2 pi/Ts. So again the S of j omega also is a series

of exponentials, I am sure these are well known results, okay.

(Refer Slide Time: 21:32)



So the convolution that we need to have, so the property of convolution,  if this is my input

spectrum, X of j omega, convolved with a Dirac delta at omega 0, this gives me the following

result. It basically shifts the spectrum to the centre frequency of the Dirac delta. So if this is

omega B, -omega B, then after convolution, it becomes omega 0+omega B, omega 0-omega B,

okay, and the centre frequency, okay.

So that  is  the  basic  convolution property.  So expand it.  Now to convolve with not  a single

impulse but a train of impulses, each of them; amplitude of the impulse is : 2 pi/Ts, okay. So

these would be at an amplitude of 2 pi/Ts. When I do the convolution, there is a 1/2 pi. So the 2

pi gets removed. So what I am left with is the scale factor of 1/Ts. So 1/Ts is what is present and

what will happen is each of these will get a copy of the X of j omega, okay.

So this is omega S, this is omega B. This point is omega S-omega B. This point is omega S +

omega B, exactly using the basic principles that we have talked about. So I hope you are clear

that the input spectrum if it had an amplitude of 1, through the process of sampling, would have

come that. And mathematically, the expression is S of j omega, this is sampled signal, is the

product of the 2.

So basically it is the, sorry Xs of j omega. Xs of j omega=1/Ts summation k=-infinity to infinity

Xc of j omega-k omega S. This is after the convolution. All the shifted copies of the spectrum, a



scaled factor of 1/Ts which is already visible from the graph. So I would like to just highlight 3

elements from this expression, these are useful for us in our understanding and comfort level

with the whole sampling process.

First of all, keep in mind that there is a scale factor. Should not ignore it. Should not omit it. This

is something that we have to be careful because we are interested in reconstruction, okay. The

second  element,  very  important,  basically  we  have  produced  multiple  copies  of  the  input

spectrum. So in fact an infinite number of copies. So I will just write it as multiple copies of

input spectrum.

Through the sampling process, this is inevitable. This is of the input signal or I will just write it

as input spectrum. And these input spectral copies are separated by multiples of the sampling

frequency, and all of these are very important in our study because we are going to be talking

about  multiple  sampling  rates  but  at  the  same time,  the  ability  to  reconstruct.  So therefore,

multiples of the sampling frequency, okay.

So one interesting observation which we can draw from this diagram. So observation. Now what

should be the condition that the images do not overlap? So basically look at this portion of the

spectrum, omega S-omega B is the lower edge or the trailing edge and the leading edge is omega

B. If this is greater than; let us keep it strictly greater than just for; is greater than omega B, then

there is no overlap.

Am I right? And each of those; now you may say why not you take it for any other of those gaps.

You can take it for any gap. Eventually you will find that the condition that it boils down to is

that sigma S should be greater than 2 times omega B, right. And this is nothing but the Nyquist

criterion.  So the Nyquist  criterion actually can be viewed; just from the sampling process, it

becomes very evident.

Now you may say why not greater than or equal to? Okay. If you say that it has to be equal to,

okay. Let me just give you the answer for that as well. That is what actually Nyquist criterion

says. Anyone knows why in most of the practical DSP cases we just say, okay over satisfy the



Nyquist criterion, do not stay exactly at Nyquist. Okay one at a time.

The Nyquist is not at the midpoint, the midpoint of the exact image. Okay, that is one, you have

to be very careful about what is the value of the spectrum at that omega B, okay. Any other

answer? The filter design, okay! That is a very important element.

(Refer Slide Time: 29:02)

Because now even from this particular discussion, we can move into the next aspect of our, what

we  wanted  to  cover  is  the  reconstruction  process.  So  the  sampling  process  has  created  the

following. Sampling process has created these images. Now let us say that we have completed

whatever task we wanted to do and now we want to reconstruct the signal. So this is the sampled

signal.

This is Xs of j omega. Now the reconstruction process basically requires you to get rid of these

images. So the reconstruction filter is actually a low pass filter which removes all the unwanted

images,  keeps only the central  image. Now the aspect that was mentioned is that if you had

exactly Nyquist criterion, then what you will need is a filter which is an ideal filter, okay. A brick

wall filter, okay.

And in neither in digital nor in analog are these realizable filters. So and of course if it was not 0

at this point, okay, that was another point that was mentioned, okay. If it was not 0, then it adds



another dimension to the problem, because if you had a situation where you had something like

this, then it is even more tricky when you want to do the reconstruction process. Because you

want to make sure that your reconstruction filter does not remove any of the information of the

signal.

Now when this is the scenario and your filter is also drawn in this fashion, okay, what is the

frequency response of the filter at the band edge? Suppose to be 0 because it is a cut-off filter. It

has to cut-off. So basically you create some issues about the reconstruction at the band edge. So

for one reason or the other, you would want to be careful with the Nyquist criterion. So I would

say that by and large, it is safer for us to over satisfy the Nyquist criterion, satisfied in a manner

that it is easy for us to work with.

Okay, let us take a couple of examples which I believe are helpful and instructive and we will

then look at some interesting applications as well. So everyone comfortable with the statement

about the reconstruction process? Okay, everyone is comfortable with that? Okay. And also with

the statement about the requirement of the continuous time filter.


