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Good morning. We begin lecture 7. We will do a quick recap of lecture 6. I would like to do it

in  the form of some examples  and then build on that  to  complete  our  discussion on the

discrete time processing of continuous-time signals. Last time, we looked at a low-pass filter,

we  also  talked  about  a  differentiator,  just  want  to  make  a  few  comments  about  the

differentiator and look at two more examples.

And after that we move into the time scaling where you look at either increasing the sampling

rate or decreasing the sampling rate.

(Refer Slide Time: 00:45)

And always keeping in mind that there is an underlying possibility that you might run into

aliasing which is a distortion that you cannot remove easily, so that is something that you just

want to be careful about okay.
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By way of review more than repeating what was done in the last class, let me just mention the

notation or the convention that we are following. Again, this is standard in Oppenheim and

Schaffer. Anytime we are talking about a discrete-time signal, we use the square brackets. So

if you see that assume that it is a discrete-time signal. The argument is an integer okay so n is

an element of the integer set.

And likewise the curved brackets always denote a continuous time, so that is our convention

and the argument in that case will be something that belongs to the real valued set. So we will

always  follow  this  notation,  no  deviations.  The  only  time  when  there  is  a  little  bit  of

confusion possibility is that you go from discrete-time system with sampling rate 1 to another

discrete-time system with sampling rate 2.

Both of them will be denoted as n and we have to interpret it in of them but the notation of

square brackets, curved brackets will always be, will always be retained okay.
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So by way of a quick the motivation for processing a continuous-time signal used in the

discrete time domain I think we have spoken about it at length and we are convinced that it is

something that will lead to advantages depending upon the application. The key point to note

is that the discrete-time system has got a LTI response H e of j omega and that is related to

the input output relationship in the continuous time.

And you can think of it as one period of the discrete-time spectrum which is periodic and we

are basically removing all of the others and this is provided LTI property is retained.
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Now in the context of a differentiator, we saw that the magnitude response is something that

will increase from 0 going out towards the higher frequencies and the phase is a +pi by 2 for

positive frequencies, -pi by 2 for negative frequencies. If we have a band limited signal, then



it is perfectly okay to band limit the response of your filter as well because anyway you do

not have signal in the outside of that range.

And therefore  there  is  an advantage  to  doing it  in  this  fashion.  So just  to  complete  this

problem let me just request you to so this is magnitude H e of j omega, this is argument or

angle H e of j omega that is the so basically in order to do that we would have to change it

over to discrete-time. So this would become pi, this would be -pi and then we would have

magnitude H e of j omega.

And similarly this this would be to I have to change colors here, this would be pi, this would

be -pi and that will be the argument. So I would like to obtain the impulse response of this

band-limited differentiator, it is a band-limited differentiator because when I map it into the

equivalent  H effective  of  j  omega  that  that  will  show that  your  differentiator  was  only

differentiating over a finite range of frequencies and not over all frequencies.

So basically the H e of j omega, H e of j omega will have a response that looks like this. It

will go from –pi to pi. This is –pi to pi and then it is periodic, so you will see the repetitions

with respect to 2pi okay, so that is that and the phase is again defined in the range –pi to pi

and of course it will also repeat itself okay. So you can, so given this I would like to obtain

the impulse response h of n that would be nothing but the inverse Fourier transform.

So it would be from 1 over 2pi times –pi to pi H e of j omega e power j omega n d omega

okay. So again this is just to reinforce the fact that we can represent these once you given the

spectrum of the discrete-time filter, we can get its impulse response and basically once you

have the spectrum then we can also relate it to the continuous time H effective. So this you

would have to split it as two integrals -1 over 2 pi 0 to pi something plus 1 over 2 pi -pi to 0

okay, please verify.

And this you should get to be equal to 0 if n equal to 0and equal to -1 power n by n times Ts,

if n not equal to 0, this is the expression for h of n. Now you may be wondering how do I

design such a filter. It turns out that if you use the Parks-McClellan method and there are 4

types of linear phase filters, type 1, type 2, type 3, type 4. If you pick the appropriate type,

specify the magnitude response, you will get a filter that pretty much looks satisfies that.



And it  should  have  impulse  response  given  as  follows.  So the  what  are  we leveraging,

leveraging the fact that we can design discrete-time systems with a lot more flexibility, a lot

more ease then we can do analog systems and always making sure that if the input signal is

band limited then I am always permitted to sample it, take it into the sample domain, use the

discrete-time toolbox that is available to us and then bring it back into the continuous time

domain okay, so let us move on.

So the next application or just so that you start thinking along the lines of what we are trying

to do.
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So we are given a continuous-time signal, so here are the data that is given. It is a continuous-

time signal with spectrum which is band limited. So band limited to 20 kilohertz, so I am

assuming that you will be able to interpret that there is a spectrum from -20 to 20 that is the

input spectrum. So the task is as follows.

Remove  all  spectral  components,  all  spectral  components  in  the  range 5  kilohertz  to  10

kilohertz, components in the range of f greater than or equal to 5 kilohertz to 10 kilohertz

which is what we have shaded in blue to show that that is the portion that we want to remove

and of  course  we would  like  to  use  a  discrete  time  filter  to  satisfy that.  So  here  is  the

sampling rate, decided to do it exactly at Nyquist just for illustration 40 kilohertz okay.

So now I need to design a digital filter that will satisfy the corresponding conditions. So if my

sampling frequency is  40 kilohertz  okay, so this  basically well  I  should strictly speaking



should write it as 2pi times 40 kilo radians per second okay, so that strictly that is omega s but

when I convert it into the discrete time I would have to multiply omega s by Ts and my Ts is

40 kilohertz okay.

So my sampling  frequency is  40 kilohertz,  so maybe  just  to  be  consistent  let  us  do the

following. So let me define sampling frequency and this is the continuous time frequency

okay. So sampling frequency is 40 kilohertz, the corresponding sampling frequency in radians

per second is 2pi times 40 kilo radians per second okay. So this tells me that the sampling

period is 1 over 40,000 okay.

So if I convert omega s times Ts that will map to 2pi right. So if this is 2pi basically 40

kilohertz is 2pi, 20 kilohertz would be pi, 10 kilohertz would be pi/2 and 5 kilohertz would be

pi/4. So the corresponding discrete time filter would be a band stop filter, I would pass all

frequencies  from 0  to  pi/4,  cutoff  the  frequencies  from pi/4  to  pi/2  and  then  allow  the

remaining frequencies to pass through okay.

So this would be pi/4 pi/2 to pi, so if it is a real-valued, it will be symmetric. So I get another

stop band on the other side and this is at –pi, -pi so basically this would be the low-pass filter

that we are to design okay. So this is observation number 1, so this is how you would design a

filter given the constraint. Now just so that we quickly make a couple of more observations.

Second observation, if I had changed my sampling frequency to 2pi times 60 kilohertz 60 kilo

radians per second okay.

So which means that I have actually sampled it higher than Nyquist which is at 60 kilohertz

sampling rate, sampling period would be closer to each other. Then, we would have to relook

at what would be the frequencies that we would have to design. It is still a low-pass filter

sorry it is still a band stop filter. The pass band edge goes from 0 to 5 kilohertz, now 2pi

corresponds to 60 kilohertz.

So 5 kilohertz corresponds to pi/6 okay and 10 kilohertz corresponds to pi/3 and of course

you will have a much longer pass band all the way to pi and you can draw it on the other side

as well. So again depending on how I have chosen my sampling rate, I would have to design

so there is a link between the design of the discrete-time system and the sampling rate that

you have chosen that is the second observation that we make.



Now if I had kept the original filter, this is observation number 3, so if I had kept the original

filter that means I had retained this filter, so keep the original filter which is cutoff from pi/4

to pi/2 that is the band stop portion but I had sampled my signal at 60 kilohertz okay, so

which  portion  of  the  spectrum  did  I  remove?  You  would  have  to  recalculate,  so  2pi

corresponds to 2pi in the discrete-time domain corresponds to 60 kilohertz right.

I am cutting off from pi/2, pi/2 corresponds to 15 kilohertz, pi/4 will be one half of that 7.5

kilohertz.  So this if I had taken the original filter with the pass band up to pi/4 and then

another  pass band from pi/2 to pi,  I would have sample it  at  60 kilohertz,  I would have

actually done a removal of a portion of the spectrum but I removed a different portion of the

spectrum okay. 

So what this example is to illustrate is that your sampling period is important, your design of

the digital filter is important and there is a whole lot of flexibility that you have once you go

into the digital domain okay. Any questions on this example should be yeah.  “Professor -

student conversation starts.” No, no, this is a design of a digital filter. So when you specify

your digital filter if you remember in DSP you will always specify from –pi to pi or from 0 to

2pi, you would have to specify your digital filter in that range.

This  is  the  specification  of  the  digital  filter,  so  your  question  is  very  valid  because  the

spectrum of the signal does not go all the way to pi but it goes to some portion less than pi

because you are sampling but the digital filter result is designed so that it has a frequency

response from –pi to pi right. So the digital filter design and specification does not strictly

depend on even if  I  change the  signal  for  just  for  discussion  purposes,  the  digital  filter

remains specified from –pi to pi.

So I would have to for completeness show this portion of the spectrum as well okay. So this

would  be  –pi  to  pi  okay  good.  “Professor  -  student  conversation  ends.” Any  other

questions? Okay.
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Just as we said that one of the things that I am we are assuming that you are familiar with in

terms of the reading assignment, so let me just mention it here reading assignment we said

Oppenheim and Schaffer chapter 2 where we talked about all the different types of sequences

and their manipulations or transformations of sequences. Similarly, there is another chapter

which is chapter 5, which is a chapter which we call as transform analysis.

So this is where we talked a lot about the design of filters, the response of LTI systems, where

to put the poles and zeros, again we will not be revisiting that but except to use that as a tool

in our multirate discussions. So here is an example which probably gives you a chance to

review or recollect or refresh yourself regarding some of the contents that you would have

covered in chapter 5.

Again, I would request you to brush up on that in case you are not very familiar with that

okay. So here is a very practical example something which we encounter all the time. We are

looking at the ECG signal okay. ECG signal you probably have not had any need to take it

but if you have seen an ECG signal, basically it has some pattern that looks like this. The

doctors are looking for 5 points, p, q, r, s, t and they look at spacing frequency, the heights

and other things.

And then they are able to interpret that into saying a normal heart, something that has got

irregular behavior, so lot of information that is obtained from there. So the bandwidth of

interest, bandwidth of interest in the ECG signal let us say is in the range of 1 kilohertz, 0 to 1

kilohertz. So it is basically the information content is in the 1 kilohertz range. So this is the



signal that you would easily sample at 2 kilohertz probably a little bit higher if you want to be

safe. Now there are impairments that that do happen, one is noise present.

So basically you are interested in signal that is in the 0 to 1 kilohertz range, there is noise

outside of 1 kilohertz. So you would have an anti-aliasing filter that would remove all the

unwanted noise. So anti-aliasing filter takes care of the noise that is outside but there is one in

band impairment which is very, very common in ECG signals that is what is shown in the

blue on the right hand side.

Anyone guess what is this? 50 hertz interference, so basically there is a superposition of 50

hertz which is your AC supply and occasionally there could be harmonics of the 50 hertz, you

may have 100 hertz,  150 hertz  as well.  So again let  us assume that  we have a 50 hertz

interference and the task is to design a filter that will remove the 50 hertz but will not mess

with the rest of the spectrum.

Basically, you want to preserve as much of the signal both in the time domain and in the

frequency domain as possible. So the frequency domain interpretation of this problem is that

we want to remove the 50 hertz component, 50 hertz interference and in the process you will

remove the 50 hertz content in the signal as well but you are saying make it as narrow as

possible so design as tight a band stop filter or a notch filter.

So this would actually then say that you have to design a notch filter, notch filter act with a

notch at 50 hertz and make it as sharp as we can okay. So let us do two things, one is let us

just draw a spectral interpretation of the problem, we have some information signal up to 1

kilohertz. So that is +-1 kilohertz okay and we have a 50 hertz component which is very low

frequency compared to the bandwidth of the signal.

There is a 50 hertz component, so basically this is 50 hertz component and so that will show

up, since it is a sinusoid it will show up as an impulse or Dirac Delta and in case harmonics

are present you will have to draw that. Let us only take the case of the 50 hertz okay, so we

will assume that we will sample at 2 kilohertz, sampling at 2 kilohertz, we would have to

design a notch filter for this.



So transform analysis says that if I have to remove a sinusoid completely, I have to put a 0,

my transfer function must have a 0 at that frequency. So my H of z, my discrete-time filter’s

transfer function must have whatever else it has it must have a 0 on the unit circle at that

frequency. So basically it must have a transfer function which is 0 at z equal to z naught okay

and z naught is a 0 on the unit circle.

So we will call it as e power j theta and what is theta? Theta corresponds to the 0 location

must correspond to 2pi times 50 hertz, so that that is 100pi if you would look at it in the

continuous  time.  Now this  is  actually  getting  sampled  into  the  discrete  time  domain,  so

omega is equal to omega times Ts. So that would be 100pi times the sampling frequency

which is 1 by 2000.

So this in the discrete-time basically says that theta must be at 0.05 pi, 0.05 pi so pi by 20

whatever that you just can locate. So basically it is very close to the so yes I have designed

this and this I have located the 0, I do not want a complex impulse response. So what do I do?

1-z naught conjugate times z inverse right, that will give you a real impulse response, very

good. So now I say can you please sketch for me the spectrum of your notch filter okay.

So the 0 is located here and here, filter does a reasonably good job but it starts to droop right

from there and then it does this right, that is the notch filter because that is the response if you

so the notch filter took out the corresponding component but it also took out with it lot of the

other portions of the signal you may actually have ended up doing a lot of damage to the rest

of the spectrum as well, so clearly this is not the right option okay, that is not the right option.
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And before we even go further let me just also ask you a couple of related points connected to

that. So if I have 1-z naught z inverse 1-z naught conjugate z inverse okay, these are the 0s

which we had looked at.  So can you tell  you what  the pole-zero plot  looks like just  for

completeness. So this is the unit circle okay. I have one 0 at z naught, one 0 at z naught

conjugate, they will be on two sides, you can locate them okay.

Now is this complete? The 0s are there, map the 0s, poles, are there any poles in the system?

z equal to 0 how many poles? 2 poles. So I should not forget that. So these are two poles

okay. So this is the transfer function of the system that has the following response. Now

obviously it  was not satisfactory. So if  I  want  a sharp notch filter. So the intuition from

chapter 5 Oppenheim and Schaefer says I have got a 0 so the response is like this.

Now how do I  make it  sharp? I  have to add a  pole very close to where I  want this,  so

basically I have to add a pole somewhere you know around that point okay. So yes that is the

correct thinking, so I will now design a transfer function which is of the form 1-z naught z

inverse divided by, so maybe we will call this as e power j theta okay and you would have to

also have another term 1-e power –j theta z inverse okay.

And the corresponding pole 1-r e power j theta, let us say I put it at the same location okay.

Now would this work? 1-r e power -j theta z inverse, does this work? So basically what we

are saying is we removed these poles, we have if you look at this I have put a pole here and a

pole here. Will that work? Does that give you a sharp notch filter? The answer is yes because

when you come close to the zero, the zero will dominate it.



It will force the function, anywhere you go further away the pole and zero more or less will

match  each other  in  terms of  the magnitude  response.  So we will  make the plot,  so the

frequency  response  that  you  will  get  is  you  will  have  a  notch  at  zero  but  pretty  much

everywhere else it will have a flat response.

So you will have a fairly sharp notch okay and if you want the notch to be sharper than what

it is what you would have to do is to make it sharper filter what you would have to do, you

have  to  send  r  closer  to  the  unit  circle.  So  it  is  almost  doing  a  pole  zero  cancellation.

Everywhere else it looks like a pole zero cancellation except at zero. In this form, you can

assume that the poles and zeros are matching.

That means there are 2 poles, 2 zeros and the only thing is this is a system that could become

unstable because you know if due to quantization effects or something if this pole looks like

it has gone on to the unit circle or for some reason outside that behaves like a pole, outside

the unit circle the stability would be the issue but by and large this would.
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So this would be a system that you would easily design for a removal of that 50 hertz notch

and design it very nicely, so that your discrete continuous time signal ECG signal looks clean.

Now the advantage of going to the discrete-time domain is that if you found out that the

harmonic let us say the third harmonic 150 hertz also is present to some degree to a smaller

level but it still has to be removed, you just have to add another set of poles and zeros so that

you can remove that notch as well.



So chapter 5 very important for us because that tells us how to design LTI systems to the

requirements that we have and then once we are able to do that there are lots of interesting

advantages.


